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Finding the grain size distribution that produces the densest arrangement in frictional sphere
packings: Revisiting and rediscovering the century-old Fuller and Thompson distribution
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By means of discrete-element methods, we investigate the joint effects of the grain size distribution (GSD)
and contact friction on the structure of three-dimensional samples composed of spherical grains. Specifically,
we compress these systems isotropically until jamming and then analyze their structure in terms of density,
connectivity, coefficients of uniformity and curvature, and parameters of grading entropy. Our study focuses
on power-law GSDs and particularly on the Fuller and Thompson distribution, proposed over a century ago.
First, we show that, among the set of GSDs investigated, this particular distribution produces the densest and
best-connected systems, falsifying a conjecture recently posed in the literature. Second, we find that the jamming
packing fraction can be accurately predicted as a function of simple descriptors of the GSD, but among these
descriptors the granular entropy concept proves to be the most useful. This allows for an alternative interpretation
of both jamming and grading entropy concepts. Finally, we compare the Fuller and Thompson distribution with
two well-known GSDs: that of the Apollonian sphere packing and that towards which granular systems evolve
after intensive grain fracturing. Surprisingly, we find that these three GSDs are practically coincident in the limit
of large size spans, despite having been introduced or discovered in different scientific contexts (i.e., engineering,
mathematics, and earth sciences, respectively).
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I. INTRODUCTION

Granular materials are composed of relatively large bodies
that interact, producing emergent behaviors that touch the
realms of gasses, liquids, and solids. The constituent bod-
ies have different characteristics, such as size, shape, and
strength. Both fundamentally and practically, it is interesting
to understand how these bodies can be packed in such a way
that their density is maximized. In fact, such packing problems
date back to the early works of Kepler [1,2] and Gauss [3], but
it is only recently that a definite general proof was presented
by Hales for the special case of monodisperse spheres (i.e.,
with a single size) [4] and by other authors for polyhedral
particles with simple symmetrical shapes [5,6].

For polydisperse systems (i.e., with different sizes), which
are common in both natural and industrial contexts, it is diffi-
cult to find a general approach to obtain the densest packing.
This is because density is affected by many variables, such
as grain size distribution (GSD), friction among particles,
particle shape, and building protocol. However, given the
practical importance of maximizing density, one can find early
engineering works that approached the problem. The most
remarkable are probably the experimental works of Fuller,
Thompson, and Talbot over a century ago [7–9]. A few years
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later, these works were complemented by the systematic ap-
proaches by Furnas [10,11]. In particular, Fuller and Thomson
found that GSDs with a certain shape produce the densest
packings; these are the GSDs with a cumulative volume dis-
tribution (often referred to as the grading curve) described by

ρ(d ) =
(

d − dmin

dmax − dmin

)η

, (1)

with an exponent η � 0.5; here ρ is the mass percentage
of particles with diameters smaller than d , dmin(dmax) is the
minimum (maximum) diameter, and λ = dmax/dmin is the size
span. The distribution of particle diameters Np(d ) is then
given by

Np(d ) ∝ dρ/dd

d3
∝ (d − dmin)η−1

d3
. (2)

Ever since, these findings have been used as a design
framework for proportioning concrete and pavements, almost
without further systematic investigation.

Paradoxically, despite how old packing problems in poly-
disperse granular systems are and their practical importance,
these problems have aroused little interest during recent
decades. In particular, these problems have seldom been stud-
ied by means of a privileged analysis tool: simulations with
discrete-element methods (DEMs). Among the first to ex-
ploit this research opportunity, we note the works of Voivret
et al. [12], who studied the density, microstructure, and
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force transmission properties of two-dimensional (2D) sys-
tems composed of disks while varying both λ ∈ (1.5, 49) and
the shape of the GSD through a cumulative β distribution.
Similar studies were carried out for polygonal particles and
λ ∈ (1, 19) [13,14], as well as for disks and elongated par-
ticles with λ ∈ (1.2, 39) [15,16]. In these works, the uniform
distribution by volume, in which the volume of all size classes
is the same, was identified as the one that maximizes the
packing density. Other remarkable works can be found in
Refs. [17–19], although exploring smaller values of λ. Also,
some authors have studied the space filling properties of sys-
tems built by means of geometrical rules [20–24], including
the special case of Apollonian packings [21,25,26].

More recently, the authors have used DEM to study the
density, microstructure, and force transmission properties of
2D and 3D systems of frictionless particles while varying
both λ ∈ (2, 32) and the shape of the GSD, which followed
Eq. (1) [27–29]. A few more groups are also exploring the
effects of the GSD in 3D systems. Some of these studies have
been devoted to exploring the jamming transition in systems
composed of spheres [30–32]. Others have focused on space
filling properties, microstructure, and shear strength [33,34].
These works have used GSDs built through a cumulative β

distribution, including the uniform distribution by volume,
and the largest λ that have been explored are close to 9 and 5,
respectively. Others have investigated polydisperse powders,
finding good agreement between DEM simulations and ex-
periments [35], and also the influence of some GSDs on the
mechanical response of geopolymers in ceramics [36].

