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Nonmonotonic heat flux trends of a boundary-heated granular gas
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By means of the direct simulation Monte Carlo method, the effect of rarefaction on the heat fluxes and the
hydrodynamics of a granular gas bounded by thermal walls is investigated. The heat flux is found to evolve
nonmonotonically with the particle inelasticity due to the competition between the particle inelasticity and
rarefaction. The former enhances the heat flux, and the latter reduces the heat flux. As the particles become more
inelastic, the onset of the heat flux diminishment due to rarefaction is found to be signaled by a temperature
gradient collapse. The same temperature gradient convergence, which precedes the rarefied-reduced heat flux, is
also found as the applied temperature gradient is increased.
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I. INTRODUCTION

The hallmark characteristic of granular systems is the in-
elastic particle-particle collisions. Granular systems serve as
excellent models for several industrial processes and natural
phenomena [1,2]. Under external forcing, granular particles
can behave as a fluid. The fluid-like behavior of granular
systems motivated several groups to develop a granular hydro-
dynamic theory [3–7]. The granular hydrodynamic equations,
which resemble the familiar Navier-Stokes (NS) equations,
are found from the inelastic Boltzmann equation by consid-
ering the first-order solutions following a Chapman-Enskog
expansion [8]. The granular NS order solutions have served
as the foundational equations to explain various granular fluid
phenomena.

In recent years, there has been growing interest in under-
standing the nonhydrodynamic behavior of rarefied granular
gases. By nonhydrodynamic, we refer to the fluid phenomena
which are not captured by the NS description. From simula-
tions, there is a growing body of literature which has identified
nonhydrodynamic phenomena in both granular and molec-
ular gases, such as the Knudsen-minimum paradox [9,10],
shear-induced heat fluxes [11,12], and temperature bimodality
[9,12]. It has been shown from analytical solutions that a large
number of these anomalous fluid phenomena can be described
by considering the Burnett order terms [13,14].

However, the analytical solutions are often limited to
quasielastic particles. It is unclear whether the existing theory
is applicable to particles which are highly inelastic. Further-
more, the bulk of granular gas simulations often consider
gases under shear; there is a noticeable scarcity in studies
which consider a bounded rarefied granular gas which is
not sheared. We believe this is because it would seem that
additional heat fluxes from the Burnett order solutions are
shear induced. From the generalized Fourier conduction law
proposed by Pan et al., the additional heat flux contributions
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in a stationary rarefied molecular gas come from the third
spatial derivative of the temperature; these high-order effects
go beyond the Burnett order. While Risso and Cordero devel-
oped analytical solutions for rarefied granular gases using a
14-moment method [15], their solutions are applicable only
to quasielastic particles.

To elucidate the rarefaction, or higher order, effects on
a granular gas, we consider the case of a low inelasticity
granular gas bounded by isothermal walls. This case was
previously considered by Brey and Cubero, where they sought
to formulate a Newtonian description for quasielastic particles
bounded by equal-temperature walls [16]. Reyeset al. later
extended the work by accounting for non-Newtonian effects
[7], allowing their analytical solutions to be valid beyond the
quasielastic limit. However, in each of the previous works, the
solutions are of NS and Burnett order, respectively.

Analytical solutions for equations beyond the Burnett order
are extremely difficult to determine. Therefore, we instead use
numerical means by employing the direct simulation Monte
Carlo (DSMC) method, a method popular for studying rar-
efied gases [17]. This paper begins by first briefly describing
the DSMC method in Sec. II. The DSMC results are compared
to the analytical solutions given by Reyes et al. [7], which are
outlined in Sec. III. The case of equal temperature walls is
first considered. In Sec. IV, the temperatures and temperature
gradients from DSMC and theory are first compared. The heat
fluxes are then divulged in Sec. V. We then determine if there
exists relatively simple modifications to the solutions given
by Reyes et al. which account for rarefaction effects. We then
consider unequal temperature walls in Sec. VI.

II. THE DIRECT SIMULATION MONTE
CARLO (DSMC) METHOD

Unlike other molecular dynamic methods, the DSMC
method utilizes stochastic collisions, making it a popular and
computationally efficient tool for simulating rarefied gases.
The general procedure for the DSMC method is widely avail-
able, and detailed descriptions may be found here [17,18]. We
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will only show the necessary changes to extend the original
DSMC method given by Bird [17] to solve for granular gases
and how the boundaries are handled.

