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Interparticle forces are known to influence mechanical and physical properties of granular materials. A method
for inferring forces in two-dimensional and three-dimensional experiments has recently been developed and
applied to the problem of examining force statistics, energy dissipation, fracture mechanics, and force-property
relations. However, a systematic analysis of uncertainties in the forces inferred through this method has not been
undertaken. In this paper, our goal is therefore to perform such a systematic analysis. We first review and modify
the force inference technique to eliminate its sensitivity to the choice of units and coordinate system origin. We
then use discrete-element method simulations to perform a systematic study of how experimental uncertainties
and data-processing errors lead to errors in inferred forces. For the considered experiments and simulations, we
find that (1) errors in inferred force magnitudes and orientations increase as the ratio between particle stress
uncertainties and a measure of stress imposed on the system increases, but remain small in the largest forces in
a material; (2) the absence of a moderate number of particle stress tensors in the force inference procedure leads
to negligible errors in inferred force magnitudes and orientations; and (3) particle stress tensors that cannot be
directly measured during experiments can be “recovered” through the force inference procedure. Based on our
results, we make recommendations for future experiment design to reduce uncertainties in inferred forces.
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I. INTRODUCTION

Interparticle forces and force networks in granular materi-
als have been studied extensively. Forces have been examined
to understand mechanical and kinematic behavior at the grain
scale [1–4], to interpret properties such as acoustic wave
speeds [5,6], and to develop statistical mechanics theories [7].

Photoelastic experiments remain the most common ap-
proach for experimentally inferring interparticle forces in
two-dimensional (2D) granular materials [8]. Photoelastic ex-
periments have yielded enormous insight into force statistics
and fluctuations [9,10]. Other methods for inferring forces
in 2D and three-dimensional (3D) granular media have also
been proposed and used in the last two decades, notably,
3D reflective index-matched scanning combined with analy-
sis of contact areas [11,12], 3D x-ray computed tomography
(XRCT) in compliant materials combined with analysis of
contact areas [13], 3D confocal microscopy of emulsions
combined with analysis of contact areas [14], 2D imaging of
mechanoluminescent-coated particles [15], combining 2D or
3D imaging with discrete element method (DEM) simulations
[16], and combining 3D XRCT with 3D x-ray diffraction
(3DXRD) of stiff crystalline grains with mathematical inver-
sion of governing balance laws [17]. While each of these
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methods has yielded unique insight into the structure of forces
in granular media, the method combining XRCT and 3DXRD
is the subject of the present paper.

Experiments combining XRCT and 3DXRD have recently
been combined with a mathematical method for inferring
interparticle forces in 3D granular materials containing crys-
talline grains [17]. These 3D experiments and the associated
force inference method have been used to study structure-
property relations [18,19], force-fracture criteria [20,21],
contact-scale energy dissipation [22], the influence of forces
on wave propagation [5], and the influence of forces on local
rearrangements [23]. The force inference technique [17] has
also been used in 2D experiments to study forces, validate
numerical simulations, and examine the evolution of forces
during dynamic loading [24–28]. Despite the widespread use
of this method, a systematic analysis of uncertainties in the
forces inferred through this method has not been undertaken.
Analysis of such uncertainties for this method is important
in light of the growing number of applications of this force
inference technique, and may also be more complex than a
similar analysis for many of the other methods described in
the preceding paragraph, because the method being analyzed
involves inferring forces through an optimization problem,
rather than through a more direct measurement of contact
areas or particle deformation. We note, however, that the force
inference technique we analyze here is also unique in that it
does not rely on any assumption of a contact law between
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particles, in contrast to some other methods that employ a
contact law with measurements of contact area to infer forces
(e.g., [12–14]).

The goal of this paper is to perform a systematic analysis of
the force inference technique recently developed and applied
to 3D data [17]. The force inference method in [17], a mod-
ified form of a prior method [28,29], relies on experimental
measurements of particle stress tensors (averaged within each
particle), particle positions and contact locations, and particle
properties. Uncertainties in each of these measurements may
lead to errors in inferred forces. These uncertainties and errors
have been discussed in prior work [21,29,30] but have not
been systematically analyzed for their impact on interparticle
forces, except for the case of uncertainties in particle stresses
in [30].

Here, we first review the force inference method of [17],
modifying it to eliminate its sensitivity to the choice of
units and coordinate system in Sec. II. Next, in Sec. III, we
systematically examine possible sources of experimental un-
certainty or error arising from a combination of experimental
and algorithmic limitations, including experimental noise in
particle stress tensors, particles with missing stress tensors,
missing contacts or contact overdetection, errors in bulk ma-
terial properties, and errors in surface friction coefficients.
For this paper, we use discrete element method simulations
to generate ground-truth datasets for which inputs to the force
inference procedure and the actual forces are known exactly.
We show that, although errors in inferred force magnitudes
and orientations increase as the ratio between noise in particle
stress tensors and a measure of stress imposed on the material
increases, errors remain small in the largest forces in a sample,
suggesting that the strong force network can still be accurately
characterized by force inference in three dimensions. We also
notably show that in some circumstances, through the force
inference procedure, stress tensors can be accurately inferred
in particles for which experimental stress measurements are
unavailable, providing a promising future route to analysis of
datasets for which particle stress measurements are incom-
plete for one of several possible reasons (e.g., in [31]). Finally,
in Sec. IV we use our results to compute uncertainties in
forces inferred from prior experimental data described in [22]
involving two granular samples containing about 900 ruby
spheres studied at each of more than ten macroscopic stress
states per sample. Based on our analysis, we make recom-
mendations regarding future experiment design. In Sec. V, we
provide a discussion of our results and future work. In Sec. VI
we offer concluding remarks.

II. FORCE INFERENCE TECHNIQUE

The first force inference technique applied to 3D exper-
imental data was developed by Hurley and colleagues [17].
The technique employs linear and angular momentum bal-
ance (force and moment equilibrium), a volume-averaged
stress-force relationship, and assumptions regarding repulsive
forces and friction in a minimization procedure that yields
all interparticle force vectors in a static granular medium.
The force inference approach requires measurements of the
stress tensor of each particle (averaged over each particle’s
volume), the locations of each particle’s volume, the locations

of contact points between particles, and an estimate of inter-
particle and particle-boundary friction coefficients. In [17],
particle volumes and contact locations were furnished by 3D
x-ray computed tomography measurements and particle stress
tensors were furnished by 3D x-ray diffraction measurements,
both made in situ during quasistatic deformation of crystalline
grains [17] such as quartz. We direct the reader to [17,21] and
the references therein for further details about these measure-
ment techniques. The method has also been applied in two
dimensions using 2D photographic imaging to furnish particle
and contact locations and digital image correlation (DIC) to
furnish particle stresses [24–27].

In this section, we modify the governing equations de-
scribed in [17] to eliminate their sensitivity to the choice
of units and coordinate system. In the previous works
[17,22,26,29], the choice of units or coordinate system ori-
gin did not introduce significant errors in the inferred force
because the chosen values did not disrupt the balance of
weights between the governing force-balance and stress-force
equations. Nevertheless, eliminating the sensitivity of the gov-
erning equations to such choices makes the force inference
method more robust for future use in a variety of settings, in-
cluding in scenarios in which the choice of units or coordinate
system origin varies significantly from their values in prior
studies. We also provide a brief comparison of the modified
force inference technique with prior versions and direct the
reader to Appendix B for further quantitative comparisons.
The modified equations developed in this section are used in
subsequent sections to systematically examine how errors in
measurements lead to errors in inferred interparticle forces.

A. Governing equations

The equations governing the mechanical equilibrium of
a packing of particles include equilibrium equations and an
equation relating the stresses to the interparticle forces. In
this subsection, we assemble these governing equations into
two linear matrix equations for an entire granular packing, the
first containing force and moment balance and the second con-
taining stress-interparticle force relations. The force inference
procedure proposed in [17], and presented in slightly modified
form here, simply involves selecting a set of interparticle
forces for a granular packing that minimizes the nonequality
of these two matrix equations when terms within the equa-
tions are obtained through potentially inexact experimental
measurements.

First, we consider the equilibrium, or force and moment
balance, equations. Consider the pth particle in a granular
material that interacts with a neighboring particle q at contact
i and a boundary at contact j, as shown in Fig. 1. Force and
moment balance of this particle can be written as [17,30]

N p
c∑

α=1

κ p f α = 0, (1)

N p
c∑

α=1

(xα − cp) × f α = 0, (2)

where α are contact point labels ranging from 1 to N p
c (the

number of contacts for particle p), κ p is a weight factor of
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FIG. 1. Illustration of particle p in contact with particle q at point
i and with the boundary at point j. c vectors denote centers of mass
and f vectors denote contact forces.

particle p, f α is the interparticle force vector at contact α, xα

is a vector from the origin of a Cartesian coordinate system
to contact α, and cp is a vector from the origin to the center
of mass of particle p. Equations (1) and (2) are simply a
statement that particle p is in force and moment equilibrium
under the action of all forces at N p

c points on its boundary.
In Eq. (1), the weight factor κ p is a scalar that is intended to
eliminate the unit difference between the force balance and
moment balance equations. κ p was absent in prior versions
of the force inference technique [17,26,29] and is derived in
Appendix A. The weight factor κ p typically takes a value
close to the particle radius. In contrast to prior force inference
techniques in [17,30], Eq. (2) also features cp, which makes
each torque in the sum in this equation about the center of
particle p rather than the origin of the coordinate system. The
use of cp has the effect of making Eq. (2) independent of the
origin of the coordinate system.

Equations (1) and (2) for all particles in a granular material
can be combined in a linear matrix equation:

Keq f = 0, (3)

where 0 is the zero vector and

f =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

...

f i
p
...

f j
p
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (4)

where f i
p = ( f i

1, f i
2, f i

3)T is the force vector at contact i of
particle p, where particle p contacts another particle q, and
f j

p is the force vector at contact j, where particle p contacts
a boundary. For the specific example shown in Fig. 1, Keq is

given by

Keq =

⎛
⎜⎜⎜⎜⎜⎜⎝

i j
. . . 0 . . . 0 . . .

p 0 ki
eq,p 0 k j

eq,p 0
... 0 . . . 0

...

q 0 ki
eq,q 0 0 0

... 0
... 0 . . .