The previous review shows that the effects of the GSD
are only starting to be explored in three dimensions, that the
size span used in most DEM studies is rather small (i.e., 1.7
on average [27], while the typical λ in granular geomateri-
als can be close to 100 [37]), and that the effects of some
important parameters (e.g., contact friction or grain shape)
remain practically unexplored. The purpose of this work was
to explore the effects of the GSD (i.e., both its size span and
its shape) on the packing fraction and the microstructure of
three-dimensional samples composed of spherical particles.
We also explored the effects of contact friction, as a second
parameter that affects the packing density and makes it possi-
ble to simulate more realistic packings.

To do this, we built and analyzed a set of 280r different
granular samples, where r � 3 is the number of repetitions,
which were carried out in order to compute fluctuations. The
GSD followed Eq. (1) and was thus characterized by two
parameters: the size span λ and the shape η, which makes it
possible to build almost monodisperse systems, the Fuller and
Thompson distribution, and the uniform distribution by vol-
ume. These parameters were varied in the following ranges:
λ ∈ {2, 4, 8, 12, 16, 24, 32} and η ∈ {0.1, 0.2, . . . , 0.9, 1}. In
three dimensions, this broad range implied very large systems,
with up to 5 × 105 particles and, in some cases, more than 106

contacts. For each GSD, with a given set of parameters λ and
η, contact friction was varied as μ ∈ {0, 0.2, 0.6, 0.8}. Once
generated, the systems were compressed quasistatically until
reaching mechanical equilibrium. In this state, the samples
were analyzed in terms of density, connectivity, coefficients
of uniformity and curvature, and parameters of grading
entropy.

The article is organized as follows. In Sec. II we present
the GSD generation, sample construction, and isotropic com-
pression procedures, followed by our results in Sec. III. We
first explore the effects of both GSD and contact friction on
usual micromechanical descriptors, such as solid fraction and
connectivity. Second, we explore the relationship between
the controlled variables and several quantitative descriptors
of the GSD (i.e., coefficient of uniformity, coefficient of cur-
vature, and parameters of grading entropy). In Sec. IV we
compare our GSDs, and in particular that proposed by Fuller
and Thompson, with other reference size distributions. In
Sec. V we summarize our results and present some perspec-
tives for future work.

In the following, the values of λ, η, and μ are color
coded with the colormaps , , and

, respectively. In general, solid lines will repre-
sent a theoretical or fit curve, while dotted or dashed lines are
drawn as guides to the eye.

II. METHODS

We used the soft-particle discrete-element method. Normal
forces were calculated using the Hertz model, and tangen-
tial forces were modeled as springs including static friction
[38,39]. The simulations were performed using the LIGGGHTS

package [40] and distributed on multicore computers with the
GNU parallel utility [41]. The Hertz model parameters used
were a Young modulus of �5.0 × 107 Pa, a Poisson ratio
of 0.45, a restitution coefficient of 0.1, and a time step of
�10−6 s.1 For the postprocessing stage, we only considered
the particles that were at least one average radius away from
the walls (similar results were obtained for distances of one
and 1 1

2 diameters). We used the library VORO++ [43] to pre-
cisely compute the void volume associated with each particle.
By using this technique, we considered the irregular boundary
of the subsystems considered in the analysis.

In the following sections we present further details on the
two phases that composed our numerical experiment: generat-
ing samples with a given grain size distribution and densifying
the samples by isotropic compression.

A. Generation of the grain size distribution

For each sample, a set of diameters was generated fol-
lowing the GSD described by Eq. (1) and controlled by two
parameters: the size span λ = dmax/dmin and the exponent
η, which determined the shape of the grading curve. For in-
stance, η = 0 corresponds to a monodisperse system, η � 0.5
to the Fuller and Thompson distribution, and η = 1 to the
uniform distribution by volume. In order to control the quality
of the samples, we binned (80 bins) the numerical samples
generated by LIGGGHTS, which uses the algorithm described
in Ref. [44]. On these samples, we computed the empiri-
cal grain size distribution (ESD) and compared it with the
theoretical GSD. We only accepted samples if max |ESDi −
GSDi| < 0.05, where i is the bin number. To fulfill this crite-
rion, the minimum number of particles varied greatly among

1More information about the Hertz model can be found in [42].
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FIG. 1. Cumulative volume distributions (often referred to as
grading curves), described by Eq. (1); ρ is the mass percentage of
particles with diameters smaller than d and 〈d〉 = (dmin + dmax)/2
is the average diameter. The data are for η = {0.1, 0.3, 0.5, 0.7, 1}
and (a) λ = 2, (b) λ = 4, (c) λ = 16, and (d) λ = 32. The solid lines
represent the theoretical GSD and the symbols correspond to the
generated samples. Following the text convention, line colors and
symbol shapes encode the parameter λ, while symbol colors encode
η.

different combinations of λ and η. This representativity crite-
rion is analogous to but somewhat simpler than the one used
in Ref. [23]. Large λ and small η required systems with up to
5 × 105 particles. The ratio of the minimum sample length
Lmin to d50 (i.e., the diameter d for ρ = 0.5) varied from
around 20 for λ = 2 to almost 120 for λ = 32. Figure 1 shows
examples of the GSD for several values of λ and η.

B. Isotropic compression

For each sample, once the GSD was generated, the parti-
cles were randomly distributed into a cubic box, with a small
[i.e., close to 0.2 (0.01) for small (large) λ] initial packing
fraction

φ = Vp

V
, (3)

where Vp is the volume occupied by the particles and V
is the total volume. Then the diameter of the particles was
slowly and uniformly increased until reaching a target value of
φ � 0.4 and the systems were left to relax. (It was verified
that this target value did not influence the jamming packing
fraction.)

