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Height distributions in interface growth: The role of the averaging process
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Height distributions (HDs) are key quantities to uncover universality and geometry-dependence in evolving
interfaces. To quantitatively characterize HDs, one uses adimensional ratios of their first central moments (mn)
or cumulants (κn), especially the skewness S and kurtosis K , whose accurate estimate demands an averaging
over all Ld points of the height profile at a given time, in translation-invariant interfaces, and over N independent
samples. One way of doing this is by calculating mn(t ) [or κn(t )] for each sample and then carrying out an average
of them for the N interfaces, with S and K being calculated only at the end. Another approach consists in directly
calculating the ratios for each interface and, then, averaging the N values. It turns out, however, that S and K
for the growth regime HDs display strong finite-size and -time effects when estimated from these “interface
statistics,” as already observed in some previous works and clearly shown here, through extensive simulations of
several discrete growth models belonging to the EW and KPZ classes on one- and two-dimensional substrates
of sizes L = const. and L ∼ t . Importantly, I demonstrate that with “1-point statistics,” i.e., by calculating mn(t )
[or κn(t )] once for all NLd heights together, these corrections become very weak, so that S and K attain values
very close to the asymptotic ones already at short times and for small L’s. However, I find that this “1-point”
(1-pt) approach fails in uncovering the universality of the HDs in the steady-state regime (SSR) of systems
whose average height, h̄, is a fluctuating variable. In fact, as demonstrated here, in this regime the 1-pt height
evolves as h(t ) = h̄(t ) + sλA1/2Lαζ + · · · —where P(ζ ) is the underlying SSR HD—and the fluctuations in h̄
yield S1-pt ∼ t−1/2 and K1-pt ∼ t−1. Nonetheless, by analyzing P(h − h̄), the cumulants of P(ζ ) can be accurately
determined. I also show that different, but universal, asymptotic values for S and K (related, so, to different
HDs) can be found from the “interface statistics” in the SSR. This reveals the importance of employing the
various complementary approaches to reliably determine the universality class of a given system through its
different HDs.

DOI: 10.1103/PhysRevE.105.064803

I. INTRODUCTION

The height distribution (HD) of an evolving interface has
recently been established as a measure so important to deter-
mine its universality class as the scaling properties [1,2] of its
roughness. In fact, the probability density functions (pdf’s) for
the heights of growing interfaces display a universal behavior,
despite a dependence with the geometry of the system. For
instance, during the transient growth regime (GR), when the
correlation length ξ parallel to substrate is much smaller than
its lateral size L (ξ � L), the height, h, at a given point of
the interface is expected to evolve asymptotically in time, t ,
as [3,4]

h = v∞t + sλ(�t )βχ + · · · (1)

where v∞, sλ, and � are system-dependent parameters, while
the growth exponent β and the pdf of the random variable χ

[i.e., the underlying HD - P(χ )] are universal within a given
universality class, but P(χ ) may change with the geometry.
For example, for the one-dimensional (1D) Kardar-Parisi-
Zhang (KPZ) [5] class, P(χ ) is theoretically known to be
given by Tracy-Widom (TW) distributions from a Gaussian
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unitary (orthogonal) ensemble [GUE (GOE)] when the inter-
faces are asymptotically curved (flat) [4,6–8]. Such behavior
has been widely confirmed experimentally [9,10] and nu-
merically [11–15], and recently generalized for circular KPZ
interfaces ingrowing [16,17] or evolving out of plane [18],
as well as to half-space KPZ systems [19]. Universal, but
geometry-dependent GR HDs have been also numerically
found for the 2D KPZ class [20–23], as well as for the Villain-
Lai-Das Sarma (VLDS) [24,25] class in both 1D and 2D
substrates [26]. More recently, a geometry effect was found
also in the variances of the GR HDs for the linear classes
by Edwards-Wilkinson (EW) [27] and Mullins-Herring (MH)
[28], whose pdf’s are Gaussian [29].