Inelastic particles lose a proportion of their relative ve-
locity after colliding with one another. The pre- (v) and
postcollisional (v′) velocities between particles i and j are
related through the following,

vi, j
′ = vi, j ± 1 + α

2
(vr · k̂)k̂, (1)

where k̂ is the unit vector between the centers of the particles
at contact, or the apse line, α is the restitution coefficient,
and vr = vi − v j is the relative velocity. For the scope of this
paper, the boundaries are modeled as diffuse walls with a
defined wall temperature, Tw. Particles that come into contact
with the thermal boundaries have their tangential, vt , and
normal, vn, velocities randomly sampled from the Gaussian
and Maxwell-inflow [19] distributions, respectively,

vt =
√

kBTw

m
N (0, 1) (2)

vn =
√

−log(R)

√
2kBTw

m
N (0, 1), (3)

where N (0, 1) is a normally distributed random number with
mean zero and variance one, and R is a uniformly distributed
random number.

To model the bounded granular gas, we define two isother-
mal walls along the x direction. The mean of the two wall
temperatures is kept constant as one. The remaining bound-
aries are periodic. The lengths of the system in the x, y, and z
directions are [L,W, H] = [20, 10, 10]λ. The mean free path
is defined as λ = 1/(

√
2nπd2), where n is the number density,

the overline indicates a mean value, and d is the particle diam-
eter. The system is discretized into 80 collision cells along the
x direction. The initial particle velocities are sampled from the
Maxwell-Boltzmann distribution with an initial temperature
of T = 1. All particles are identical with diameters (d) and
masses (m) chosen as one. The mean number density is cho-
sen as n = 0.05. The restitution coefficient is assumed to be
constant and not vary with the relative velocity. The particles
are assumed to interact via a hard-sphere potential, and the
particle cross section is then σc = πd2.

Unlike continuum models, the hydrodynamic characteris-
tics may be directly sampled from the particle positions and
velocities. The cell-averaged density (ρ), temperature (T ), and
heat flux (q) are found as

ρ = 1

Nt

Nt∑ 1

Vcell

(
N∑

i ε cell

mi

)
, (4)

T = 1

Nt

Nt∑ 1

3N

[
N∑

i ε cell

mi(cici )

]
, (5)

q = 1

Nt

Nt∑ 1

Vcell

[
N∑

i ε cell

mici(ci · ci )

]
, (6)

where the right summation is over all particles in the collision
cell, and the left summation is over Nt time steps. Vcell is
the volume of the cell, ci = vi − u is the peculiar velocity

of particle i, vi is the particle velocity, and u is the bulk
velocity of the cell the particle resides in. Since the system
and its gradients are trivial in the y and z directions, only the
macroscopic variations in the x direction (qx) are considered.

III. ANALYTICAL SOLUTIONS FOR
ISOTHERMAL WALLS

The density, momentum, and energy balance equations are
given as

Dt n + n∇ · u = 0, (7)

Dt u + (mn)−1∇P = 0, (8)

Dt T + 2

3n
(P : ∇u + ∇ · q) = −T ζ , (9)

where Dt = ∂/∂t + u · ∇ is the material derivative, n is the
number density, u is the bulk velocity, m is the particle mass,
P is the stress tensor, T is the temperature, and q is the heat
flux. There is an additional cooling term, ζ , that arises due
to the inelastic particle-particle collisions. In the case of zero
applied shear, the bulk velocity vanishes (u = 0) and the solu-
tions given by Refs. [7,16] are nearly identical, only differing
slightly in their evaluation of the thermal conductivity. At
steady state, Eq. (7) equates an identity, and Eqs. (8) and (9)
reduce to

∇P = 0, (10)

∇ · q = −3

2
nT ζ . (11)

Equation (10) indicates that the pressure is uniform.
The heat flux requires that the cooling rate, ζ , be known up

to the second order. It can be shown that the first-order cooling
rate vanishes for the case of no shear [3]. In the dilute and
quasielastic limit, the cooling rates from the second-derivative
spatial gradients were found to be several orders of magnitude
smaller than the thermal conductivity [3]. Consequently, we
estimate the cooling rate only by its zeroth-order contribution.