Following this, the packings were isotropically compressed
by applying a fixed force on all walls. The compression
was slow (i.e., with an inertial number I � 10−3 [45]) un-
til reaching mechanical equilibrium (i.e., until jamming),
which was quantified by means of two indicators: the nor-
malized kinetic energy E , defined as the ratio of the total

kinetic energy over the total elastic potential energy, and the
Cundall equilibrium parameter F , defined as the sum of the
net force on all particles over the sum of the contact forces on
all contacts. Simulations were stopped once E < 10−10 and
F < 10−8. For each GSD, we built systems with four different
contact friction coefficients: μ ∈ {0, 0.2, 0.6, 0.8}. Figure 2
illustrates the process of isotropic compression for a sample
with λ = 12, η = 0.5, and μ = 0.2 and Fig. 3 shows internal
views of four systems with different values of λ and η, all four
with μ = 0.2.

As explained in Sec. I, each simulation was repeated
around three times (i.e., from two to five times, due to com-
putational constraints), using different initial positions. This
is probably one of the simplest construction protocols that
could be conceived, which is convenient for an initial inves-
tigation that could then be extended to study more realistic
systems. In what follows, results are shown as the mean and
the standard deviation. Both the generation of the GSD and
the isotropic compression procedures are presented in more
detail in Ref. [29].

III. RESULTS

In the following sections we present the results of our
study. We first present the effects of both GSD and con-
tact friction on usual micromechanical descriptors, such as
packing fraction and connectivity. Second, we present the
relationship between the controlled variables and several
quantitative descriptors of the GSD (i.e., coefficient of uni-
formity, coefficient of curvature, and parameters of grading
entropy).

A. Density

Density was quantified by means of the jamming packing
fraction φJ . Figure 4 shows φJ as a function of the exponent η,
for all values of the size span λ and for different values of the
contact friction μ. As explained in the following paragraphs,
several key observations can be drawn from this set of figures.

On the one hand, we can see that φJ increases with λ, as is
expected from intuition and from previous results. However,
we can also see that, as λ increases, its effect on φJ decreases.
As it will be shown later in this section, we find a dependence
following a saturating exponential ansatz. In addition, we can
observe that for large size spans (i.e., for λ � 8) there is
a maximum value of φJ , for η between 0.4 and 0.6. It is
remarkable that this range of η is very close to the optimal
exponent found by Fuller and Thompson (i.e., 0.5). These
effects are observed for all μ, confirming that these are direct
consequences of the GSD.

On the other hand, we can see that φJ decreases with
μ, showing that the systems become looser as the particles
become more frictional. However, we can also see that the
figures for μ = 0.6 and 0.8 are very similar, showing that
the effects of μ on φJ saturate for large contact friction.
It is interesting to note that the jamming packing frac-
tion observed in many of our systems exceeds that of the
densest monodisperse sphere packings (i.e., 0.74 for the face-
centered-cubic arrangement). Moreover, the maximum φJ

observed in our samples (i.e., for μ = 0, large λ, and η = 0.5)
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FIG. 2. Isotropic compression process for a system with a size
span λ = 12, an exponent η = 0.5, and contact friction μ = 0.2
(a) after random placement of the particles in a square box, with
a solid fraction φ = 0.01, (b) after increasing the diameters and
increasing φ to 0.4, and (c) at the end of isotropic compression, after
reaching mechanical equilibrium. Color encodes the particle radius.

FIG. 3. Internal views for four systems after isotropic compres-
sion, with different values of the size span λ and the exponent η and
for a contact friction μ = 0.2: (a) λ = 2 and η = 0.1, (b) λ = 8 and
η = 0.5, (c) λ = 32 and η = 0.5, and (d) λ = 32 and η = 1. Color
encodes the particle radius.

is close to those found for monodisperse packings of Platonic
(although below the density obtained with dodecahedra) and
Archimedean (icosidodecahedron) solids [5]. Furthermore,
for almost monodisperse systems (λ = 2, any η) without
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FIG. 4. Jamming packing fraction φJ as a function of the expo-
nent η, for all values of the size span λ and for different values of
the contact friction μ: (a) μ = 0.0, (b) μ = 0.2, (c) μ = 0.6, and
(d) μ = 0.8. Dashed lines show the maximal packing fraction for
monodisperse systems (i.e., 0.74 for the face-centered-cubic arrange-
ment). Error bars represent the standard deviation, although these are
smaller than the symbols.

friction, we obtain a packing fraction around �0.67 which
is very close to the theoretical random close packing value
�0.658 963, recently predicted in [46] for exactly monodis-
perse frictionless systems.

In order to better analyze the relationship between λ and
φJ , Fig. 5 shows φJ as a function of λ, for five different values
of η and for two extreme values of μ. First, we can see that the
relationship between λ and φJ is not linear, in contrast to what
has been found for small size spans [34]. Second, we observe
that φJ for intermediate values of η generally exceed those
found for η = 1. This implies that one can build systems for
which φJ surpasses the limits of the triangular region posed
in Ref. [34] as a conjecture. This region is shown as a gray
triangle in Fig. 5.