These advances have motivated the study of GR HDs in
several experimental systems. For instance, in the 1D case,
they have been investigated for interfaces of paper burning
fronts [30], of turbulent phases in liquid crystal films [9,10]
and of colloidal particles deposited at the edges of evaporating
drops [31]. In two-dimensions, they have been analyzed in
vapor deposition of CdTe films on different substrates and
temperatures [32–34] and of oligomer films on Si [35], and
also in electrodeposition of NiW on polished steel [36] and
of oxide films of Cu2O on n − Si(100) and Ni/n − Si(100)
[37]. With exception of this last study, in all others evidence
of KPZ scaling were found. One important lesson coming
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from these works is that the comparison of HDs—as well
as of other universal distributions such as of local roughness
and extreme heights (see, e.g., Ref. [38] for a recent survey
of literature)—is complementary to the traditional analysis of
exponents from the dynamic scaling of the surface roughness
and other correlation functions.

From a more theoretical side, GR HDs have been employed
in the study of the upper critical dimension, du, of the KPZ
class, strongly indicating that, if it exists, du > 6 [39,40].
Moreover, the analysis of HDs has proven useful in unveiling
the origins of the strong corrections to scaling observed in
ballistic-like models [41].

Furthermore, universal HDs have been also observed in
the steady-state regime (SSR), when ξ ∼ L, where they might
differ from the GR HDs. For example, the SSR height fluctu-
ations (about the mean height) for periodic 1D KPZ interfaces
are Gaussian distributed [1]. The same occurs in the EW
and MH classes [1,2], whereas numerical studies for the 2D
KPZ class [42–45] and for the VLDS class [45–47] reveal
non-Gaussian SSR HDs in these cases.

To quantitatively compare HDs, and pdf’s in general, one
analyzes adimensional ratios of their first nth cumulants (κn)
[or central moments (mn)], focusing mainly on the skew-
ness Sκ = κ3/κ

3/2
2 [or Sm = m3/m3/2

2 ] and (excess) kurtosis
Kκ = κ4/κ

2
2 [or Km = m4/m2

2 − 3], which respectively quan-
tify the asymmetry of the distribution and the weight of their
tails when compared with a Gaussian (for which S = K =
0). In flat and in isotropic radial growth, the interfaces are
translation- and rotation-invariant, respectively, so that all of
their sites are statistically equivalent. Thereby, if one has N
of such interfaces at hand, each one with lateral size L and
d spatial dimensions, then the ratios S and K (and any other)
might be estimated in three main ways:

(A) We can perform a “1-interface statistics,” by calculat-
ing the cumulants (κn)i and, then, (Sκ )i and (Kκ )i for each
interface i at time t . Finally, an average over the different
interfaces (denoted here by 〈· · ·〉) is carried out to give S(A)

κ =
〈(Sκ )i〉 and K (A)

κ = 〈(Kκ )i〉.
(B) A similar, but different “multi-interface statistics” can

be obtained by evaluating κn = 〈(κn)i〉 and, then, using these
final averages to calculate the ratios S(B)

κ and K (B)
κ at a given

time t .
(C) We may also perform a “1-point statistics,” by calcu-

lating the raw moments hn considering all the NLd available
substrate sites (for the N samples) together, at a given time t ,
and only at the end estimating the cumulants and then S(C)

κ and
K (C)

κ .
The very same procedures can be employed for the central

moments, rather than for the cumulants, to estimate S( j)
m and

K ( j)
m , with j = A, B, or C. Note that, even though these meth-

ods are identical if a single sample (N = 1) is analyzed, the
ensemble average breaks their equality. At first sight, when
N > 1, approach (C) could be expected to be better than the
others in general, once it does not involve averages of sample-
averaged quantities. It turns out that in some systems it is not
always possible to warrant the statistical equivalence of dif-
ferent samples—for example, AFM images taken at different
regions of a thin film surface might have appreciable differ-
ences in their average height h̄i—so that their heights can not

be treated together as in method (C). So, given the relevance
of HDs, it is important to investigate in detail the outcomes
from (A), (B), and (C), to determine in which situations each
approach may work better.