⎞
⎟⎟⎟⎟⎟⎟⎠

. (5)

In general, the matrix Keq has dimensions 6Np × 3Nc in three
dimensions (3Np × 2Nc in two dimensions), where Nc is the
total number of contacts in a material and Np is the total num-
ber of particles. The weights κ p are captured in a submatrix,
e.g., ki

eq,p, to be defined below. The p and q row labels and i
and j column labels in Eq. (5) are illustrative examples related
to Fig. 1. These examples convey that a submatrix keq appears
only where a particle contacts another particle or boundary;
otherwise, the corresponding entries in Keq are zero.

The vectors f and 0 in Eq. (3) each have dimensions
3Nc × 1 in three dimensions (2Nc × 1 in two dimensions).
Each submatrix within Keq, e.g. ki

eq,p, is specific to a single
particle. For particle p and contact i, this submatrix is written

ki
eq,p =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

κ p 0 0

0 κ p 0

0 0 κ p

0 −(
xi

3 − cp
3

) (
xi

2 − cp
2

)(
xi

3 − cp
3

)
0 −(

xi
1 − cp

1

)
−(

xi
2 − cp

2

) (
xi

1 − cp
1

)
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6)

Equation (3) can now be written as a statement of force and
moment equilibrium for a granular packing with any number
of particles and contacts.

We now consider the relationship between particle stresses
and interparticle forces. The volume-averaged stress within
particle p, σ̄ p, can be written using the linear momentum
balance equation as

σ̄ p = 1

Vp

N p
c∑

α=1

(xα − cp) ⊗ f α, (7)

where Vp is the volume of the particle and the particle is as-
sumed to be in static equilibrium. Equation (7) for all particles
in a granular material can be combined in a linear matrix
equation

Kst f = bst, (8)

where bst is a 6Np × 1 column vector in three dimensions (3Np

in two dimensions) capturing the left-hand side of Eq. (7)
multiplied by the particle volume and given by

bst =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

...

bp

...

bq

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, where bp =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Vpσ̄
p

11

Vpσ̄
p

22

Vpσ̄
p

33

2Vpσ̄
p

23

2Vpσ̄
p

13

2Vpσ̄
p

12

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (9)
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In general, the matrix Kst has dimensions 6Np × 3Nc in
three dimensions (3Np × 2Nc in two dimensions) and for the
specific case shown in Fig. 1 is given by

Kst =

⎛
⎜⎜⎜⎜⎜⎜⎝

i j
. . . 0 . . . 0 . . .

p 0 ki
st,p 0 k j

st,p 0
... 0 . . . 0

...

q 0 ki
st,q 0 0 0

... 0
... 0 . . .

⎞
⎟⎟⎟⎟⎟⎟⎠

. (10)

As with Keq, each submatrix within Kst is specific to a single
particle and contact in the granular packing. In Kst, the sub-
matrices, e.g., ki

st,p, are given by

ki
st,p =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

xi
1 − cp

1 0 0

0 xi
2 − cp

2 0

0 0 xi
3 − cp

3

xi
2 − cp

2 xi
1 − cp

1 0

xi
3 − cp

3 0 xi
1 − cp

1

0 xi
3 − cp

3 xi
2 − cp

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11)

Equation (8) can now be written to relate particle stresses to
interparticle forces for a granular packing with any number of
particles and contacts.

As in prior work, the two matrix equations in Eqs. (3) and
(8) can be employed to infer forces throughout an entire gran-
ular packing. To do this, all terms in these equations except the
interparticle force vectors f α must be measured. In practice,
this is possible for crystalline grains using XRCT and 3DXRD
in three dimensions [17] or for a variety of grain materials
using imaging and DIC in two dimensions [26]. Once these
measurements are made, forces can be inferred by

f = arg min
f

(λ|Keq f |2 + |Kst f − bst|2), (12)

where | · · · |2 is the two-norm (which may be replaced by the
one-norm, as explored in Appendix B), and the minimization
can be constrained to obey Eqs. (13) and (14). The term λ is
a tradeoff parameter that may be selected to be greater than,
less than, or equal to unity, depending upon whether more,
less, or equal weight, respectively, is given to the equilibrium
equations in comparison to the stress-interparticle force equa-
tions during minimization. Such weighting may be needed
when weights within one set of equations can be measured
with more accuracy than weights within the other set. In
practice, we have found that a value of λ = 1 typically pro-
vides a favorable minimization of errors. We therefore adopt
this value throughout the paper but explore other choices in
Appendix B.

Equation (12) seeks to obtain a set of forces throughout
an entire granular packing, f , that minimizes the nonequality
of Eqs. (3) and (8). Such nonequality arises because ex-
perimental measurements may be inexact. The use of the
two-norm in our objective function is equivalent to the maxi-
mum likelihood estimate of a vector of values when Gaussian
noise is present [32]. That the noise or error in experi-
mental measurements—for instance of particle stress tensor

components—can be approximated by a Gaussian distribution
has been demonstrated in several prior papers [21,30].

Two constraints—one imposing repulsive forces and one
limiting inferred forces by a Coulomb friction criterion—have
been imposed on the minimization in Eq. (12) in prior work
[17]. These constraints can be written for any contact α on
particle p as

eα
p · f α

p � 0, (13)

μeα
p · f α

p −
√(

tα
p1 · f α

p

)2 + (
tα

p2 · f α
p

)2 � 0, (14)

where eα
p is a normal vector to the contact plane at contact α

pointing toward the interior of particle p, μ is the Coulomb
friction coefficient, and tα

p1 and tα
p2 are mutually orthogonal

tangent vectors and lie in the contact plane and therefore
define a basis for any point within the contact plane. The vec-
tors tα

p1 and tα
p2 uniquely give the tangential force magnitude

through the second term on the left-hand side of Eq. (14) so
long as they form a basis for the contact plane. Equations (13)
and (14) can be combined into a linear constraint equation that
is a statement that forces are repulsive and do not exceed the
Coulomb friction criterion. This linear constraint equation can
be written

B f � 0. (15)

B. Uniqueness and history dependence

The minimization procedure in Eq. (12) involves 12Np

equations in three dimensions and 6Np equations in two di-
mensions and seeks to infer 3Nc force components in three
dimensions and 2Nc force components in two dimensions.
The minimization produces a unique set of forces when the
number of equations exceeds the number of unknowns, or
when Nc � 4Np in three dimensions and Nc � 3Np in two
dimensions. For a granular material containing a sufficiently
large number of particles, this constraint is satisfied for co-
ordination numbers (contacts per particle) approaching 8 in
three dimensions and 6 in two dimensions because most con-
tacts are shared between two particles.

The minimization procedure in Eq. (12) does not take
history dependence into consideration. Although interparti-
cle forces are history dependent for a given particle packing
structure, a unique set of interparticle forces can be related to
a given particle packing structure when particle stresses are
known and the number of equations exceeds the number of
unknown force vector components, as described in the previ-
ous paragraph. In this paper and in previous applications of
the force inference method, the granular materials of interest
always satisfy the uniqueness criterion imposed by having
more equations than unknowns [17,19,22]; exceptions to this
are noted explicitly throughout the paper (e.g., in Sec. III F).

C. Units and origin in the minimization process

The governing equations in Sec. II A are modified from
those present in prior work (e.g., [17]). In particular, Eq. (6)
for kα

eq,p contains a constant κ p with units of length that was
absent in prior work and is included here to ensure that all
equations captured in Eq. (3) have units of length × force.
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TABLE I. Force inference methods.

Method Feature Minimization

1a Depends on unit of length and origin
f = arg min(|Kst f − bst|2)
subject to Keq f = 0 and B f � 0

2b Depends on unit of length and origin
f = arg min(λ|Keq f |2 + |Kst f − bst|2)
with λ = 0.1, 1, 10
subject to B f � 0

3c Insensitive to unit of length and origin
f = arg min(λ|Keq f | j + |Kst f − bst| j )
λ = 1 and j = 1, 2
subject to B f � 0

aFrom [29]. Note: Kst and Keq do not contain c and κ p as in Sec. II A.
bFrom [17]. Note: Kst and Keq do not contain c and κ p as in Sec. II A.
cFrom Sec. II A.

In contrast to prior force inference methods, Eqs. (3) and (8)
both contain units of length × force. The value of κ p may
be chosen by considering the geometry of the particles in a
material to ensure that the two objective functions in Eq. (12)
have similar weights. A new, detailed process for calculating
κ p is given in Appendix A. κ p generally takes a value close to
the radius of the particles in a granular material.

Another modification of the governing equations in
Sec. II A is the consideration of vectors cp pointing from
the origin of the Cartesian coordinate system to the center
of mass of the particle p under consideration. This term was
also absent in Eqs. (2) and (7) in prior work. The addition
of this term ensures that the moment balance and stress-force
relations are insensitive to the location of the origin of the
coordinate system used in analysis. For instance, for moment
balance in Eq. (2), including cp ensures that moments of sim-
ilar magnitudes on separate particles have similar weights in
the minimization process, whereas having a coordinate system
closer to one particle than another would increase the weight
associated with the farthest particle in the minimization. A
quantitative comparison of force inference using the modified
equations in this section and those from prior work is provided
in Appendix B.

D. Summary of force inference methods

Table I summarizes the force inference methods proposed
in prior work [17,29] and in Sec. II A. The primary differences
in the methods are the choice of equations and weights used in
the minimization function. The method proposed in this paper
is the only one, through the use of c and κ p in Kst and Keq, to
be insensitive to the unit of length and origin of the coordinate
system used in analysis.