We find that the relationship between λ and φJ is well
described by a saturating exponential ansatz

φJ = φmin + (φmax − φmin)(1 − e−(λ−1)/τλ ), (4)

where φmin (φmax) represents the minimal (maximal) jam-
ming density and τλ is the scale of the saturation to reach
φmax. We can put this relationship to the test by plotting
(φJ − φmin)/(φmax − φmin) as a function of (λ − 1)/τλ. This is
shown in Fig. 6, together with the evolution of φmin, φmax, and
τλ. First, we can see that all data, for all λ, η, and μ, collapse
under the universal curve described by Eq. (4). Second, we can
also see that φmin depends only on μ. This is to be expected,
since this is the jamming density for monodisperse systems.

FIG. 5. Jamming packing fraction φJ as a function of the size
span λ, for exponents η = {0.1, 0.3, 0.5, 0.7, 1} and for contact fric-
tion μ = {0, 0.8}. Closed (open) symbols represent μ = 0.0 (0.8).
The highlighted triangular region corresponds to the accessible zone
for μ = 0, as conjectured in [34].

Third, we can observe that φmax (i.e., the maximal jamming
density that the system can reach in the limit of very large
λ) depends heavily on η and exhibits a maximum value for
η � 0.5, which again is coincident with the optimal exponent
proposed by Fuller and Thompson. Finally, it is interesting to
note that the scale τλ seems to be independent of η.

(a)

(b) (c)

FIG. 6. (a) Normalized jamming packing fraction
(φJ − φmin )/(φmax − φmin ) as a function of the scaled size span
(λ − 1)/τλ, for all values of the size span λ, the exponent η, and the
contact friction μ. The line shows the theoretical curve y = 1 − e−x .
(b) Minimal (closed symbols) and maximal (open symbols) jamming
densities φmin and φmax, respectively, as functions of η, for all values
of μ, including error bars. (c) Scale τλ as a function of η, for all
values of μ.
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FIG. 7. Proportion of floating particles κ as a function of the
exponent η, for all values of the size span λ and for different values
of the contact friction μ: (a) μ = 0.0, (b) μ = 0.2, (c) μ = 0.6, and
(d) μ = 0.8. The insets show Vκ/Vp, the proportion of the particles’
volume that is occupied by floating particles.

B. Connectivity

The packings’ connectivity was quantified by means of two
indicators: the proportion of floating particles (rattlers)

κ = Nf

Np
, (5)

where Nf is the proportion of particles with zero or one
contact and Np is the total number of particles, and the co-
ordination number z (i.e., the mean number of contacts per
particle)

z = 2Nc

Np
, (6)

where Nc is the total number of contacts. Figure 7 shows κ as
a function of the exponent η, for all values of the size span λ

and for different values of the contact friction μ. First, we can
see that κ increases with λ, reaching values as high as 95%,
meaning that the force bearing network is composed of only
5% of the particles in the system. The insets show Vκ/Vp, the
proportion of the particles’ volume that is occupied by floating
particles. We can see that, even if floating particles can be
numerous, these particles are generally small and occupy a
small volumetric fraction. The forces are thus being supported
mainly by large particles. Second, we can see that κ heavily
depends on η. Especially for low and intermediate values of
μ (i.e., 0 and 0.2), κ is low for η � 0.5 and increases strongly
for η � 0.5, reaching the highest values for the uniform dis-
tribution by volume (i.e., for η = 1).

Figure 8 shows z as a function of η, for all values of λ and
for different values of μ. First, we can see that z reaches very

FIG. 8. Coordination number z as a function of the exponent η,
for all values of the size span λ and for different values of the contact
friction μ: (a) μ = 0.0, (b) μ = 0.2, (c) μ = 0.6, and (d) μ = 0.8.
The insets show zφJ (1 − Vκ/Vp)/(1 − κ ), which is proportional to
the density of contacts and consequently to the systems’ stiffness.

low values, which is a direct consequence of the high values of
κ shown in Fig. 7. Second, we can see that z heavily depends
on η. Again, especially for low and intermediate values of μ,
z is high for η � 0.5 and decreases drastically for η � 0.5,
reaching the lowest values for the uniform distribution by vol-
ume. The insets show φJz(1 − Vκ/Vp)/(1 − κ ), where φJ (1 −
Vκ/Vp) is the solid fraction excluding the floating particles and
z/(1 − κ ) is the active coordination, which only takes into
account the particles inside the force network. This quantity
is important since it is proportional to the density of contacts
and consequently to the system’s stiffness [47]. Interestingly,
the density of contacts is maximized when η is close to 0.5,
with a slight translation to smaller values of η for larger μ.
These observations confirm that exponents that are close to
those proposed by Fuller and Thompson produce systems that
are not only very dense, but also very well connected.

C. Quantitative descriptors of the grain size distribution

In this section we show that it is possible to compute key
parameters from the GSD that allow us to predict which sam-
ples will be denser. These parameters are the uniformity and
curvature coefficients, as well as the parameters of grading
entropy.