The constitutive equation for the heat flux takes the form

q = −κ∇T − μ
T

n
∇n. (12)

The second term on the right-hand side is a Dufour-like con-
tribution which has no direct analog in molecular gases. Given
the pressure is constant, by substituting in the hydrostatic
pressure, p = nT , Eq. (12) can be rewritten as

q = −ψ∇T , ψ = κ − μ. (13)

The cooling rate and transport coefficients are expressed in
terms of the NS transport coefficients,

ζ0 = ζ ∗
0

p

η0
, (14a)

ψ = ψ∗κ0, (14b)

ψ∗ = (κ∗ − μ∗), (14c)
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where the NS shear viscosity (η0) and thermal conductivity
(κ0) are defined as

κ0 = 15η0

4m
, η0 = 5

16d2

√
mT

π
. (15)

The reduced values, indicated by asterisks, vary only with
α. Here, we use the analytical expressions for the reduced
thermal conductivity and cooling rate given by Brey et al. for
a low-density granular gas [3],

ζ ∗
0 = 5

12
(1 − α2)

(
1 + 3

16
a2

)
, (16)

κ∗ = 2

3

1 + 2a2

ν∗
k − 2ζ ∗

0

, (17)

and

μ∗ = 2ζ ∗
0

(
κ∗ + 2a2

3ζ ∗
0

)
(2ν∗

μ − 3ζ ∗
0 )−1, (18)

where

ν∗
k = ν∗

μ = 1 + α

3

[
1 + 33

16
(1 − α) + 19 − 3α

512
a2

]
(19)

and

a2 = 16(1 − α)(1 − 2α2)

81 − 17α + 30(1 − α)α2
. (20)

Combining Eqs. (13)–(18) yields

d

dx

(
κ0

dT

dx

)
= −3

2

ζ

ψ∗ p, (21)

where we now only consider the x component. To solve
Eq. (21), the differential equation can be linearized by consid-
ering the following change of variables, ds = ν(x)dx, where
ν(x) is the local collision frequency. Detailed derivations may
be found in Refs. [6,7,16]. Here we only quote the final result
for the case of zero shear (Eq. (5.40) in Ref. [7]),

|x − x0| = l0

∣∣∣∣∣
√√√√ T

T0

(
T

T0
− 1

)
+ sinh

√
T

T0
− 1

∣∣∣∣∣, (22)

where x0 is where the system reaches its minimum tempera-
ture, T = T0, and

l0 ≡ wT 1/2
0

2K
, w2 ≡ |�|

2m2γ 2
, (23)

where

K = pd4

√
m�

, � = 5

16
√

π
. (24)

In the notation we have used, the term γ evaluated at zero
shear is

γ = 1

5

ζ ∗

ψ∗ (25)

and

� ≡ −2mBγ − 1

2
A2. (26)
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FIG. 1. The local Knudsen values are shown from DSMC for
varying α.

The coefficients, A and B, are related to the constraints at an
arbitrary location within the domain.

In the case of equal temperature walls, the hydrodynamics
are symmetric about the middle of the domain, where we
will define x = 0 to be. Note that this would imply x0 = 0.
The system is coolest at the centerline and has the following
constraints,

dT

dx
(x = 0) = 0, T (x = 0) = T0, (27)

which lead to A = 0 and B = T0.

IV. CONVERGENT TEMPERATURES
AND TEMPERATURE GRADIENTS

We first consider the case of equal-temperature walls where
the wall temperatures, Tw, are set to one. This system is
particularly convenient in studying the combined effects of α

and rarefaction. As the particles are made more inelastic, the
particles tend to cluster more densely around the center of the
domain. Subsequently, the boundaries and regions surround-
ing the boundaries become more rarefied as shown by the local
Kn numbers in Fig. 1. The local Knudsen number is defined
as Kn = λ/L, where the mean free path is evaluated using the
local number density. At the boundaries, it is clear the local
Kn increases with decreasing α. At the center of the system,
the reverse is true where the local Kn value decreases with de-
creasing α. In other words, with stronger particle inelasticity,
the boundaries become more rarefied and the interior becomes
more dense.

In deriving Eq. (22), the effect of the granular Knudsen
layer is neglected. However, the granular Knudsen layer was
previously found to be relatively thick [20], and neglecting the
boundary layer effects may lead to qualitatively different be-
havior in the bulk. It is helpful then to determine the extent the
granular Knudsen layer effects change the general hydrody-
namics in comparison to what is found in DSMC. Plotting the
theoretical temperatures requires some care since the quantity,
l0, requires that the pressure and minimum temperature must
be known. A proper comparison between DSMC and theory
should limit the amount of information provided by DSMC to
theory. Therefore, either the DSMC pressure or the minimum
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1.0 (b)
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FIG. 2. (a) The pressures are plotted for each α. Equation (22) is
plotted as lines where the solid and dashed lines are with and with-
out the temperature jump, Tjump modification, respectively. (b) Tjump