In this work, I present a deep comparison of these aver-
aging processes and quantities (moments versus cumulants),
based on some analytical approaches and extensive Monte
Carlo simulations of several discrete models belonging to the
KPZ and EW classes, on both 1D and 2D substrates, consid-
ering flat and curved geometries. Substantially, I demonstrate
that methods (A), (B), and (C) may yield quite different
results for the skewness and kurtosis of a given ensemble
of finite interfaces. For example, it is shown here that while
approaches (A) and (B) may introduce strong finite-size and
-time effects in S and K for the GR HDs, in approach (C)
such effects are very weak. Conversely, method (C) may fail
in reveling the universality of the SSR HDs, while approaches
(A) and (B) work fine in this regime, where they may yield
different ratios and, so, different height fluctuations. Moti-
vated by the “KPZ ansatz” in Eq. (1) for the GR HDs, I also
introduce here its counterpart for the SSR, from which the
underlying KPZ HDs about the mean are characterized.

The rest of the paper is organized as follows. In Sec. II,
I define the investigated models and simulation methods, as
well as the quantities analyzed here. Numerical results for
the KPZ HDs in flat and curved geometries are presented in
Secs. III and IV, respectively. Section V brings a detailed com-
parison of the different averaging procedures, based mainly
on analytical calculations, which explain their different out-
comes. An ansatz for the 1-point (1-pt) height in the SSR is
also introduced in this section. A summary of the main results
and some concluding remarks are given in Sec. VI.

II. MODELS AND QUANTITIES OF INTEREST

I investigate three models belonging to the KPZ class: The
restricted solid-on-solid (RSOS) model [48], the ballistic de-
position (BD) model [1], and the etching model by Mello et al.
[49]; and also the EW model by Family [50]. All these models
were simulated on 1D arrays of L sites (d = 1) and on square
lattices of lateral size L (d = 2), with periodic boundary
conditions (PBC). In all cases, particles are sequentially re-
leased vertically toward the horizontal substrate, at randomly
chosen positions, say i, and aggregate there following the
rules: RSOS: hi → hi + 1 if (hi − h j ) < 1 ∀ nearest neighbors
(NNs) j; otherwise, the deposition attempt is rejected. BD:
hi → max[hi + 1, h j] ∀ NNs j. Etching: hj → max[hi, h j] ∀
NNs j and, then, hi → hi + 1. Family: hi → hi + 1 if hi �
h j ∀ NNs j; otherwise, the NN j with minimal height is taken
and h j → h j + 1, with a random draw resolving possible ties.

For all models, substrates of fixed sizes L ranging from L =
32 to 8192 were considered, with a number N of independent
samples such that NLd � 109. Results for the 1D KPZ models
simulated on expanding substrates will be also discussed here.
In this case, the deposition rules just described are stochasti-
cally mixed with duplications of randomly chosen columns of
the substrate, to make its size evolves as 〈L〉 = L0 + ωt . For
more details on the implementation of these processes, I invite
the reader to see the Refs. [23,26,29]. Here, I will consider
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the parameters L0 = ω, with ω ranging from ω = 1 to 20. A
large number N of samples is simulated, yielding a statistics
comparable to that of the flat (fixed L) case.

In all cases, one starts the growth with a flat initial
condition, i.e., hi(t = 0) = 0 ∀ substrate site i. After each
deposition attempt (or column duplication in expanding sys-
tems) the time is updated by t → t + �t , with �t = 1/(Ld +
ωd ), where ω = 0 in the case of fixed size substrates.