1. Coefficients of uniformity and curvature

Traditionally, civil engineers use two simple parameters to
qualify the size span and shape of the GSD. The first is the
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(a)

(b)

FIG. 9. Coefficients of (a) uniformity Cu and (b) curvature Cc, as
functions of the exponent η, for all values of the size span λ. The
dashed lines indicate the region of well-graded samples and the blue
line connects the maximum values of Cu.

coefficient of uniformity Cu, defined as

Cu = d60

d10
, (7)

where d60 (d10) is the diameter for which ρ = 0.6 (0.1) [see
Eq. (1)]. As highlighted in Ref. [34], it is convenient to choose
d60 (d10) as the representative size of large (small) particles,
since dmin and dmax are not statistically relevant in volume
or number. For the GSDs explored here, Cu can be computed
exactly as

Cu = 1 + 0.61/η (λ − 1)

1 + 0.11/η (λ − 1)
, (8)

and Cu → 61/η for large size span λ. Usually, a sample is said
to be well graded (i.e., with a sufficiently large size span) if
Cu > 4. The second is the coefficient of curvature (sometimes
called the coefficient of concavity) Cc, defined as

Cc = d2
30

d10d60
, (9)

where d30 is the diameter for which ρ = 0.3. Like Cu, Cc can
be computed exactly as

Cc = [1 + 0.31/η(λ − 1)]2

[1 + 0.11/η(λ − 1)][1 + 0.61/η(λ − 1)]
, (10)

and Cc → (3/2)1/η for large λ. A sample is considered well
graded (i.e., with a grading curve with an “adequate” concav-
ity) if 1 < Cc < 3.

(a)

(b) (c)

FIG. 10. (a) Normalized jamming packing fraction (φJ −
φmin )/(φmax − φmin ) as a function of the scaled coefficient of uni-
formity (Cu − 1)/τu, for all values of the size span λ, the exponent
η, and the contact friction μ. The line shows the theoretical curve
y = 1 − e−x . (b) Minimal (closed symbols) and maximal (open sym-
bols) jamming densities φmin and φmax, respectively, as functions of
η, for all values of μ. (c) Scale τu as a function of η, for all values of
μ.

Figure 9 shows Cu and Cc as functions of the exponent η,
for all values of λ. The dashed lines indicate the region of
well-graded samples and the blue line connects the maximum
values of Cu. First, we can see that both Cu and Cc depend
heavily on λ and η, with the most extreme values correspond-
ing to large values of λ. Second, we can also see that, in order
to have well-graded samples, λ must be larger than ∼10 and
η must be intermediate or large. In fact, as shown by the blue
line in Fig. 9(a), when λ is large Cu is maximized for values
of η close to 0.5. Again, it is remarkable that this optimal
value of the exponent is close to those proposed by Fuller and
Thompson.

Recently, it was proposed that the jamming packing
fraction φJ is proportional to Cu [34], although exploring
relatively small size spans. We find that, as for λ, the rela-
tionship between Cu and φJ is well described by a saturating
exponential ansatz:

φJ = φmin + (φmax − φmin)(1 − e−(Cu−1)/τu ). (11)

Figure 10 shows (φJ − φmin)/(φmax − φmin) as a function of
(Cu − 1)/τu, together with the evolution of φmin, φmax, and τu.
As in Fig. 6, we can see that all data for all λ, η, and μ collapse
under the universal curve described by Eq. (11). Therefore,
both λ and Cu can be used to describe the packing density and
their relationship is nonlinear. However, using any of these
descriptors would require information on three parameters,
i.e., φmin, φmax, and τλ or τu.
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2. Grading entropy

Beyond practical parameters such as Cu and Cc, several
researchers have explored the meaning and applicability of
different theoretical ideas originated from the field of statis-
tical physics. This is the case of the so-called grading entropy,
initially formulated by Lőrincz [48,49] and then developed by
Imre and co-workers [50–55].

Starting from the definition of statistical entropy for dis-
crete systems, the grading entropy of a granular system is
defined as

S = S0 + 	S, (12)

where S0 is called the base entropy and 	S is the entropy
increment. In order to compute S, the GSD is divided into
M fractions that subsequently double in size. These fractions
are seen as the statistical cells of the distribution, and the
representativity in each fraction is estimated through its mass
proportion xi with respect to the total mass. Then S0 and 	S
can be calculated as

S0 =
M∑

i=1

xi
ln Ci

ln 2
,

	S = − 1

ln 2

M∑
i=1

xi ln xi,

(13)

where the sums run over all fractions M and Ci is the number
of elementary cells comprising each fraction. The develop-
ment of Eqs. (12) and (13) is presented in the Appendix. For
further details, see Ref. [49].

Among both terms, it has been posed that only 	S plays
the role of a “true” entropy in a thermodynamic sense [49].
This is reasonable, since 	S evokes an entropy of mixing
between fractions (although it will be dependent on the ac-
tual discretization employed). It is thus interesting to explore
the relationship between the jamming packing fraction φJ

and 	S, the former being understood as the most probable
macrostate in equilibrium and the latter as a measure of the
number of microstates that would be compatible with that
macrostate. The 	S could also be seen as a measure of the
diversity of the GSD, as well as of the probability of particles
filling void spaces. (Similar ideas are suggested in Ref. [56].)

Figure 11 shows φJ as a function of 	S, for all values of
the size span λ and for different values of the contact friction
μ. We are excluding systems with an exponent η < 0.4, since
it has been observed that these systems present some degree
of local ordering [29]. Also, these systems are also related to
ideal values for Cu and Cc. First, we can see that φJ increases
with 	S in a nonlinear fashion. Second, as observed in Fig. 4,
we can also see that μ induces a vertical shift on φJ . Third,
it is interesting to see that for each μ all data collapse around
the same trend, showing that 	S succeeds in capturing the
effects of the GSD on φJ , in a more direct way than what can
be achieved using simpler descriptors such as λ or Cu.