III. ERROR PROPAGATION AND FORCE UNCERTAINTY

In this section, we study how experimental errors or noise,
stemming from either inaccurate measurements, experimen-
tal resolution limits, or algorithmic limitations, propagate
through the minimization procedure described in Sec. II A
and lead to errors in inferred forces. This study is a more
thorough version of those undertaken in [29,30] which con-
sider older versions of the force inference technique or are
restricted to studying the effects of noise in experimentally

measured particle stresses only. The present paper is based on
discrete element method simulations which generate “ground-
truth” data—i.e., data for which inputs to the force inference
procedure and the true forces are known exactly. Because
multiple measurement errors may occur simultaneously in
real experiments, the effect of multiple measurement errors on
inferred forces is analyzed. The new force inference method
of Sec. II A is used to evaluate the magnitude of errors present
in prior studies (e.g., [5,18,19,22,26]) and make recommen-
dations for future experiment design.

A. Sources of error

Table II details the measurements needed in the minimiza-
tion procedure explained in Sec. II A, describes whether errors
in those measurements arise due to experimental limitations
(labeled Expt.) or algorithmic limitations (labeled Alg.), and
provides an approximate magnitude of the error. We investi-
gate the effect of a subset of these errors on inferred force
magnitudes and orientations in later subsections.

The first set of errors in Table II includes errors in particle
stress tensors, σ̄ p, in Eq. (7). In 3D experiments, these are cal-
culated in crystalline particles by first computing the average
strain tensor, ε̄p, of each particle from 3DXRD measurements
(see [17,33]). Errors in ε̄p arise because of both the resolution
limits of 2D area detectors used in 3DXRD measurements
and algorithmic limitations within existing 3DXRD analysis
codes [33,34]. The errors have been quantified in quartz and

TABLE II. Sources of errors or noise in the measurements
needed in Sec. II A to perform force inference. Experimental errors
are denoted by Expt.; algorithmic errors are denoted by Alg.

Error source Expt. Alg. Magnitude

Particle stress tensora � � 5 × 10−5–10−4 in ε

Missing stress tensor � �
Contact location � � <1 pixel
Missing or extra contacts � �
Particle center location � � <1 pixel
Particle stiffness � <1%
Particle or wall friction � Unknown

aErrors arise due to errors in strain, which are inferred through
3DXRD analysis and subsequently used to compute stresses.
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ruby particles with diameters ranging from 100 to 300 μm
as 10−4 for on-diagonal components of ε̄p and 5×10−5 for
off-diagonal components of ε̄p [21,30]. These values represent
the standard deviation of normal distributions with mean zero.
For quartz particles, this error in strain (through Hooke’s law,
σ̄ p = C : ε̄p, where C is the elastic stiffness tensor) leads to
“noise” in stresses of 10 and 5 MPa for on- and off-diagonal
components of σ̄ p [21]. For ruby or sapphire particles, the
noise in stresses is 50 and 23 MPa, respectively, for on- and
off-diagonal components of σ̄ p (see [30]). Therefore, the noise
of on- and off-diagonal stress components can be approxi-
mately represented as E×10−4 and E×5×10−5, respectively,
where E is Young’s modulus of materials. We note that this
magnitude of noise is independent of experimental boundary
conditions, including boundary stresses. Rather, it is intrinsic
to the material being studied and the experimental resolution
and algorithms. To make the magnitude of this noise mean-
ingful in the analysis performed later in this paper, we will
typically divide it by a measure of average trace of all particle
stress tensors when we examine its effects in Sec. IV B. In 2D
experiments, errors in particle stress tensors may also arise
because of camera resolution limitations and algorithmic lim-
itations of DIC codes [26,29]. These errors in particle stress
tensors are also typically fixed in their magnitude of strain for
a given imaging system and speckle pattern [35], and therefore
depend on the material being studied.

The second set of errors in Table II is missing stress
tensors. Three-dimensional granular systems studied using
3DXRD analysis may suffer from missing or overlapping
diffraction peaks for certain particles due to the dynamic range
of area detectors or particle fracture (e.g., [20,21]). If the
number of missing peaks falls below a user-defined thresh-
old, the particles will not be assigned a stress tensor. In 2D
granular systems, poor correlation of DIC windows may also
lead to inaccurate or absent average stress results for specific
particles.

The third set of errors in Table II includes errors in the
locations of particle-particle or particle-boundary contacts, xα

in Eqs. (1), (2), and (7). Such errors may arise because of
both the resolution limits of XRCT images and the selection
of parameters in image-processing algorithms used for image
segmentation and contact detection [36,37]. We estimate that,
if present, these errors are less than the length of 1 pixel (in
3D XRCT images or 2D images) in standard deviation and
have mean zero. This estimate is based on our observation
that contact points obtained by typical 3D analysis approaches
(e.g., [20]) are typically composed of many pixels. Averaging
the location of many pixels typically results in an error less
than the size of a single pixel [38]. Because errors in contact
locations are assumed to be small, we do not investigate their
influence on inferred forces here.

The fourth set of errors in Table II is missing interpar-
ticle or particle-boundary contacts or contact overdetection.
Either of these errors may arise due to image resolution and
limitations in contact detection algorithms in two and three
dimensions (see [37] for a discussion of these errors).

The fifth set of errors in Table II includes errors in the
locations of particle centers, cp, in Eqs. (2) and (7). These
errors arise for similar reasons as errors in contact locations.
Prior work has estimated that the magnitude of these errors

P P

P

P

3

2

1
(b)(a)

10 mm

FIG. 2. DEM geometry of (a) uniaxial and (b) triaxial compres-
sion test on a cubic material (edge length is 10 mm).

may be significantly less than the length of a pixel in XRCT
images (perhaps as low as 0.05% of the pixel size) [38]. We
therefore do not investigate the influence of these errors on
inferred forces here.

The sixth and seventh sets of error in Table II are errors in
particle stiffness and particle-particle or particle-wall friction
coefficients. Errors in these quantities arise because of natural
material variability and errors in calibration experiments per-
formed with the objective of characterizing material elasticity
or friction coefficients. When experiments are performed with
crystalline grains in three dimensions, as in our prior work,
particle moduli are assumed to be very accurate because
the crystal lattice parameters can be directly quantified and
compared with existing literature. Any errors in particle stiff-
ness are therefore assumed to be captured in the first set of
errors—those related to particle stress tensors. When exper-
iments are performed in two dimensions (e.g., in [26,29]),
particle moduli deviate by several percent of their character-
ized values due to resolution limitations of characterization
experiments or the nonlinear elastic response of the frequently
used polymeric particles. In both 3D and 2D experiments, the
interparticle and particle-boundary friction coefficients may
deviate significantly from their expected values due to surface
roughness, aging, or variability under normal compression
(e.g., [39]). Further experiments are needed to quantify this
friction variability for particles frequently used in granular
mechanics studies.

B. Discrete element method study

A 3D DEM model of uniaxial and triaxial compression is
used to generate ground-truth datasets in which all inputs to
the force inference procedure of Sec. II A and all resulting
forces are known exactly. The DEM code used for this is
LIGGGHTS (version 3.8.0) [40]. Figure 2 shows the geometry
of the uniaxial and triaxial compression tests. A simulation
box is created using analytically defined and meshed walls.
Simulations shown in Fig. 2 employ 591 spherical particles
which are inserted into the simulation domain without overlap
via a Monte Carlo approach (through the LIGGGHTS command
“insert/pack”) [40]. Increasing the number of particles up to
2500 does not significantly quantitatively affect any results re-
garding inferred force errors described in subsequent sections.
Particles are given the properties listed in Table III. Parti-
cle sizes, density, Poisson’s ratio, and friction coefficient are
similar to those in experiments performed on quartz. The
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TABLE III. Mechanical and contact properties of particles in
DEM simulations.

Property Value

Particle radius (mm) 0.5
Particle density (kg/m3) 2500
Number of particles 591
Young’s modulus (GPa) 1
Poisson’s ratio 0.2
Coefficient of restitution 0.1
Particle-particle friction coefficient 0.4
Particle-boundary friction coefficient 0.0

particle Young’s modulus is lower than that in experiments;
however, simulations with Young’s modulus up to 500 GPa
do not significantly quantitatively influence results regarding
inferred force errors described in subsequent sections. Model-
ing bidisperse granular packings with a large to small particle
radius ratio of 1.4 also does not significantly quantitatively
influence results of subsequent sections. After particle ini-
tialization, the walls of the simulation box are either fixed
or moved according to a stress-controlled integration scheme
to enforce boundary conditions on the sample. All particle-
particle and particle-wall interactions are governed by a
Hertzian contact model with tangential springs and a Coulomb
friction criterion for sliding (the “Hertz Tangential History”
contact model [40]). In the uniaxial simulation, a constant
pressure, P, acting in the −x3 direction is imposed on the
wall at the +x3 edge of the simulation box. In the triaxial
simulation, a constant pressure, P, acting in the −x1,−x2, and
−x3 directions is imposed on the walls at the +x1,+x2, and
+x3 edges, respectively, of the simulation box. P is chosen
as 0.1, 0.5, and 1 MPa. Particles are integrated according to
a velocity-Verlet scheme and gravity is ignored in all calcula-
tions. Walls are controlled by the “Mesh Surface Stress Servo”
command.

The macroscopic stress-strain and coordination-strain
curves for the 1.0-MPa uniaxial and triaxial tests are shown
in Figs. 3(a) and 3(b), respectively. The hydrostatic stress in
Fig. 3(b) is given by σv = (σ11 + σ22 + σ33)/3 and the volu-
metric strain is given by εv = ε11 + ε22 + ε33. Both Figs. 3(a)
and 3(b) illustrate that the average coordination number in-
creases monotonically with applied hydrostatic stress on the
sample. Table IV contains, for all six DEM simulations,
the standard deviation of normalized force magnitudes for
all contacts, von Mises stress for all particles, and average

TABLE IV. The standard deviation of normalized contact force,
std( f α/〈 f α〉), von Mises stress, std(σ̄ p

vm/〈σ̄ p
vm〉), and average coordi-

nation number, n, for all six DEM simulations.