(black), T0 (red), and �Twm = T (L) − T0 (blue) are plotted against
the Knudsen values at the wall. Because the system is symmetric,
only the right half of the domain is shown. Markers in both plots
indicate DSMC results.

temperature, T0, should be provided. The remaining unknown
for either case would be found by matching the temperature
of the solution at the boundary with the wall temperature.
Here, we choose to provide T0 from DSMC and determine
the correct pressures to satisfy the boundary condition. In the
left panel of Fig. 2, the pressures are shown. As denoted by
the dashed line, we see that the pressures are generally larger
than what is found in DSMC. This is expected because the
temperature jump at the boundary is ignored. From the right
panel of Fig. 2, the temperature jump, defined as Tjump =
Tw − T (L), is plotted as a function of the Knudsen value at
the wall, Knw. As previously mentioned, Knw is inversely
proportional to α. It is clear that the temperature jump is
significant and cannot be ignored. More interesting is how
similar the temperature jump grows with respect to T0 with
increasing rarefaction. To compare the two, the gas tempera-
ture at the wall is compared to the minimum temperature and
is defined as �Twm = T (L) − T0. From the theoretical solu-
tions, the values of �Twm tend to grow where the growth rate
reduces with lower α. On the other hand, the growth rate of
�Twm reduces more rapidly, exhibiting a plateau after around
Knw = 0.10. While the qualitative characteristics are mostly
found from the theory, there are clear quantitative differences.
Recovering quantitative agreement in the pressure and �Twm

is surprisingly simple. What we find is that if we modify the
boundary conditions for Eq. (22) such that the temperature
jump found in DSMC is accounted for, the correct pressures
and �Twm are recovered. These are indicated by the solid lines
in Fig. 2.

A similar modification is often used in molecular gases
where the boundary condition takes the form

Tw − T (L) = CJ
dT

dx

∣∣∣∣
w

, (28)

where CJ is some constant and (dT/dx)w is the temperature
gradient at the wall. It is important to note that this modified
boundary condition is difficult to use as the temperature gra-
dient tends to diverge near the boundary [20,21]. Normally,
the temperature gradient is extrapolated from the temperature
profile found within the interior of the gas. However, as seen
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FIG. 3. The temperatures are plotted against the normalized
lengths for restitution coefficients (α) ranging from (a) 0.99 to 0.95
and (b) 0.94 to 0.90. The solid and dashed lines are the theoret-
ical temperature profiles given by Eq. (22) with and without the
temperature jump modification, respectively. Because the system is
symmetric, only the right half of the domain is shown. The markers
are the measured DSMC temperatures.

from the temperature plots in Fig. 3, such an extrapolation is
ambiguous since even at the quasielastic limit (α = 0.99) the
temperature profiles in the interior of the domain are notice-
ably different whether the temperature jump is accounted for
or not.

But if the temperature jump were known a priori, the theo-
retical temperatures do show good agreement with the DSMC
temperatures. There remains minor disagreement as the α

goes beyond the quasielastic limit. For α < 0.95, Eq. (22)
with the modified boundary condition tends to overestimate
the temperatures. Without the modified boundary condition,
the analytical solutions deviate considerably with the DSMC
solutions at all α considered.

While a modification to the boundary condition seems suf-
ficient in extending the previous theory to rarefied granular
gases, this is untrue, as seen from the temperature gradient
plots in Fig. 4. At the boundaries, the theory predicts a tem-
perature gradient which appears to asymptote whereas the
DSMC temperature gradients diverge. The DSMC results are
in agreement with what was previously found from molecular
dynamic simulations [20]. In the interior, the DSMC temper-
ature gradients are also lower than what is predicted from
theory, an observation first made by Brey et al. [16]. The the-
ory shows a qualitative disagreement with DSMC throughout
the domain.