Note that if hi j , with j = 1, . . . , Ld , represents the height
profile of the interface i, at a given time t , so its nth raw
moment is

(hn)i = 1

Ld

Ld∑
j=1

hn
i j, (2)

its nth central moment reads

(mn)i = 1

Ld

Ld∑
j=1

[hi j − h̄i]
n, (3)

and its first cumulants are given by

(κ1)i = h̄i, (4a)

(κ2)i = (h2)i − h̄2
i = (m2)i ≡ w2, (4b)

(κ3)i = (h3)i − 3h̄i(h2)i + 2h̄3
i = (m3)i, (4c)

(κ4)i = (h4)i − 4h̄i(h3)i − 3(h2)2
i ,

+12h̄2
i (h2)i − 6h̄4

i = (m4)i − 3(m2)2
i , (4d)

where w2 is the squared roughness of interface i. Hence,
(Sκ )i = (κ3)i/(κ2)3/2

i = (m3)i/(m2)3/2
i = (Sm)i and (Kκ )i =

(κ4)i/(κ2)2
i = (m4)i/(m2)2

i − 3 = (Km)i, meaning that
〈(Sκ )i〉 = 〈(Sm)i〉 and 〈(Kκ )i〉 = 〈(Km)i〉, where 〈Xi〉 =
1
N

∑N
i=1 Xi. Therefore, S(A)

κ = S(A)
m = S(A) and K (A)

κ = K (A)
m =

K (A).
In procedure (B), one deals with κn = 〈(κn)i〉 and mn =

〈(mn)i〉. From Eqs. (4), one has κ2 = m2 = 〈w2〉 and κ3 = m3,
so that S(B)

κ = S(B)
m = S(B). However, for the kurtosis

K (B)
κ = κ4

κ2
2

= m4

m2
2

− 3

〈
w2

2

〉
〈w2〉2

= K (B)
m − 3R2, (5)

where

Rn ≡
〈
wn

2

〉 − 〈w2〉n

〈w2〉n
, (6)

with R2 being the squared coefficient of variation of the width
distribution Pw2 (w2). Since w2 is a fluctuating variable, one
has R2 > 0 and thus K (B)

κ < K (B)
m .

The raw moments for the set of all the NLd heights,
used in approach (C), are simply hn = 〈(hn)i〉 and the related
cumulants (let us denote them as κ∗

n ) follow from expres-
sions analogous to those in Eqs. (4), but without the index
i. Thereby, similarly to case (A), one has S(C)

κ = S(C)
m = S(C)

and K (C)
κ = K (C)

m = K (C).

III. RESULTS FOR KPZ MODELS ON FLAT
(FIXED SIZE) SUBSTRATES

Figures 1(a) and 1(b), respectively, show −S and K
versus time, comparing results for the three methods [(A),
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FIG. 1. Temporal evolution of the (a) skewness −S and (b) kur-
tosis K , for the RSOS model on a 1D substrate of size L = 512.
Data for approaches (A), (B), and (C) are shown, as indicated. The
dashed (dotted) horizontal lines represent the ratios for the TW-GOE
(Gaussian) distribution.

(B), and (C)] defined above, for the 1D RSOS model
with L = 512. In such plots, one clearly sees that S(A)(t ) �=
S(B)(t ) �= S(C)(t ) and K (A)(t ) �= K (B)

m (t ) �= K (B)
κ (t ) �= K (C)(t ).

Hence, three [four] different results can be obtained for S(t )
[K (t )], for the same set of interfaces, depending on the way
this ratio is calculated. The same thing is found for the other
KPZ models, in both 1D and 2D flat substrates, as demon-
strated below. The different characteristics of each approach
will be discussed separately for each regime (GR and SSR) in
what follows.

A. KPZ HDs for the growth regime

Let us focus initially on a comparison of the outcomes
from the three methods during the transient GR. In this case,
the asymptotic HDs for the 1D KPZ models are expected
to be given by the TW-GOE distribution, for which SGOE =
0.2935 and KGOE = 0.1652 [4], but no evidence of this is
seen in Fig. 1 for the methods (A) and (B). Actually, there
are maxima in −S and K curves (which I will denote by S̃
and K̃) for these approaches, indicating that at short times
both ratios start increasing toward their asymptotic values,
but, due to the small L analyzed, the system crosses over to
the SSR before reaching there. In fact, to confirm that the
asymptotic GR HD for the 1D RSOS model is the TW-GOE
distribution, extensive simulations for a very large substrate
size (L = 1 048 576) and very long times (up to t = 500 000)
had to be performed in Ref. [12], where procedure (B) was
employed for the cumulants. Figures 2(a) and 2(b), respec-
tively, show the temporal variation of −S(A) and K (A) for the
1D RSOS model, comparing curves for several L’s, and one
sees that S̃ and K̃ do indeed approximate SGOE and KGOE as L
increases. The same thing is observed in Figs. 2(c) and 2(d)
for the kurtoses from procedure (B) [the behavior of −S(B)