Experiment std( f α/〈 f α〉) std(σ̄ p
vm/〈 σ̄ p

vm〉) n

Uniaxial, 0.1 MPa 0.61 0.41 4.91
Uniaxial, 0.5 MPa 0.65 0.41 5.19
Uniaxial, 1.0 MPa 0.58 0.31 5.49
Triaxial, 0.1 MPa 0.35 0.23 5.09
Triaxial, 0.5 MPa 0.27 0.13 5.67
Triaxial, 1.0 MPa 0.22 0.11 5.94
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FIG. 3. Sample stress-strain curve and coordination-strain curve
for (a) the 1.0-MPa uniaxial compressive test and (b) the 1.0-MPa
triaxial compressive test.

coordination number for all particles. The standard devia-
tion of force magnitudes and von Mises stresses decrease
with applied sample stress, consistent with a more negative
exponent of force magnitude decay for larger macroscopic
stresses [17]. The average coordination number does in-
crease monotonically with applied sample stress. Figure 4
shows the probability density of normalized force magnitude,
p( f α/〈 f α〉), and probability density of normalized von Mises
stress, p(σ̄ p

vm/〈σ̄ p
vm〉), for all simulations.

C. Force inference validation with ground-truth data

Force vectors at each interparticle contact are known ex-
actly from DEM simulations. These force vectors are used in
Eq. (7) to compute the ground-truth stress tensors for each
particle. When these ground-truth stresses and the particle
volume and contact position information are used in Eq. (12),
forces are inferred without any errors, as in [30]. The number
of equations used in the minimization procedure, equal to the
sum of the number of rows in Kst and Keq, is 7092, while the
number of unknown force vector components ranges between
4767 and 4944 for the 0.1-MPa DEM simulations and 5316
and 5724 for the 1.0-MPa DEM simulations. The minimiza-
tion procedure in Eq. (12) is therefore overconstrained and the
observation that forces are inferred exactly and without errors
is expected.

D. Definition of error measures

To clearly describe errors in inferred forces, we first define
error measures in this subsection and summarize them in
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FIG. 4. Average normalized force magnitude distributions for (a) uniaxial and (b) triaxial simulations. Average normalized von Mises
stress distributions for (c) uniaxial and (d) triaxial simulations.

Table V. We label the ground-truth force vector obtained from
Eq. (12) in the absence of any errors as f GT. The force vector
obtained from Eq. (12) in the presence of any sources of error
from Table II is simply labeled f . The ground-truth force
vector, magnitude, and normal force magnitude at contact α

are labeled f α
GT, f α

GT, and f α
n,GT respectively. The force vector,

magnitude, and normal force magnitude obtained at contact α

in the presence of any source of error are labeled f α , f α , and
f α
n , respectively. The first error measure we define is the error

in inferred force magnitude at α:

f α
e = ∣∣ f α − f α

GT

∣∣. (16)

We often examine f α
e in its form in Eq. (22) in which an

absolute value appears; however, we also examine the error
without an absolute value, which we term the signed error in
inferred force magnitude at α:

f α
se = f α − f α

GT. (17)

We also define the error in inferred normal force magnitude at
α as

f α
n,e = ∣∣ f α

n − f α
n,GT

∣∣, (18)

TABLE V. Error measures.

Name Definition

Error in inferred force magnitude f α
e = | f α − f α

GT|
Signed error in inferred force magnitude f α

se = f α − f α
GT

Error in inferred normal force magnitude f α
n,e = | f α

n − f α
n,GT|

Signed error in inferred normal force magnitude f α
n,se = f α

n − f α
n,GT

Normalized error in inferred force magnitude f α
e,n = | f α − f α

GT|/〈 f α
GT〉

Average normalized error in inferred force magnitude fe = ((1/Nc )
∑Nc

i=α f α
e )/〈 f α

GT〉
Error in inferred force direction θα

e = cos−1( f α
GT · f α/(| f α

GT|2| f α|2))

Average error in inferred force direction θe = (
∑Nc

i=α θα
e )/Nc

Average normalized error in inferred stress σ e
i j = (

∑Np
α=1 |σα,GT

i j − σα
i j |)/(

∑Np
α=1 |σα,GT

i j |)
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and the signed error in inferred normal force magnitude at α

as

f α
n,se = f α

n − f α
n,GT. (19)

The error f α
e can be normalized by the average ground-truth

force throughout a granular packing to give the normalized
error in inferred force magnitude,

f α
e,n =

∣∣ f α − f α
GT

∣∣
〈 f α

GT〉 (20)

where

〈 f α
GT〉 = 1

Nc

Nc∑
i=α

f α
GT, (21)

and 〈·〉 therefore represents an average calculation. The aver-
age normalized force magnitude error is given by

fe = 1

Nc

∑Nc
i=α f α

e

〈 f α
GT〉 . (22)

The error in inferred force direction at contact α is given
by

θα
e = cos−1

(
f α

GT · f α∣∣ f α
GT

∣∣
2| f α|2

)
. (23)

The average error in inferred force direction is

θe =
∑Nc

i=α θα
e

Nc
. (24)

The inferred stresses obtained from Kst f , where f are the
inferred forces [see Eq. (8)], can be written as σα

i j in index no-

tation. The ground-truth stresses can be written σα,GT
i j . These

ground-truth stresses can be obtained from Eq. (8) (Kst f GT)
using the ground-truth forces, f GT. The average normalized
error in inferred stresses is given by

σ e
i j =

∑Np

α=1

∣∣σα,GT
i j − σα

i j

∣∣∑Np

α=1

∣∣σα,GT
i j

∣∣ . (25)

E. Errors in the particle stress tensors

The first set of errors we investigate includes errors (also
interchangeably called noise) in particle stress tensors. To in-
vestigate the influence of this error on inferred forces, we draw
synthetic errors from Gaussian distributions and add them to
the ground-truth stresses obtained from DEM. For each parti-
cle in the DEM simulation we draw a distinct error for each
on-diagonal stress tensor component from a Gaussian distri-
bution with mean zero and standard deviation E×10−4 = 0.1
MPa, where E is the particle Young’s modulus from Table III.
We repeat this for each off-diagonal stress tensor component,
drawing such errors from a Gaussian distribution with mean
zero and standard deviation E×5×10−5 = 0.05 MPa. We then
perform the minimization in Sec. II A using the exact results
from DEM simulations for all quantities except particle stress
tensors, which have the errors just described.
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FIG. 5. (a) Average normalized inferred force magnitude error
as a percentage, fe×100%, and (b) average orientation error, θe, for
the case when noise is introduced in the particle stress tensors as
described in Sec. III E.

Figure 5 illustrates the average normalized inferred force
magnitude error, fe, as a percentage ( fe×100%) and the aver-
age orientation error, θe. Both errors are plotted as a function
of applied stress in the DEM simulations. In all cases, fe and
θe are smaller for triaxial compression simulations than they
are for uniaxial compression simulations. Both magnitude
and orientation errors are observed to decrease monotonically
with increasing applied stress. This occurs because as applied
macroscopic stress increases the average interparticle force
increases while the standard deviation of noise in stress tensor
components remains constant. This also occurs in experiments
with 3DXRD measurements in three dimensions or digital
image correlation measurements in two dimensions: the noise
is a function of experimental resolution and inherent particle
properties but is independent of the magnitude of stress in a
particle.

Figure 6 conveys the average inferred force magnitude and
orientation errors as a function of the ground-truth force at
specific contacts. The ground-truth force magnitudes were
binned and counted between integer multiples of f α

GT/〈 f α
GT〉

(e.g., between f α
GT/〈 f α

GT〉 = 1 and 2) in making this figure.
Figure 6(a) shows that neither the force magnitude errors
nor the normalized force magnitude errors ( f α

e or f α
e,n) de-

pend significantly on the magnitude of ground-truth force at
specific contacts. The largest contact forces, such as those
with f α

GT/〈 f α
GT〉 ≈ 5, have the same magnitude of error as the

smallest, such as those with f α
GT/〈 f α

GT〉 ≈ 0.5, within a given
simulation. We note that this indicates that fe, as a function of
ground-truth force, is less on average for individual contacts
supporting larger forces than for those supporting smaller
forces. Figure 6(a) shows that the average (non-normalized)
error in inferred force magnitude, fe×〈 f α

GT〉, increases as ap-
plied stress increases even if the magnitude of the noise is
fixed, although the increase of fe×〈 f α

GT〉 is small compared
to the increase of applied stress. On the other hand, the er-
ror in inferred force direction, θα

e , decreases as the inferred
force magnitude increases at a specific contact, as shown in
Fig. 6(b).

Figure 7 shows the probability density of signed nor-
malized inferred force magnitude errors, p( f α

se/〈 f α
e 〉), and

the probability density of signed normalized inferred
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FIG. 6. Distributions of (a) average (non-normalized) inferred
force magnitude error, fe×〈 f α

GT〉, and (b) average orientation error,
θe, for the case when noise is introduced in the particle stress tensors
as described in Sec. III E.

normal force magnitude errors, p( f α
n,se/〈 f α

n,e〉). In both uni-
axial and triaxial tests, the probability densities follow a
normal distribution with mean zero and a standard deviation
of approximately 1.2. These values were obtained for each
simulation by a least-squares fit of a Gaussian distribution
with mean zero to the data points shown in Fig. 7 for the
corresponding experiment.

Figure 8 illustrates the probability density of normalized
inferred force magnitude errors, p( f α

e,n), and the probability
density of inferred force direction errors, p(θα

e ), for the uniax-
ial and triaxial DEM simulations. Figure 8 shows that both f α

e,n
and θα

e decay steeply with increasing inferred force magnitude
and orientation errors. This is consistent with the observation
in Fig. 6 that the magnitude of force errors is insensitive to the
ground-truth force magnitude at specific contacts. This result
was also found in the study of measurement uncertainties in
[30].