What is particularly unusual is that the DSMC temperature
gradients converge as α decreases. The same convergence
is absent from theory, whether the temperature jump is ac-
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FIG. 4. Same as Fig. 3 but for the temperature gradients.
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FIG. 5. Same as in Fig. 3 but for the heat fluxes.

counted for or not. We do note that the analytical temperature
gradients without the boundary condition modification do
converge adjacent to the boundary. The collapse of the tem-
perature gradients is in agreement with the asymptotic �Twm

seen in Fig. 2. It is important to note that the temperature
gradient convergence is uniform, occurring near the bound-
aries where the gas becomes increasingly rarefied and in the
interior where the gas becomes more dense. Given the dynam-
ics of the system, the gradual convergence of the temperature
gradients is likely correlated with the increasing rarefaction
of the gas near the boundaries. This temperature gradient con-
vergence is significant because if we take Eq. (28) to be true,
then, because the wall temperature is constant, the tempera-
ture jump only varies with the constant CJ . The constant CJ

should vary with the properties of the gas or α. From numeri-
cal fitting, we find that Tjump ∝ ε0.61 where ε = (1 − α2)/6 is
often called the inelasticity parameter. To our knowledge, such
a temperature gradient convergence in granular gases had not
been previously reported.

V. HEAT FLUX TRENDS

One of the consequences of the temperature gradient col-
lapse is that the heat flux decreases with lower α beyond the
quasielastic limit. From Eq. (13), the heat flux scales with the
temperature, the reduced thermal conductivity, ψ∗, and the
temperature gradient. By definition, ψ∗ decreases with α. The
temperature must decrease as the particles becomes more in-
elastic. This then leaves the temperature gradient as a primary
indication of how the heat flux evolves with α. For lower α,
the DSMC temperature gradients remains constant, and thus
the heat flux must reduce with smaller α. Near the quasielastic
limit, we might expect that the heat flux would increase due
to the growing temperature gradient as seen from Fig. 4.
In short, the heat flux should first increase then decrease
as the particles become more inelastic. To verify this, the
theoretical and DSMC heat fluxes are shown in Fig. 5. With
more inelastic particles, if the temperature jump is neglected,
the theory predicts a heat flux which at first monotonically
increases but then rapidly converges in α. The DSMC heat
fluxes show a similar initial evolution where the heat fluxes
converge as α decrease. However, further decreasing α, the
DSMC heat fluxes show an inverted evolution where the heat
flux magnitudes decrease. Similar to what we found for the
temperature profiles, if the temperature jumps are accounted
for, the heat flux evolution from theory is in excellent agree-
ment with DSMC. However, the agreement between DSMC
and theory with the temperature jump accounted for is un-

0.02 0.04 0.06
Kn

0.000

0.002

0.004

0.006

q x α
0.98

0.96

0.94

0.92

0.90

0.0 0.1
0.00

0.01

FIG. 6. The local DSMC heat fluxes are plotted for varying α

against the local Knudsen value. The main plot is truncated to im-
prove clarity where the full range of data is shown in the inset.

expected given the qualitative difference in the temperature
gradients as seen in Fig. 4. That is, despite a misrepresentation
of the temperature gradient, the theoretical heat fluxes agrees
with DSMC. This contradiction is confounding. We suspect
that the Fourier law of heat conduction is not appropriate for
rarefied gases. A more generalized conduction law is likely
needed, similar to the one proposed by Pan et al. for molecular
gases [22]. Further investigation of this discrepancy is out of
the scope of this study. Returning to the heat flux evolution,
we suspect the nonmonotonic evolution of the heat flux is tied
to the increased rarefaction at the boundaries. It is then useful
to see how the heat flux evolves with the local Kn values,
which are plotted in Fig. 6. We note that the critical α, below
which the heat flux begins to decrease, is highly dependent
on the local Kn. For examples, at Kn = 0.06, the heat flux
monotonically decreases with α. For Kn = 0.045, the heat
flux only decreases if α � 0.96.

The Kn dependence on the heat flux evolution can be phys-
ically understood as a competition between the rarefaction and
particle inelasticity. Rarefaction tends to reduce the heat flux
since the interparticle collisions are relatively few; collisions
are necessary to form temperature gradients. The inelasticity
has the opposite effect where the increased dissipation should
tend to accentuate the temperature gradient between the gas
and the walls by reducing the mean temperature of the gas.
That is, the heat flux is enhanced by the particle inelasticity
and attenuated by the rarefaction. To some extent, these ob-
servations have been noted previously. However, here we have
shown that the qualitative expectations of the rarefaction and
inelastic effects are intimately correlated with the evolution of
the hydrodynamic gradients, i.e., the temperature gradient. To
be more specific, the onset of significant rarefaction effects is
signified by the convergence in the temperature gradients as
the particle inelasticity is strengthened.