is analogous to that in Fig. 2(a) for −S(A)]. These features are
expected and have already been observed by Shim and Landau
[51] for the method (A).

The important finding here is that for method (C) both
−S(C) and K (C) present approximated plateaus quite close
to the expected KPZ values in Fig. 1, demonstrating that
such procedure yields results for the GR KPZ HDs with very
weak finite-size and -time effects. This is indeed confirmed
in Figs. 2(e) and 2(f), which present the temporal variation
of −S(C) and K (C) for the 1D RSOS model with several L’s,
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FIG. 2. (a)–(f) Temporal evolution of the skewness −S(x) and
kurtosis K (x), with x = A, B,C, for the RSOS model on 1D sub-
strates of several sizes, as indicated in panel (e). The dashed (dotted)
horizontal lines represent the ratios for the TW-GOE (Gaussian)
distribution.

where one sees that already for L = 64 they have a maximum
quite close to the TW-GOE values. Moreover, as L increases
these maxima tend to give place to plateaus, since the duration
of the GR increases with L.

The temporal evolutions of S and K for the 1D BD model
are displayed in Fig. 3. The behavior of S is qualitatively
the same found for the RSOS model in Fig. 2, with maxima
approximating SGOE as L increases in all cases. [Results for
S(B) are similar to those in Fig. 3(a) for S(A).] It turns out
that in BD case the finite-size effects are more severe than
in the RSOS model, as it is widely known (see, e.g., Ref. [41]
for a survey of literature). For instance, for the smaller sub-
strates analyzed here, the maxima in the S(A) [and also in
S(B)] curves have negative values, although the BD surfaces
are expected to have positive skewness, as indeed observed
for larger L’s. Moreover, these maxima are still far from SGOE

even for the largest L’s considered here. For approach (C),
however, one always finds positive maxima and for L � 512
they are quite close to the expected TW-GOE value. So, once
again, this last approach returns much better results than the
other ones. This is even more evident in the kurtosis, for
which no signature of TW-GOE statistics is obtained from
methods (A) and (B), for the sizes analyzed here, beyond a
shoulder in the K versus t curves depicted in Fig. 3. In case
(C), notwithstanding, one finds approximated plateaus around
KGOE already for L � 256. It is quite remarkable that for a
difficult model as the ballistic deposition the “1-pt statistics”
is capable of uncovering the asymptotic HD properties for so
small substrate sizes and times.
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FIG. 3. (a)–(f) Temporal variation of the skewness S(x) and kur-
tosis K (x), with x = A, B,C, for the BD model on 1D substrates of
several sizes, as indicated in panel (e). The dashed (dotted) horizontal
lines represent the ratios for the TW-GOE (Gaussian) distribution.

Results (not shown) for the 1D Etching model are some-
what intermediate between those for the RSOS and BD model.
For example, in the skewness estimated from approaches (A)
and (B), the maxima associated with the asymptotic GR HDs
appear only for L � 2048. Namely, the situation worsens
when compared with the BD case. However, the corrections
in S(C) are smaller than in the BD case, being comparable to
those in the RSOS model. In the kurtosis, everything is similar
to the BD model, but once again with milder finite-size effects
in K (C). This is demonstrated in Figs. 4(a) and 4(b), where
estimates of S̃ and K̃ are depicted against L−1/z, with z = 3/2
being the dynamic exponent of the 1D KPZ class [5]. These
maxima let clear that, for a given L, corrections in S(A) are
more severe than in S(B), while in S(C) they are quite small,
as expected from the results above. In the kurtosis [Fig. 4(b)],
one observes similar corrections in K (A) and K (B)

κ , which are
stronger than those in K (B)

m for the RSOS model. Note that for
the other models no maximum related to the asymptotic HD
was found in the curves of K × t for approaches (A) and (B),
for the sizes analyzed here.