Figure 9 illustrates the average normalized error in inferred
particle stresses as a percentage (σ e

i j×100%) for all particles
in the uniaxial and triaxial compression simulations. Compar-
ing fe and σ e

i j in Figs. 5 and 9, we find that σ e
i j follows a similar

trend as fe, and σ e
i j is slightly greater (by a factor between 1

and 2) than fe. The ratio of fe to σ e
i j depends on the value of

tradeoff parameter λ in Eq. (12). When a large value is used
for λ, there is less weight on |Kst f − bst|2 in Eq. (12), and

thus fe/σ
e
i j decreases. Conversely, when a small value is used

for λ, there is more weight on |Kst f − bst|2, and thus fe/σ
e
i j

increases. Since |Keq f |2 and |Kst f − bst|2 are almost equally
weighted in our paper with a selected value of λ = 1, it is
reasonable that there is no significant difference between the
values of fe and σ e

i j in each simulation in Figs. 5 and 9.

F. Missing particle stress tensors

The second type of error we investigate is that of missing
particle stress tensors. To investigate the influence of this
error on inferred forces, we randomly select particles using
a random number generator in MATLAB and delete the cor-
responding rows of Kst and bst after all such particles have
been identified. If the particle to be deleted has index p, we
therefore mark rows 6p − 5 through 6p for deletion (for 3D
systems). Forces are then inferred using the minimization
procedure in Sec. II A without the introduction of any further
errors.

Figure 10 illustrates the average normalized inferred force
magnitude error as a percentage ( fe×100%) and the average
orientation error (θe), both as functions of the normalized
number of missing particles, np = N p

missing/Np. Both the mag-
nitude and orientation errors remain very close to zero until
approximately np = 0.4. This reflects the fact that the number
of unknown force vector components after removal of ran-
domly selected particles, 3Nc, remains less than the number
of equations 6×(Np − N p

missing) until about np ≈ 0.4. When
np > 0.4, there are more unknown force vector compo-
nents than equations, and both the magnitude and orientation
errors begin to increase with np as the minimization in
Eq. (12) becomes increasingly underconstrained. Neverthe-
less, errors remain small until np exceeds about 0.7, at which
point they exceed those obtained in the case of stress ten-
sors with measurement errors in Sec. III E for almost all
simulations.

Figure 11 illustrates the average normalized error in in-
ferred particle stresses as a percentage (σ e

i j×100%) and as
a function of np for the 0.1-MPa uniaxial compression sim-
ulation. Figure 11(a) shows (σ e

i j×100%) calculated for all
particles in the simulation. Figure 11(b) shows (σ e

i j × 100%)
calculated only for the particles for which stresses are not
supplied to the force inference procedure. Figure 12 illustrates
the same errors but for the 0.1-MPa triaxial compression sim-
ulation. We note that there is very little influence of applied
stress on these results; we therefore plot only the results for
0.1-MPa simulations for brevity. In both the uniaxial and
triaxial compression cases, the errors are only present when
np > 0.6 and are not significant until np > 0.8 for the uniax-
ial compression case. Remarkably, in both the uniaxial and
triaxial cases, stress tensors themselves can be inferred accu-
rately by first inferring forces and then calculating all particle
stresses by Kst f . This suggests that in experiments in which
3DXRD measurements do not yield reliable stress tensors in
up to 50% of the particles (e.g. [31]) such stress tensors can
be recovered. We conclude that missing particle stress tensors
of an experimentally reasonable number (e.g., np < 0.5 as in
[31]) leads to minimal error in both contact force magnitudes
and directions.
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FIG. 7. Probability densities of signed normalized inferred force magnitude errors, f α
se/〈 f α

e 〉, for (a) uniaxial and (b) triaxial DEM
simulations, and signed normalized inferred normal force magnitude errors, f α

n,se/〈 f α
n,e〉, for (c) uniaxial and (d) triaxial DEM simulations.

In all cases, probability densities follow the normal or Gaussian with mean zero and standard deviation of approximately 1.2.

G. Missing contact locations

The third type of error we investigate is that of missing
contacts. To investigate the influence of this error on inferred
forces, we randomly select contacts using a random number
generator in MATLAB and delete the corresponding columns of
Keq and Kst, and the corresponding rows of f , after all such
contacts are identified. If the contact to be deleted has index
α, we therefore mark columns 3α − 2 through 3α for deletion
in Keq and Kst (in 3D materials). Forces are then inferred
using the minimization procedure in Sec. II A without the
introduction of any further errors. We note that in experiments
we do not know which contact points may be missing from
our analysis. We may miss contacts due to a combination
of experimental resolution limits and algorithmic issues, as
described in Sec. III A and [36,37].

Figure 13 illustrates the average normalized inferred force
magnitude error as a percentage ( fe × 100%) and the average
orientation error (θe), both as functions of the normalized
number of missing contact points, nc = Nc

missing/Nc. Note that
in calculating fe and θe the denominator in Eqs. (22) and (24)
is taken to be Nc − Nc

missing and the sum in the numerators is
only over the remaining contacts the rows of which were not
deleted. Both fe and θe increase with nc, although they remain
smaller than errors stemming from noise in stress tensors for
0.1-MPa simulations (see Sec. III E) up to about nc ≈ 0.1.

The force inference procedure is clearly more sensitive to
missing contacts than missing stresses. This is not surprising:
when a particle’s stress is missing, there is less information
for the force inference procedure but the ground-truth forces
are still a valid minimizing set of forces for Eq. (12). On
the other hand, when a particle’s contacts are missing, the
ground-truth forces may not be a minimizing set of forces for
Eq. (12), as can be easily understood if one of two contacts
for a diametrically compressed particle is missing.

Although our analysis in this subsection suggests that in-
creasing nc leads to significantly larger values of fe and θe than
increasing np, the normalized number of missing contacts,
nc, in most high-quality data sets in our prior work (e.g.,
[5,19,22]) is likely less than 0.01. In such cases, fe and θe

remain close to zero, as shown in Fig. 13.

H. Contact overdetection

The fourth type of error we investigate is that of contact
overdetection. To investigate the influence of this error on
inferred forces, we assume the presence of additional contact
points between particles, which we call virtual contact points
(VCP), when the distance between particle centers minus the
sum of their radii is less than an arbitrary threshold, or

|cp − cq|2 − (Rp + Rq)

Rp + Rq
<

nr

100
, (26)
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FIG. 8. Probability densities of normalized inferred force magnitude errors ( f α
e,n) and orientation errors (θα

e ) for the case when noise is
introduced in the particle stress tensors as described in Sec. III E: (a), (b) uniaxial DEM simulations and (c), (d) triaxial DEM simulations.

where Rp and Rq are the radii of particles p and q, and nr

is referred to as the normalized resolution. When nr > 0,
particles p and q are not in contact. When nr = 100, particles
p and q are separated by the sum of their radii. We set nr to be
0.01, 0.1, 1, 5, 10, and 20, and examine the resulting number
of overdetected contacts, NVCP, and the average normalized
inferred force magnitude error ( fe × 100%) and the average
orientation error (θe) in the 0.1-MPa uniaxial DEM simula-
tion. Table VI provides the results of this analysis, illustrating
that both fe and θe remain very small for all values of NVCP.
We conclude that overdetection of contacts alone leads to
minimal error in both contact force magnitudes and directions.

TABLE VI. Force magnitude and orientation errors for cases of
contact overdetection in the 0.1-MPa uniaxial DEM simulation.

nr NVCP fe×100% θe

0.01 8 0.001 0.047
0.1 39 0.002 0.055
1 166 0.002 0.065
5 436 0.002 0.074
10 649 0.005 0.098
20 994 0.005 0.099

I. Errors in particle stiffness

The fifth type of error we investigate includes errors in
the particle stiffness. As noted in Sec. III A, such errors arise
primarily in 2D experiments due to limitations in material
characterization. To investigate the effect of this source of
error, we scale the ground-truth stress of all particles in the
uniaxial and triaxial DEM simulations by an “uncertainty
factor,” u f , to emulate a scaling of stress due to over- or
underestimate of Young’s modulus, E . We then infer forces
using the method of Sec. II A, both in the absence and in
the presence of additional errors in the average particle stress
tensors.

Figure 14 shows the average normalized inferred force
magnitude errors as a percentage and the average inferred
force orientation errors as a function of u f . In the absence of
additional errors in average particle stress tensors, Figs. 14(a)
and 14(b) show that fe is negligible at u f = 1 and θe is negligi-
ble for all values of u f . This latter finding suggests that forces
are primarily scaled in magnitude but not direction by changes
in u f (and therefore E ) between 0 and 4. fe increases linearly
in u f for u f �= 1, approaching 100% error as u f approaches
0 or 2. This again suggests that errors in inferred forces scale
linearly with uncertainties in material stiffness in 2D exper-
iments. In the presence of additional noise in particle stress
tensors with the magnitude used in Sec. III E, Figs. 14(c) and
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FIG. 9. Average normalized errors in inferred particle stresses,
σ e

i j×100%, for (a) uniaxial DEM simulations and (b) uniaxial DEM
simulations for all particles.

14(d) show that fe and θe retain their values from Fig. 5 when
u f = 1, as expected. fe scales approximately linearly with u f ,
while θe decreases with increasing u f . We conclude that if
particle stiffness is known to several percent accuracy or better
there will be only several percent error in both contact force
magnitudes and directions in addition to any errors induced
by noise in stress tensors.

J. Errors in coefficients of friction

The sixth and final type of error we investigate in-
cludes errors in interparticle and particle-boundary friction
coefficients. As noted in Sec. III A, interparticle and particle-
boundary friction coefficients are often not known with
certainty because of the heavily influential effects of rough-
ness and humidity. To investigate the effect of this source of
error, we simply modify the coefficient of friction, μ, we use
for all contacts in solving Sec. II A. Specifically, we modify μ

of particle-particle contacts, the exact value of which in DEM
simulations is 0.4 (Table III). We then infer forces using the
method of Sec. II A, both in the absence and in the presence
of additional errors in the average particle stress tensors.