We find that the relationship between 	S and φJ is well
described by a power-law ansatz

φJ = φmin + C	Sα, (14)

parametrized by the constant C and the exponent α. We can
put this relationship to the test by plotting (φJ − φmin)/C as

FIG. 11. Jamming packing fraction φJ as a function of the en-
tropy increment 	S, for all values of the size span λ, for η � 0.4,
and for different values of the contact friction μ: (a) μ = 0.0, (b)
μ = 0.2, (c) μ = 0.6, and (d) μ = 0.8.

a function of 	Sα . This is shown in Fig. 12. We can see
that all data for all λ, η, and μ collapse under the universal
curve described by Eq. (14). This suggests that 	S can indeed
be used to compare systems with different GSDs predicting
which system will be denser, without actually performing any
mechanical test; this, with two simple parameters C and α that
depend only on μ, is shown in Table I.

FIG. 12. Normalized jamming packing fraction φJ,max, as a func-
tion of the entropy increment 	S, for all λ, for η � 0.4, and for
different values of the contact friction μ. The solid line is a guide
to the eye and represents the line y = x. The fitting data are shown in
Table I.
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TABLE I. Fitting data for the universal curve describing Eq. (14)
for all values of the contact friction μ.

μ φmin C α

0.0 0.6699(1) 0.0413(2) 2.8(2)
0.2 0.6282(1) 0.0569(2) 2.2(4)
0.6 0.6197(1) 0.0478(1) 2.4(1)
0.8 0.6186(2) 0.0455(1) 2.5(1)

IV. COMPARISON WITH OTHER REFERENCE
SIZE DISTRIBUTIONS

The previous sections were devoted to analyzing the grain
size distributions described by Eq. (1) and among these that
proposed by Fuller and Thompson (i.e., with an exponent
η � 0.5) around a century ago. We showed that this GSD
makes it possible to generate jammed granular systems with
special properties, in terms of both density and microstructure.
In this section we compare the Fuller and Thompson GSD
with other reference GSDs.

On the one hand, let us consider the Apollonian sphere
packing [57–59], based on the Apollonian gasket pro-
posed by Leibniz in the 17th century and based on the
works of Descartes and of course of Appollonius of Perga.
This construction makes it possible to completely fill the
space with mutually tangent spheres. The resulting set of
spheres exhibits a fractal distribution with a fractal dimension
D f � 2.473 946 5(1) [58], describing the asymptotic distribu-
tion

Np(ε) =
∫ ∞

ε

Np(d )dd ∼ ε−D f , (15)

where Np(ε) is the number of spheres with a diameter d
larger than the cutoff ε. Considering Eq. (2), in the asymptotic
case where dmin → 0, we have Np(d ) ∝ dη−4 and Np(ε) ∼
εη−3. In this limit, the GSDs described by Eq. (1) are thus
of fractal nature, with D f = 3 − η. Interestingly, the expo-
nent that corresponds to the Apollonian sphere packing is
η = 3 − 2.473 946 5(1) � 0.53, which is very close to the
optimal value found by Fuller and Thompson.

On the other hand, let us consider the GSD towards which
granular systems evolve after intensive grain fracturing. Tuc-
totte [60] showed that rocks that are subject to weathering,
explosions, or impacts tend to break into a set of fragments
that exhibits a fractal distribution, such as that described by
Eq. (15) and with D f � 2.5. This leads to η � 0.5. Sammis
et al. [61] analyzed photographs of fault gouge, from faults
that had accommodated large shear deformation and thus
with intense levels of grain crushing. They found D f � 2.6,
which corresponds to η � 0.4. Close values of D f in similar
conditions have been found by other researchers, by means of
both experiments [62,63] and numerical simulations [64,65].
Again, these exponents are remarkably close to those found
by Fuller and Thompson.

V. CONCLUSION

The purpose of this article was to explore the joint ef-
fects of the grain size distribution and contact friction on

three-dimensional samples composed of spherical particles.
To do so, we built and analyzed a large set of numerical
samples with GSDs according to Eq. (1) (i.e., power-law
GSDs) and thus described by two parameters, a size span and
an exponent, which controlled the amplitude and the shape
of the distribution, respectively. In order to satisfy statisti-
cal representativity, some samples needed to be very large,
with almost 5 × 105 particles and more than 106 contacts.
These systems were compressed isotropically until reaching
mechanical equilibrium (i.e., until jamming). In this state,
the samples were analyzed in terms of density, connectivity,
coefficients of uniformity and curvature, and parameters of
grading entropy. The following paragraphs present our main
findings and perspectives.

First, we found that intermediate values of the power-law
exponent produce the densest packings for both frictionless
and frictional systems. Furthermore, these exponents are close
to the optimal exponent found by Fuller and Thompson a
century ago. This agrees with previous findings for fric-
tionless particles in two [27,28] and three dimensions [29].
At the same time, this differs from the results reported in
Refs. [15,23,33,34], in which it was found that the GSD that
produces the densest packing is the uniform distribution by
volume; the origin of this disagreement is that these works
only explored a subset of GSDs, which did not include the
Fuller and Thompson distribution. In fact, we showed that
introducing power-law GSDs with intermediate exponents
(which can also be built by means of a cumulative β distri-
bution) allows us to falsify the conjecture posed in Ref. [34],
defining a region of accessible solid fractions as a function of
the GSD.