Despite the different corrections, in all cases the maxima
converge toward SGOE and KGOE as L increases. According
to Ref. [51], the dominant correction in both S̃(A) and K̃ (A)

is of type L−1/z, so that F̃ (L) = F∞ + aF L−1/z, with F = S
or K . This is the reason for the abscissa L−1/z in Fig. 4, but
for the sizes considered here (L � 8192) I do not find clear
linear behaviors there. [Data for L up to 106 was consid-
ered in Ref. [51], which certainly explains the difference.]
I notice that by considering also multiplicative logarithmic
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FIG. 4. Maxima in the skewness S̃ (left) and kurtosis K̃ (right
panels) versus L−1/z, for the RSOS (black circles), BD (blue squares),
and Etching model (red triangles). Data for different approaches are
shown, as indicated by the legends. The top panels show results
for 1D substrates, where z = 3/2 and the dashed horizontal lines
represent the values of SGOE and KGOE. Results for 2D substrates are
displayed in the bottom panels, where z = 1.613 [52] is used and
the dashed lines are the best numerical estimates for the asymptotic
ratios (S � 0.425 and K � 0.346 [20,21]) for the 2D KPZ HDs in
the GR.

corrections, so that F̃ (L) = F∞ + aF L−1/z[log(1/L)]γ , with
γ = 5/3 for F = S and γ = 3/2 for F = K , the data for the
RSOS model are well-linearized, even for small L’s, and this
returns extrapolated values quite close to the expected SGOE

and KGOE ones.
Now, I will discuss results for the KPZ models deposited

on flat 2D substrates.
In general, the temporal variations of S and K in 2D are

very similar to those found for the 1D case [in Figs. 1–3],
but with stronger finite-size corrections. In the BD model
such corrections are actually very severe, so that the maxima
observed in S(A) and S(B) in the 1D case [see Fig. 3(a)] only
appear for L � 1024 in d = 2. In the same fashion, only for
such large sizes shoulders start appearing in the curves of K
versus t , for procedures (A) and (B). Therefore, for these two
approaches, no signature of the asymptotic GR HD is found
in the ratios for the 2D BD model with L � 1024. However,
maxima are always found in S(C) and the shoulder appears for
smaller L’s in K (C) curves for the BD model. For the sake of
conciseness, I will omit such curves here, passing directly to
the analysis of their maxima, whenever they exist, which are
depicted in Figs. 4(c) and 4(d). Similarly to 1D case, one sees
in these figures that the deviations from the expected asymp-
totic ratios, for a given L, decreases as one goes from approach
(A) to (B) and from (B) to (C). This confirms that method
(A) is the worse to analyze the GR HDs, while procedure (C)
provides the best results. This is particularly notable for the
RSOS model, where S̃(C) and K̃ (C) agree quite well with the
asymptotic values already for L � 128. For comparison, sub-
strates with 32 768 × 32 768 sites and temporal extrapolations

FIG. 5. Saturation values of the skewness S (left) and kurto-
sis K (right panels) versus 1/L, for the RSOS (black circles), BD
(blue squares), and Etching model (red triangles). Data for different
approaches are shown, as indicated by the legends. The top (bot-
tom) panels show results for 1D (2D) substrates, where the dashed
horizontal lines represent the values of the central moment ratios:
S = K = 0 in 1D and |S| � 0.266 and K � 0.145 [52] in 2D case.
The solid lines are linear fits used in extrapolations. For the RSOS
model, −S is shown. Data for the BD model are omitted in panels
(c) and (d) because, due to the strong finite-size corrections, most
points are out of the vertical range shown.

were used to access these asymptotic values in Refs. [21,23],
via the method (B) for the cumulants.