Figure 15 shows the average normalized inferred force
magnitude errors as a percentage and the average inferred
force orientation errors as a function of μ. In the absence of
additional errors in average particle stress tensors, Figs. 15(a)
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FIG. 10. (a) Average normalized inferred force magnitude error
as a percentage ( fe×100%) and (b) average inferred force orientation
error (θe) as a function of normalized number of missing particle
stress tensors, np, as described in Sec. III F.

and 15(b) show that fe and θe are negligible when the μ used
in force inference is equal to or greater than its true experi-
mental value. This reflects the fact that both the equilibrium
and stress-force relations in Eq. (12) can be satisfied exactly
when the coefficient of friction used in the constraint is equal
to or greater than its true experimental value. In contrast, when
the coefficient of friction used in Eq. (12) decreases to zero, fe

and θe each increase up to approximately 8–11% and 8◦–13◦,
respectively.

In the presence of additional noise in particle stress tensors
with the magnitude used in Sec. III E, Figs. 15(c) and 15(d)
show that fe and θe retain their values from Fig. 5 when μ

retains its true value, 0.4, as expected. fe and θe vary to a small
degree when the coefficient of friction varies between 0.0 and
1.0. We note that fe and θe do not vary significantly from
their nominal values obtained in the presence of only errors in
particle stress tensors and shown in Fig. 5. This suggests that
the coefficient of friction has a secondary role on the accuracy
of inferred force magnitudes and orientations.

K. Analysis of other mixed errors

In the previous subsections, the effects of a single error or
of two errors (in the case of Secs. III I and III J) on inferred
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FIG. 11. Average normalized errors in inferred particle stresses,
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i j × 100%, for the 0.1-MPa uniaxial DEM simulations for (a) all
particles and (b) only particles for which stresses are not supplied to
the force inference procedure.

force magnitudes and orientations were investigated. Further
analysis of mixed errors is provided in Appendix C.

IV. APPLICATION TO 3D EXPERIMENTAL DATA

In this subsection, we use the experimental data from
[22], obtained during uniaxial (T1) and hydrostatic (T2)
compression of approximately 900 ruby spheres of diameter
140–150 μm, to infer interparticle forces and evaluate errors
in these forces without ground-truth data. We note that the
data from [22] were obtained using in situ 3DXRD and XRCT
measurements that yielded per-particle stress tensors, particle
volumes, and contact locations. Other quantities needed in
solving Eq. (12), such as particle stiffness, interparticle fric-
tion, and the weight factor κ p were obtained from the literature
or calculated using the method in Appendix A. The experi-
ments involved global uniaxial and hydrostatic compression
of samples with macroscopic stress levels close to or even
below the noise level of an individual particle’s stress tensor.
More details regarding these experiments and force inference
for these experiments using an older method (from [17]) are
provided in [22].
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FIG. 12. Average normalized errors in inferred particle stresses,
σ e

i j × 100%, for the 0.1-MPa triaxial DEM simulations for (a) all
particles and (b) only particles for which stresses are not supplied
to the force inference procedure.

A. Comparison of inferred forces

We first compare the inferred forces from [22] with those
obtained with the modified force inference technique of
Sec. II A. Figure 16 shows the sum of inferred forces against
the top boundary at each load step of each experiment using
method 2 with λ = 1 from Table I, which was used in [22],
and using method 3 with λ = 1 and j = 2 from Table I, which
was developed in Sec. II A. We observe very similar trends
and quantitative values for the sum of inferred forces against
the top boundary in both cases. We note, however, that method
3 from Table I provides more robust results in the presence of
unit changes or changes in the assumed origin of the coordi-
nate system, as emphasized by analysis in Appendix B. Insets
to Fig. 16 show the T1 and T2 sample geometries and the
locations at which inferred forces are compared (highlighted
with a dark ring).

B. Estimating errors without ground-truth data

In this subsection, we estimate errors in inferred forces
without ground-truth data in two ways. The purpose of this
calculation is to provide an example of how errors in inferred
forces may be inferred without ground-truth data in future
studies. We restrict our analysis to considering only errors
in inferred forces due to noise in particle stress tensors—the
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FIG. 13. (a) Average normalized inferred force magnitude error
as a percentage ( fe × 100%) and (b) average inferred force orienta-
tion error (θe) as a function of normalized number of missing particle
contact points, nc.

first row of Table II and the most consistently present error
in experiments. The other sources of error are expected to be
negligible in these experiments due to the high quality and
resolution of 3DXRD and XRCT data.

The first way in which we estimate fe and θe is by using
multivariable regression with the data from Sec. III E, ex-
panded to include simulations in which the particle Young’s
modulus is varied to be 1, 10, 100, and 500 GPa and in
which the applied stress is varied to be 0.1, 0.5, 1, 10, and
50 MPa. These conditions completely span those observed
in experiments in [22], permitting us to perform regression
with our results to estimate fe and θe. We use results from all
simulations to develop regression equations for fe and θe that
are functions of nondimensionless error, A, where

A = �

|〈tr(σ̄ p)〉| , (27)

the ratio of the standard deviation of on-diagonal stress tensor
errors (� ≈ E × 10−4) to the absolute value of the average
trace of all particle stress tensors, |〈tr(σ̄ p)〉|. Because ruby is a
trigonal crystal, the average value of on-diagonal components
of the stiffness tensor, (C11 + C11 + C33)/3, is used as E . As
C11 (496.8 GPa) and C33 (498.1 GPa) are almost the same
[41], this anisotropy is negligible. Variance of fe and θe with
respect to other variables, such as coordination number n, is at

least an order of magnitude less significant than variance with
respect to A for the range of Young’s moduli and applied stress
in our simulations. From least-squares regression, we obtain a
regression equation for fe as

f est
e = 0.16A (28)

and a regression equation for θe as

θ est
e = 15.13 − 4.61

(A + 0.35)
. (29)

Figure 17 illustrates the regression results and the data used
for regression, showing a very good fit for A � 10.

The second way in which we estimate fe and θe is by
directly using experimental data. In this approach, we first
infer forces using Eq. (12) and experimental data; we assume
these to be the ground-truth forces. Next, we add noise to on-
diagonal and off-diagonal stress tensor components of each
particle by drawing them from Gaussian distributions with
zero mean and standard deviations of E × 10−4 and E × 5 ×
10−5, respectively. We then infer forces using Eq. (12) and this
“noisy” stress data to obtain f est

e and θ est
e for each load step of

each experiment with Eq. (22). This approach exploits the fact
that stress errors and signed inferred force magnitude errors,
f α
se, have mean zero, as shown in Fig. 7.

The value of A used in regression for experiments T1 and
T2, and a comparison of the two approaches for estimating
fe and θe for these experiments, are shown in Fig. 18. This
figure shows that the two methods of estimating fe and θe, us-
ing regression and using experimental data with added noise,
provide similar trends.

Figure 18 also shows fe and θe for the strong force net-
works ( f α > 〈 f α〉 and f α > 2〈 f α〉) for experiments T1 and
T2. Because absolute values of fe are constant regardless of
the magnitude of specific contact forces (Fig. 6) and 〈 f α

GT〉 that
is the denominator of fe [Eq. (22)] is approximately doubled
in the strong force network, fe in the strong force networks is
reduced to half of fe in the overall force network in Figs. 18(b)
and 18(e). Similarly, because θe decreases as the magnitude
of contact forces increases (Fig. 6), θe in the strong force
network is slightly less than θe in the overall force network
in Figs. 18(c) and 18(f).

C. Missing particle stress tensors

In experiments T1 and T2, stress tensors of approximately
5% of particles were not detected [22]. The presence of miss-
ing stress tensors is the second-largest error source among
error sources introduced in Table II in these experiments.
However, in the mixed analysis in Appendix C, compared
with the case when there is only noise in the stress tensor
components, the values of fe (25.6%) and θe (11.1◦) change
negligibly in the case of both noisy stress tensors and 5%
missing stress tensors (to 27.5% and 11.0◦, respectively, as
shown in Tables VII and XI). Therefore, in this section, we
assume that there are no particles missing stress tensors when
we infer interparticle forces.
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D. Recommendations for experiment design

In experiments T1 and T2, there is a significant error in
inferred force magnitude (greater than 40%) (Fig. 18). If
only the strong force network is considered ( f α > 〈 f α〉), fe

is equal to or greater than 20%. In this subsection, we use
the findings of this paper to make recommendations that will
significantly reduce fe and θe in future experiments. More
accurate inferred force magnitudes and directions will permit

TABLE VII. Average normalized inferred force magnitude errors, fe(%), and average inferred force orientation errors, θ (◦), for 0.1-MPa
uniaxial simulation. A unit change corresponds to a change from the use of meters to micrometers in all balance laws. An origin change
corresponds to a shift in the origin of (−1,−1, −1) km. Noise in the stress tensors with the magnitude used in Sec. III E is denoted (N). The
case of missing stresses (np = 0.5) is denoted (S). The case of missing contacts (nc = 0.01) is denoted (C). The presence of virtual contact
points (nr = 1) is denoted (V).