Second, we found that using the Fuller and Thompson
distribution allows for building packings that are not only very
dense, but also very well connected. In fact, of the spectrum
of GSDs explored, this particular distribution was the only one
to simultaneously exhibit a low proportion or rattlers, a high
coordination, and consequently a high density of contacts.
This agrees with previous findings for frictionless particles in
two [28] and three dimensions [29]. These general trends were
shown to be independent of the contact friction, which in all
cases played the role of decreasing the density and decreasing
the connectivity of the system.

Third, we proposed a set of expressions that can be used to
predict the jamming packing fraction as a function of quanti-
tative descriptors of the GSD. These descriptors are the size
span, the coefficient of uniformity, and the increment of grad-
ing entropy. Among these descriptors, the entropy increment
allows a more direct prediction, with fewer parameters. This
is to be expected, since both the size span and the coefficient
of uniformity only include information on the amplitude of
the distribution, whereas the entropy increment takes into
account the amplitude and the shape of the GSD. Related ideas
were presented in Refs. [34,51,56]. From a more theoretical
perspective, we showed that it is interesting to explore the
connections between the jammed state and its grading entropy,
the former being understood as the most probable macrostate
in equilibrium and the latter as a measure of the number of
microstates that would be compatible with that macrostate.
Grading entropy parameters can then be seen as a measure
of the diversity of the GSD, as well as of the probability of
particles filling void spaces, as suggested in Ref. [56].
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Finally, we compared power-law GSDs, and in particular
the Fuller and Thompson distribution, with two well-known
GSDs: that of the Apollonian sphere packing and the GSD
towards which granular systems evolve after intensive grain
fracturing. Surprisingly, we found that these three GSDs are
practically coincident in the limit of large size spans. We are
unaware of other works that highlight this interesting connec-
tion between these distributions, identified in the engineering,
mathematics, and earth sciences contexts. This suggests that
the Fuller and Thompson distribution is indeed special, pro-
ducing granular assemblies that are very dense, very well
connected, and probably very resistant to grain crushing.

We believe that our findings are relevant for better un-
derstanding the effects of controlling the GSD on various
properties of granular media. This knowledge is important,
not only from a theoretical perspective, but also in numerous
practical contexts that integrate the design of granular struc-
tures such as concrete and pavements. As initially shown by
Fuller and Thompson, a smart proportioning of the granular
phase in these composite materials can have enormous envi-
ronmental and economic impacts. Our article also highlights
the potential of discrete-element methods for exploring the
effects of polydispersity, which remain poorly explored by the
granular physics community.

Some interesting effects that were not approached in this
article, but clearly merit further investigation, are (i) the ef-
fects of the GSD in the system’s stiffness, as initially explored
by Petit and Medina [66]; (ii) the effects of the GSD on
shear strength, some of which are approached in Refs. [12,14–
16,33]; and (iii) the verification of previous findings by means
of experiments and more sophisticated simulations (e.g., with
more realistic shapes and size spans).
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APPENDIX: PARAMETERS OF GRADING ENTROPY

In this Appendix we present further details on the de-
velopment of the expressions used to calculate the grading
entropy parameters introduced in Sec. III C 2. These ideas
were borrowed from Ref. [49] and are rephrased here only for
the purpose of completeness of the present article.

Consider a discrete system with Ne elements, distributed
in M cells of equal size. The statistical entropy H of such a

system is given by

H = −Ne

M∑
i=1

αi logb αi, (A1)

where αi is the number proportion of the elements in the ith
cell, with respect to Ne, and b is the base of the logarithm.
If one sets to 1 the entropy of a system in equilibrium and
with only two cells (i.e., for α1 = α2 = 0.5), this leads to
b = 2. The specific entropy S = H/Ne can then be rewritten
as follows:

S = − 1

ln 2

M∑
i=1

αi ln αi. (A2)

Consider now a polydisperse system, with elements of
size d ∈ (dmin, dmax). Let us first define a minimal size of
the statistical cells, which we will call fractions. The size
of this elementary cell can be any size smaller than dmin/2;
e.g., Lőrincz and co-workers often use the size of a SiO4

tetrahedron: 2−22 mm. Then let us prescribe that the size of
subsequent fractions increases by a power of 2 (i.e., for any
fraction i, 	di = 2	di−1, where 	di is the size of the frac-
tion, given by the distance between its maximal and minimal
diameters).

If it is assumed that the distribution of diameters inside
the fractions is uniform, the number of elements inside the
elementary cells is αi = xi/Ci, where xi is the mass proportion
in the ith fraction, with respect to the total mass, and Ci is the
number of elementary cells in the same fraction. The choice
of a mass proportion instead of a number proportion may
seem strange, but it is justified by the fact that most grading
curves are determined from mass measures and not from grain
counts. Moreover, the use of a number proportion is not nec-
essarily correct, since the elements in different fractions are of
different size and thus not directly interchangeable.