B. KPZ HDs for the steady-state regime

Next, I investigate the height fluctuations for the regime
where the interfaces are fully correlated. While in the GR HDs
analyzed in the previous subsection only the finite-size and
-time corrections are affected by the method used to estimate
S and K , in the SSR different asymptotic values (for L → ∞)
are obtained, depending on the way that these ratios are calcu-
lated. This is clear in Figs. 1–3, where one sees that S and K
attain constant values at long times for methods (A) and (B),
but with K (A) �= K (B)

m �= K (B)
κ . However, S(C) and K (C) do not

saturate; instead, they present a slow decrease in magnitude
for the same times where the ratios from approaches (A) and
(B) are already constant (for a given L). The very same thing
happens in the 2D case.

Estimates for the saturation values of S(A) and S(B) are
depicted in Fig. 5(a) against 1/L for the three 1D KPZ models.
Although the results for method (A) display slightly stronger
finite-size corrections in some cases, in both approaches and
for all models the skewness vanishes as L increases, as ex-
pected for interfaces with up-down symmetry [1]. Figure 5(c)
presents a similar plot for the KPZ models on 2D substrates,
where two (close, but) different asymptotic values are found
for the skewness. In fact, while |S(B)| converges to close
to 0.266, in agreement with the finding by several authors
[42–44,52], in approach (A) the skewness extrapolates to
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|S(A)| = 0.232(3). This last value agrees with |S| = 0.23(2)
reported in Ref. [51], while they both differ from |S(B)|.
Hence, different values of S can be obtained for the same
ensemble of interfaces depending on the way this ratio is
calculated.

The situation “worsens” in the kurtosis, for which a diver-
sity of asymptotic values can be found. For the 1D case, one
sees in Fig. 5(b) that the saturation value of K (B)

m vanishes,
as expected for a Gaussian distribution. However, the K’s for
the other approaches clearly converge to other values. The
extrapolated value of K (A) for the RSOS model is K (A) =
−0.592(4), which agrees with less accurate extrapolations
for the other models, as well as with the value reported in
Ref. [51] [K = −0.61(2)] within the error bars. The data for
K (B)

κ are harder to extrapolate, for the sizes analyzed here.
For instance, they seem to present logarithmic corrections in
the RSOS model and display a nonmonotonic convergence
in the Etching case. Notwithstanding, one may observe in
Fig. 5(b) that they are converging toward K (B)

κ ≈ −1.20 as
L increases. Different asymptotic values are obtained also in
the 2D case, with K (A) ≈ −0.134, K (B)

κ ≈ −0.22 and K (B)
m ≈

0.14 [see Fig. 5(d)]. This last value agrees with those from
Refs. [42–44,52], while the K (A) found here is consistent with
the one estimated in Ref. [51]. To the best of my knowledge,
K (B)

κ was never reported in the literature.
I recall that the differences between K (B)

κ and K (B)
m are in-

deed expected, as pointed out in Sec. II, being a consequence
of the width fluctuations. The origins of the differences in the
other cases will be carefully discussed in Sec. V.

IV. RESULTS FOR KPZ MODELS
ON EXPANDING SUBSTRATES

As a means of analyzing the differences among the dif-
ferent averaging procedures in curved KPZ interfaces, I
investigate the three KPZ models discussed above on 1D sub-
strates enlarging linearly in time, as 〈L〉 = L0 + ωt [23]. Since
the SSR is never attained in this case, only the GR HD will be
discussed here, which for the 1D KPZ class is asymptotically
given by the TW-GUE distribution, with SGUE = 0.22408 and
KGUE = 0.09345 [4].