Method λ Change j fe (no error) θe (no error) fe (N) θe (N) fe (S) θe (S) fe (C) θe (C) fe (V) θe (V)

1 None 0.0 0.0 19.4 7.9 0.0 0.0 16.9 7.4 0.0 0.1
1 Unit 0.0 0.0 100.1 7.8 0.0 0.1 100.0 12.6 0.0 0.1
1 Origin 42.3 11.0 42.8 11.0 42.1 11.0 43.5 11.5 47.3 11.8

2 0.1 None 0.0 0.1 31.1 14.6 0.3 0.4 6.7 5.1 0.0 0.1
2 0.1 Unit 0.0 0.1 38.2 15.2 0.4 0.5 8.4 6.6 0.0 0.1
2 0.1 Origin 0.5 1.1 38.7 16.3 9.6 6.7 7.7 6.8 1.0 1.9

2 1.0 None 0.0 0.0 22.4 10.0 0.1 0.3 8.1 5.1 0.0 0.1
2 1.0 Unit 0.0 0.1 31.3 13.3 0.0 0.1 8.3 6.0 0.0 0.1
2 1.0 Origin 0.2 0.5 33.4 13.9 7.2 5.3 7.8 6.3 1.2 2.1

2 10.0 None 0.0 0.0 18.4 8.0 0.1 0.2 16.0 7.3 0.0 0.1
2 10.0 Unit 0.0 0.1 38.7 10.9 0.0 0.1 8.6 6.1 0.0 0.1
2 10.0 Origin 29.0 10.0 33.1 13.8 35.7 10.5 31.1 10.4 35.5 11.0

3 1.0 1 0.0 0.1 35.3 13.9 0.0 0.0 0.2 0.1 0.0 0.1
3 1.0 2 0.0 0.0 25.6 11.1 0.0 0.1 3.0 0.1 0.0 0.1
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inferred force orientation errors (θe) (c), (d) with and (a), (b) without additional noise added to the particle stress tensors.

experimental studies in which meaningful information can be
extracted from the weak force network, which is thought to
be important in processes including jamming and force chain
buckling [42,43].

We have shown that fe is linearly proportional to A in
Eq. (28) and Fig. 17 for A < 10. Assuming materials are
approximately linear elastic and approximately isotropic, we
can rewrite Eq. (27) as

A ≈ E × (1 − 2ν) × εe

E × |〈tr(ε̄ p)〉| = (1 − 2ν) × εe

|〈tr(ε̄ p)〉| , (30)

where ν is Poisson’s ratio, εe is the magnitude of noise on a
particle’s strain tensor (e.g., on the on-diagonal component),
and |〈tr(ε̄ p)〉| is the absolute value of the average trace of all
particle strain tensors. We assume that materials are elastic
because 3DXRD analysis assumes elasticity [44]. In Eq. (30),
we observe that the magnitude of E does not affect the mag-
nitude of A. Furthermore, εe is fixed by 2D area detector
resolution and bit depth, while |〈tr(ε̄ p)〉| is proportional to the
average strain or stress in the bulk granular material. This
provides two possible methods for reducing A in a given
experiment.

(1) Reduce εe by optimizing 2D area detector parameters
(increasing bit depth from 8-bit found in many detectors to
16-bit, increasing the number of angular increments at which
diffraction images are obtained, and possibly increasing the
sample-to-detector distance). With this approach and cur-
rently available detectors, we expect that errors in on-diagonal

strain tensor components can be driven down to εe = 2×10−5,
rather than the current value of about εe = 10−4 (an improve-
ment by a factor of 5, based on discussions with beamline staff
at the Advanced Photon Source).

(2) Increase |〈tr(ε̄ p)〉| by selecting a material that can sus-
tain significant elastic strains prior to plastic deformation or
fracture. Particles in our prior experiments with ruby are likely
to feature a low elastic strain limit, but other single crystals
may be able to sustain higher elastic strains.

It is noteworthy that optimizing area detector parameters to
decrease εe and increasing |〈tr(ε̄ p)〉| by appropriate selection
of crystals used in experiments operate independently. These
methods affect the numerator and denominator in Eq. (30),
respectively. By actively seeking both modifications in future
experiments, we expect a significant reduction in errors in
inferred force magnitude and orientation.

V. DISCUSSION

In Sec. II A, we modified the force inference technique
proposed in [17] to make it insensitive to the choice of
units and the coordinate system origin used in analysis. We
then performed a systematic analysis of how a subset of the
possible experimental errors in Table II leads to errors in
inferred forces. Our results and their implications include the
following.

(1) Noise in particle stress tensors leads to errors in inferred
force magnitudes and directions. These errors in inferred
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(a)

(b)

FIG. 16. (a) Sum of inferred forces between particles and the top
boundary in experiment T1 using method 2 from Table I (also used
in [22]) and using method 3 from Table I. The inset shows the sample
with the top boundary circled in black and lightly shaded. (b) Same
as (a) but for experiment T2.

forces decay with increasing applied sample stress (Fig. 5)
because the magnitude of noise in particle stress is a fixed
property of experimental resolution. These errors are un-
correlated with inferred forces at specific contacts (Fig. 6),
implying that the largest inferred forces in a granular packing
can still be accurately characterized (Fig. 8).
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FIG. 17. Regression (REG) curves for fe and θe using A (de-
scribed in text). Dots are discrete element method simulation results
data for fe and θe.

(2) Missing particle stress tensors alone lead to errors in in-
ferred force magnitudes and directions only when the number
of unknown force vector components in a granular material
begins to exceed the number of equations (Fig. 10). Stresses
calculated using the resulting inferred forces are very accurate
for particles for which particle stress tensors were not missing.
Stresses calculated using inferred forces are surprisingly ac-
curate also for particles for which particle stress tensors were
missing. This latter finding suggests a route to “recovering”
stresses missed in a 3DXRD experiment (e.g., a problem in
prior work [31]).

(3) Missing contacts and contact overdetection lead to
small errors in inferred force magnitudes and orientations for
values of nc and NVCP expected to be found in experiments—
less than 5% and a few contacts, respectively—as shown in
Fig. 13 and Table VI.

(4) Errors in Young’s modulus and interparticle friction
lead to small errors in inferred force magnitudes and orienta-
tions when they are within a few percent of their actual values
(Figs. 14 and 15).

(5) Because there is no ground truth for inferred forces in
experimental data, we presented two methods of estimating
error in inferred forces magnitude obtained in experiments:
(i) using a regression curve obtained from DEM results which
indicated that fe is linearly proportional to a nondimensional
measure of error, A, over a broad range of Young’s moduli
and sample stresses, and (ii) applying noise on experimentally
measured stress tensors, which were assumed to be ground
truth. In method (ii), because f α

se/〈 f α
e 〉 follows a normal dis-

tribution with a mean of zero (Fig. 7), the estimated value of
〈 f α〉 by using method (ii) and the true value of 〈 f α〉 would
be almost the same. Therefore, we deduce that fe obtained
from method (ii) is almost the same with fe obtained using the
true value of 〈 f α〉 in the denominator. Similarly, in method (i),
|〈tr(σ̄ p)〉| in the denominator in A [Eq. (27)] of experimental
data would be almost the same as that of the true values since
stress errors follow a normal distribution with a mean of zero.
Even though the two methods have different assumptions,
their predictions of fe and θe match well for A < 10.

(6) We reasoned that εe, the typical error in a compo-
nent of the strain tensor obtained from 3DXRD analysis, and
|〈tr(ε̄ p)〉|, which reflects a measure bulk sample stress, oper-
ate independently in decreasing A and therefore fe. We also
reasoned that each of εe and |〈tr(ε̄ p)〉| can be independently
modified by optimizing area detector parameters and selecting
crystals with a large elastic strain limit. We therefore proposed
both modifications in future experiments to obtain signifi-
cantly lower errors on inferred force magnitudes (perhaps by
a factor of 5) and on force orientations. Such modifications
may enable experiments in which even weak force networks
may be accurately obtained.

VI. CONCLUSION

We have provided a modified version of a force inference
technique applicable to 2D and 3D experimental data and a
systematic study of how errors in experimental measurements
lead to errors in inferred forces. We notably showed that
forces greater than the mean are inferred accurately even in
the presence of experimental noise in particle stress tensors.
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FIG. 18. (a) A from experiment T1. (b) Estimate of fe using Eq. (28) (labeled REG) and using synthetic noise added to experimental
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We also notably showed that stresses can be “recovered”
in particles for which experimental stress measurements are
absent in cases when the number of missing particle stress
tensors approaches 50%. Based on our results, we provided
recommendations on area detector optimization and particle
selection that will improve force inference accuracy in future
experiments. We expect such future experiments to shed light
on not only the role of the strong force network, but also on
the role of the weak force network in the mechanical behavior
and properties of granular packings.
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APPENDIX A: DERIVATION OF WEIGHT FACTOR κp

Consider a 2D circular particle p with contacts i and j as
shown in Fig. 19. The coordination number, N , of particle
p is 2. If κ p = 1, as in prior versions of the force-inference
technique [17], Eqs. (3) and (8), encompassing six equations,

can be written⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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The first equation in Eq. (A1) requires that

f j
1 = − f i

1, (A2)

f i

f j

p i

j r2

1

FIG. 19. Illustration of a particle in equilibrium with two contacts.
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f i

f j

i

j r p

2

1

q

w

FIG. 20. Illustration of particle p with two contacts at points i
and j. Particle p is in equilibrium. We consider particle q to remain
above the dashed line and particle w to locate either above or below
the dashed line.

or, after substitution of Eq. (A2) back into the first equation,

(1 − 1) f i
1 = 0. (A3)

Using the fourth equation in Eq. (A1) with Eq. (A2) gives[(
xi

1 − x j
1

) − (
xi

1 − x j
1

)]
f i
1 = 0. (A4)

The similarity of Eqs. (A3) and (A4) illustrates that the stress
equations encapsulated in Eq. (A1) can be obtained in this
example by multiplying the force balance equations by a
factor of κ p = (xi

1 − x j
1 ). Multiplying the force balance equa-

tions [the first two equations in Eq. (A1)] by κ p also gives
them units of length times force, the same units that the
moment balance and stress equations have [the last four equa-
tions in Eq. (A1)].

Now consider a similar analysis for the case of coordina-
tion number, N , equal to 3, with a particle p having contacts
i, j, and k. The first force balance and first stress balance
equations are

f i
1 + f j

1 + f k
1 = 0, (A5)

xi
1 f i

1 + x j
1 f j

1 + xk
1 f k

1 = Vpσ̄
p

11. (A6)

From the first equation,

f k
1 = − f i

1 − f j
1 . (A7)

Plugging this into Eq. (A6) and rearranging yields[(
xi

1 − xk
1

) − (
xi

1 − xk
1

)]
f i
1

+ [(
x j

1 − xk
1

) − (
x j

1 − xk
1

)]
f j
1 = 0. (A8)

FIG. 21. Illustration of particle p in equilibrium with six contacts
with surrounding particles at points i, j1, j2, j3, j4, and j5.