By substituting the new definition of αi into Eq. (A2), we
obtain

S = − 1

ln 2

M∑
i=1

Ci∑
j=1

α j ln α j

= − 1

ln 2

M∑
i=1

xi ln
xi

Ci

= 1

ln 2

M∑
i=1

xi ln Ci − 1

ln 2

M∑
i=1

xi ln xi

= S0 + 	S. (A3)

In this decomposition of S, S0 is called the base entropy and
	S is called the entropy increment. From these expressions,
it can be deduced that S0 is related to the skewness of the
distribution (i.e., with the symmetry of xi among fractions),
while 	S is related to its peakedness. The precise physical
meaning of S0 and 	S is yet to be determined. However, it
has been posed that only 	S plays the role of a true entropy
in a thermodynamic sense [49] (i.e., one that systematically
increases when the system undergoes irreversible changes).

064901-10



FINDING THE GRAIN SIZE DISTRIBUTION THAT … PHYSICAL REVIEW E 105, 064901 (2022)

[1] T. Aste and D. Weaire, The Pursuit of Perfect Packing, 2nd ed.
(Taylor & Francis, London, 2008).

[2] S. Torquato and F. H. Stillinger, Rev. Mod. Phys. 82, 2633
(2010).

[3] C. F. Gauß, Gottingensche Gelehrte Anzeigen 2, 188 (1876).
[4] T. Hales, Ann. Math. 162, 1065 (2005).
[5] S. Torquato and Y. Jiao, Phys. Rev. E 80, 041104 (2009).
[6] Y. Jiao, F. H. Stillinger, and S. Torquato, Phys. Rev. Lett. 100,

245504 (2008).
[7] W. B. Fuller and S. E. Thompson, Trans. Am. Soc. Civ. Eng.

59, 67 (1907).
[8] F. W. Taylor and S. E. Thompson, A Treatise on Concrete, Plain

and Reinforced (Wiley, New York, 1905).
[9] A. N. Talbot and F. E. Richart, The Strength of Concrete, Its

Relation to the Cement, Aggregates and Water (University Of
Illinois at Urbana Champaign, Urbana, 1923), Bulletin 137.

[10] C. Furnas, The relations between specific volume, voids, and
size composition in systems of broken solids of mixed sizes,
Department of Commerce, Bureau of Mines Report No. 2894,
1929 (unpublished).

[11] C. Furnas, Ind. Eng. Chem. 23, 1052 (1931).
[12] C. Voivret, F. Radjaï, J.-Y. Delenne, and M. S. El Youssoufi,

Phys. Rev. Lett. 102, 178001 (2009).
[13] D.-H. Nguyen, É. Azéma, F. Radjai, and P. Sornay, Phys. Rev.

E 90, 012202 (2014).
[14] D.-H. Nguyen, E. Azéma, P. Sornay, and F. Radjai, Phys. Rev.

E 91, 032203 (2015).
[15] E. Azéma, S. Linero, N. Estrada, and A. Lizcano, EPJ. Web

Conf. 140, 06001 (2017).
[16] S. Linero Molina, E. Azema, N. Estrada, S. Fityus, J. Simmons,

and A. Lizcano, Geotech. Lett. 9, 328 (2019).
[17] S. G. Bardenhagen, J. U. Brackbill, and D. L. Sulsky, Phys. Rev.

E 62, 3882 (2000).
[18] M. Muthuswamy and A. Tordesillas, J. Stat. Mech. (2006)

P09003.
[19] M. R. Shaebani, M. Madadi, S. Luding, and D. E. Wolf, Phys.

Rev. E 85, 011301 (2012).
[20] P. S. Dodds and J. S. Weitz, Phys. Rev. E 65, 056108 (2002).
[21] H. Herrmann, R. Mahmoodi Baram, and M. Wackenhut,

Physica A 330, 77 (2003).
[22] K. Sobolev and A. Amirjanov, Adv. Powder. Technol. 15, 365

(2004).
[23] C. Voivret, F. Radjaï, J.-Y. Delenne, and M. S. El Youssoufi,

Phys. Rev. E 76, 021301 (2007).
[24] K. Sobolev and A. Amirjanov, Constr. Build. Mater. 24, 1449

(2010).
[25] T. Aste, Phys. Rev. E 53, 2571 (1996).
[26] S. D. Reis, N. A. Araújo, J. S. Andrade, Jr., and H. J. Herrmann,

Europhys Lett. 97, 18004 (2012).
[27] N. Estrada, Phys. Rev. E 94, 062903 (2016).
[28] N. Estrada and W. F. Oquendo, Phys. Rev. E 96, 042907 (2017).
[29] W. F. Oquendo-Patiño and N. Estrada, Granular Matter 22, 75

(2020).
[30] V. Ogarko and S. Luding, J. Chem. Phys. 136, 124508 (2012).
[31] A. Santos, S. B. Yuste, M. López de Haro, G. Odriozola, and V.

Ogarko, Phys. Rev. E 89, 040302(R) (2014).
[32] A. Santos, S. B. Yuste, M. López de Haro, and V. Ogarko, Phys.

Rev. E 96, 062603 (2017).
[33] D. Cantor, E. Azéma, P. Sornay, and F. Radjai, Phys. Rev. E 98,

052910 (2018).

[34] P. Mutabaruka, M. Taiebat, R. J.-M. Pellenq, and F. Radjai,
Phys. Rev. E 100, 042906 (2019).

[35] J. Schmidt, E. J. Parteli, N. Uhlmann, N. Wörlein, K.-E. Wirth,
T. Pöschel, and W. Peukert, Adv. Powder Technol. 31, 2293
(2020).

[36] V. Pommer, E. Vejmelková, R. Černý, and M. Keppert, Ceram.
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