VI. UNEQUAL TEMPERATURE WALLS

The nonmonotonic heat flux evolution seen for the case of
equal temperature walls appears to be a direct consequence
of the increased rarefaction of the system. This then begs
the question if the nonmonotonic heat flux trend may also be
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FIG. 7. The (a) local Knudsen value, (b) temperature gradient,
and (c) heat flux for α = 0.94 from DSMC are plotted for different
wall temperature differences, �Tw . The inset in the heat flux plot
shows the heat fluxes for �Tw ranging from 1.4 to 1.8 near the right
boundary.

found under a different rarefying mechanism. To determine
this, we simulate a granular gas bounded by unequal tempera-
ture walls. The restitution coefficient is fixed, and the applied
temperature gradient is gradually increased. The dimensions
of the system are kept the same as before. The mean of the two
wall temperatures is kept fixed as one. The left and right wall
temperatures are in the ranges 0.2–1 and 1–1.8, respectively.
We refer to each set of wall temperatures by their wall temper-
ature difference, �Tw = [0, 1.6]. The restitution coefficients
range from 0.9 to 1.0 as before. Unlike the case where the
wall temperatures are equal, and α is varied, only the hot, right
boundary becomes more rarefied while the cold, left boundary
becomes more dense, as seen from the Knudsen plot in Fig. 7.
Similar to before, the rarefied region near the hot bound-
ary shows the same rarefaction signature: The temperature
gradients appear to converge. Once again, the convergent tem-
perature gradients appear to correlate with the nonmonotonic
heat flux evolution, except now with respect to �Tw. From
the inset of the heat flux plot in Fig. 7(c), the crossover in the
local heat flux near the hot boundary, which indicates a heat
flux decrease, is highlighted. We also briefly note that at the
cold boundary, the evolution of the hydrodynamics and heat
fluxes are qualitatively different. The temperature gradients do
not converge, and the heat flux evolves monotonically as the
applied temperature gradient increases. This is expected since
the gas near the cold boundary becomes increasingly dense,
and the rarefaction effects become increasingly negligible.
The plots in Fig. 7 are for the case of α = 0.94. In Fig. 8,
the heat fluxes at the hot wall, qx,H , for several other α are
shown. Note that the heat fluxes shown in Fig. 8 are negative.
We first note that the nonmonotonic heat flux evolution with
respect to α can be found for a chosen �Tw. Additionally,
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FIG. 8. The heat flux at the hot boundary (qx,H ) is plotted for
different wall temperature differences, �Tw . The restitution coeffi-
cients, α, range from (a) 1.00 to 0.96 and (b) from 0.95 to 0.90. Lines
are drawn as guides.

we find that for a chosen α, there is, in general, a maximum
heat flux magnitude with respect to �Tw. This suggests that
the heat flux near the hot boundary does not always increase
as we apply a stronger temperature gradient. For quasielastic
particles (α = 0.99), the dip, which represent the maximum
heat flux magnitude, is not visible. Earlier we found that the
onset of the heat flux decrease requires a sufficiently low α for
a given Kn (Fig. 6). We believe the heat flux maxima exists for
the quasielastic case but lies outside the range of temperature
gradients we investigated here.

VII. CONCLUSION

In summary, we investigate the rarefaction effects on the
evolution of the hydrodynamics and heat fluxes of a bounded
granular gas. We find that the heat flux exhibits a non-
monotonic heat flux evolution as the particles become more
inelastic or the applied temperature gradient is strengthened.
The nonmonotonic evolution of the heat flux can be physically
understood as a competition between the particle inelastic-
ity and the rarefaction. The former tends to increase the
heat flux by steepening the temperature gradient; the latter
tends to decrease the heat flux by collapsing the temperature
gradients. The onset of significant rarefaction effects, which
causes a heat flux decrease, carries a distinct hydrodynamic
signature: the convergence of the temperature gradients. The
temperature gradient collapse is significant as it implies the
temperature jump only depends on a constant if the boundary
condition given by Eq. (28) is assumed to be true.

The previous theory given by Reyes et al. can be shown
to have good quantitative agreement with the DSMC results
if the boundary conditions are modified with the tempera-
ture jumps found in DSMC. However, while the heat fluxes
between the modified theory and DSMC show excellent
agreement, the temperature gradients are in qualitative dis-
agreement. This is unusual since the heat flux as given by
Eq. (12) is proportional to the temperature gradient. We be-
lieve the contradiction is a shortcoming of the Fourier law
of heat conduction. Further investigation is needed to correct
the constitutive relation for the heat flux to bring consistency
between the divergent temperature gradient and nondivergent
heat fluxes found from DSMC.
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