Rearrangement of Eq. (A5) in a similar manner to the
rearrangement performed to obtain Eq. (A3) yields

(1 − 1) f i
1 + (1 − 1) f j

1 = 0. (A9)

Comparison of Eqs. (A8) and (A9) reveals that the stress
equations for N = 3 cannot be obtained simply by multiplying
the force balance equations by (xi

1 − xk
1 ) or (x j

1 − xk
1 ), as was

the case for N = 2. Rather, some length scale between xi
1 − xk

1

and x j
1 − xk

1 should be used.
Consider Fig. 20 (N = 2) and the quantity xi

1 − x j
1. The av-

erage value of xi
1 − x j

1 in the range 0 � θ � π/2 (xi
1 remains

above the dashed line) is

|xi
1 − x j

1|avg

=
{

r(2 cos θ + 1)/2 if 0 � θ � 30◦
r(4 cos θ + | cos(θ + 60◦)| + 2)/4 if 30◦ � θ � 90◦ .

(A10)

We consider this case to be required for equilibrium without
considering Coulomb friction, the value of which would more
precisely constrain the relative angles of contacts i and j.
Integrating from 0◦ to π/2 yields

κ p = 2

π

∫ π/2

0

∣∣xi
1 − x j

1

∣∣
avgdθ ≈ 1.176r. (A11)

Employing this value of κ p in Eq. (6) ensures equal units
for all balance laws used in minimization and also eliminates
sensitivity to a change of scale (e.g., using millimeters instead
of meters in the minimization).

Repeating the procedure for the case of N = 6 shown in
Fig. 21 yields an average value for the distance between any
two contacts of

∣∣xi
1 − x j

1

∣∣
avg = r(|2 cos θ | + | cos θ − cos(θ + 60◦)| + | cos θ + cos(θ − 60◦)|

+ | cos θ + cos(θ + 60◦)| + cos θ − cos(θ − 60◦)|)/5. (A12)
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TABLE VIII. Average normalized inferred force magnitude errors, fe(%), and average inferred force orientation errors, θ (◦), for 0.1-MPa
triaxial simulation. A unit change corresponds to a change from the use of meters to micrometers in all balance laws. An origin change
corresponds to a shift in the origin of (−1, −1, −1) km. Noise in the stress tensors with the magnitude used in Sec. III E is denoted (N). The
case of missing stresses (np = 0.5) is denoted (S). The case of missing contacts (nc = 0.01) is denoted (C). The presence of virtual contact
points (nr = 1) is denoted (V).

Method λ Change j fe (no error) θe (no error) fe (N) θe (N) fe (S) θe (S) fe (C) θe (C) fe (V) θe (V)

1 None 0.1 0.2 13.9 6.6 0.6 0.7 39.1 10.1 0.0 0.1
1 Unit 0.0 0.0 100.0 6.5 0.5 0.6 100.0 10.5 0.0 0.0
1 Origin 38.3 8.1 38.4 8.1 42.5 8.3 38.4 9.1 42.1 8.8

2 0.1 None 0.0 0.1 21.2 12.6 1.0 1.2 4.9 4.7 0.0 0.1
2 0.1 Unit 0.0 0.1 25.9 13.9 8.4 4.9 8.6 7.6 0.0 0.1
2 0.1 Origin 1.0 1.5 26.3 13.9 8.2 5.5 8.0 6.2 1.2 1.9

2 1.0 None 0.0 0.0 14.7 7.6 0.5 0.6 5.8 4.5 0.0 0.1
2 1.0 Unit 0.0 0.1 21.4 11.9 1.5 1.5 7.7 6.7 0.0 0.1
2 1.0 Origin 0.2 0.5 19.9 11.0 9.6 6.0 7.1 5.8 1.5 2.1

2 10.0 None 0.0 0.0 13.6 6.5 0.5 0.6 11.7 6.3 0.0 0.0
2 10.0 Unit 0.0 0.1 21.3 11.9 0.9 1.0 8.3 6.8 0.0 0.1
2 10.0 Origin 20.8 7.3 24.8 7.8 24.0 7.6 19.9 7.8 23.2 8.0

3 1.0 1 0.0 0.0 21.5 11.1 0.0 0.0 0.2 0.1 0.0 0.0
3 1.0 2 0.0 0.0 16.5 8.6 0.1 0.3 0.8 1.1 0.0 0.0

TABLE IX. Average normalized inferred force magnitude errors, fe(%), and average inferred force orientation errors, θ (◦), for 0.1-MPa
uniaxial simulation. Noise in the stress tensors with the magnitude used in Sec. III E is present in all cases. The case of missing stresses
(np = 0.5) is denoted (S1). The case of missing contacts (nc = 0.01) is denoted (C). The presence of virtual contact points (nr = 1) is
denoted (V).

fe θe fe θe fe θe fe θe fe θe fe θe fe θe

j (S1) (S1) (C) (C) (V) (V) (S1+C) (S1+C) (S1+V) (S1+V) (C+V) (C+V) (S1+C+V) (S1+C+V)

1 43.6 14.8 36.4 14.5 37.3 15.2 84.6 23.9 46.6 14.5 36.6 15.8 85.9 23.7
2 34.1 12.2 28.5 11.7 27.6 11.9 82.2 24.1 38.3 13.1 33.9 19.5 81.8 23.9

TABLE X. Average normalized inferred force magnitude errors, fe(%), and average inferred force orientation errors, θ (◦), for 0.1-MPa
uniaxial simulation. Noise in the stress tensors with the magnitude used in Sec. III E is present in all cases. The case of missing stresses
(np = 0.25) is denoted (S2). The case of missing contacts (nc = 0.01) is denoted (C). The presence of virtual contact points (nr = 1) is
denoted (V).

j fe (S2) θe (S2) fe (S2+C) θe (S2+C) fe (S2+V) θe (S2+V) fe (S2+C+V) θe (S2+C+V)

1 39.7 14.2 81.2 21.6 40.3 14.8 82.7 23.6
2 30.9 11.7 78.3 21.3 31.4 12.2 81.1 23.8

TABLE XI. Average normalized inferred force magnitude errors, fe(%), and average inferred force orientation errors, θ (◦), for 0.1-MPa
uniaxial simulation. Noise in the stress tensors with the magnitude used in Sec. III E is present in all cases. The case of missing stresses
(np = 0.05) is denoted (S3). The case of missing contacts (nc = 0.01) is denoted (C). The presence of virtual contact points (nr = 1) is
denoted (V).

j fe (S3) θe (S3) fe (S3+C) θe (S3+C) fe (S3+V) θe (S3+V) fe (S3+C+V) θe (S3+C+V)

1 36.9 15.1 79.4 19.5 37.7 15.4 74.1 18.8
2 27.5 11.0 68.8 18.8 28.7 11.7 69.6 18.8
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Integrating yields

κ p = 1

π

∫ π

0

∣∣xi
1 − x j

1

∣∣
avgdθ ≈ 0.9504r. (A13)

In this analysis, particles are assumed to be of equal radius.
We can perform a similar analysis to obtain κ p for the

3D problem of spheres in contact. We choose to obtain κ p in
three dimensions by calculating the upper and lower bounds
on κ p for a given coordination number, N , and then taking
the average of the bounds. For a sphere with two contacts, the
upper bound is κ p ≈ 1.176r, the lower bound is κ p = 1.137r
and the average is κ p = 1.157r. For a sphere with N = 12,
analysis of a variety of crystalline packing structures gives the
average value of κ p ≈ 0.93r. An appropriate general method
for selecting κ p is

κ p =
{

(−0.0565n + 1.2894)r for circles,
(−0.02216n + 1.2008)r for spheres. (A14)

We use Eq. (A14) with n as the average coordination number
for a packing of particles for all analysis in the main text of
this paper. κ p varies per particle, and thus we can also study
a case in which a granular packing features a more significant
variation in particle size than the cases we considered here.

APPENDIX B: COMPARISON OF FORCE
INFERENCE METHODS

We employed all of the methods shown in Table I to
infer forces for the 0.1-MPa uniaxial and 0.1-MPa triaxial
simulations in the presence and absence of errors and for
scenarios in which the origin or units are altered. Tables VII
and VIII summarize the results of this analysis. A unit change

corresponds to a change from the use of meters to micrometers
in all balance laws. An origin change corresponds to a shift
in the origin of (−1,−1,−1) km. Noise in the stress tensors
with the magnitude used in Sec. III E is denoted (N). The
case of missing stresses (np = 0.5) is denoted (S). The case
of missing contacts (nc = 0.01) is denoted (C). The pres-
ence of virtual contact points (nr = 1) is denoted (V). From
Tables VII and VIII, we see that method 3 developed in
Sec. II A with the two-norm ( j = 2) consistently provides
comparable or superior results when compared with any of
the other methods, with or without changes in units or origin,
and with any of the choices of λ for method 2.

APPENDIX C: ANALYSIS OF MIXED ERRORS

In this subsection, we investigate the scenario of the simul-
taneous presence of multiple errors. In particular, we study
the simultaneous effects of errors in particle stress tensors and
both missing contacts and contact overdetection. In practice,
all three of these errors may be present in a single experiment,
depending on parameters of the experiments.

Table IX shows fe and θe for minimization with Eq. (12)
in the presence of 50% missing stress tensors (S1), noise in
the remaining stress tensors, 1% missing contacts (C), and
the presence of 1% virtual contacts (V). Table X contains
the same information as Table IX but for the 25% missing
stress tensors (S2). Table XI contains the same information as
Table IX but for the 5% missing stress tensors (S3). In all cases
in these tables, analysis is performed on the 0.1-MPa uniaxial
simulation and noise is introduced in the stress tensors with
the magnitude used in Sec. III E.
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