Figures 6(a) and 6(c) present the temporal variation of −S
and K , respectively, for the RSOS model simulated with an ex-
pansion rate ω = 1, comparing results for the three methods.
Similarly to what one has observed in the previous section for
the flat case, the deviations from the expected ratios, at a given
time, are larger in S(A), followed by S(B) and smaller in S(C).
This effect is much more drastic in the kurtosis, where K (C)

agrees with KGUE already for t � 100, whereas K (A) and K (B)
κ

have very strong deviations. Milder corrections are observed
in K (B)

m , but it deviates more than K (C). Analogous behaviors
are found for the BD and Etching models, confirming that
method (C) is indeed very superior than the others to reveal
the asymptotic HDs, also for curved KPZ interfaces.

It is important to notice that by increasing ω the cor-
rections observed for ω = 1 decrease. This is demonstrated
in Figs. 6(b) and 6(d), which respectively show −S and K
versus time for the RSOS model with ω = 20. In this case,
the skewness calculated from the three methods are very sim-
ilar. Moreover, one sees that K (C) ≈ K (B)

m and K (A) ≈ K (B)
κ .
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FIG. 6. Temporal evolution of the skewness S (top), kurtosis K
(middle), and squared roughness 〈w2〉 (bottom panels), for the 1D
RSOS model on substrates expanding at rates ω = 1 (left) and ω =
20 (right panels). The dashed horizontal lines represent the ratios for
the TW-GUE distribution, while the dotted lines have the indicated
slopes.

Although these latter kurtosis are still presenting a slower
convergence than the former ones, their deviation from KGUE

is much smaller than that for ω = 1. Interestingly, while large
expansion rates decrease the corrections in the ratios esti-
mated with approaches (A) and (B), the convergence of S(C)

and K (C) becomes slightly slower as ω increases.
I end this section by remarking that the superiority of

the “1-pt statistics” is not limited to the ratios; it yields also
much better results for the roughness in the case of expanding
substrates. In fact, a comparison of curves of 〈w2〉(x) versus
time, with x = B and C, for small ω’s [see Fig. 6(e) for the
RSOS model with ω = 1] reveals that while 〈w2〉(C) increases
consistently with t2β already at short times, severe corrections
are found in 〈w2〉(B) = m(B)

2 = κ
(B)
2 . For large ω’s, however,

the fast increase of the substrate size washes out the correc-
tions and both approaches yield very similar results for the
roughness scaling [see Fig. 6(f)].

V. DISCUSSION

To understand the origins of the differences in the ratios, as
observed above, it is important to analyze the three averaging
procedures in more detail.

In Sec. II it was demonstrated that K (B)
κ = K (B)

m − 3R2 [see
Eqs. (5) and (6)], where R2 = 〈w2

2〉c/〈w2〉2 is the ratio be-
tween the second and the (squared) first cumulant of the width
distribution, Pw2 (w2). As demonstrated in Ref. [38], these
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cumulants follow the general scaling〈
wn

2

〉
c � AnL2nα fn(t/Lz ), (7)

with fn(x) = 1 in the SSR (when x � 1) and fn(x) ∼ xγn

in the GR (i.e., for x � 1), where γn = 2nβ + (n−1)d
z [38].

This yields K (B)
κ � K (B)

m − (t1/z/L)d c in the GR, where c is
a constant, such that asymptotically (for L → ∞) we shall
have K (B)

κ = K (B)
m in this regime, for both fixed size and ex-

panding substrates, confirming the numerical results above.
In the SSR, however, these kurtoses are indeed different, once
K (B)

κ = K (B)
m − 3A2/A2

1. For 1D KPZ interfaces, the SSR dis-
tributions Pw2 (w2) are exactly known for window boundary
conditions (WBC) [53], and periodic boundary conditions
(PBC) [54], having R2 = A2/A2

1 = 2/5 in the last case. Since
the SSR HD about the mean is Gaussian for PBC [1], meaning
that S(B) = K (B)

m = 0, one obtains K (B)
κ = −6/5, as indeed

observed in Sec. III B. For the 2D KPZ class there is no
exact result for these quantities and it seems that numerical
estimates of R2 are only available for WBC [38,55]. For the
2D RSOS model with PBC, the amplitude A1 = 0.1226(1)
was reported in Ref. [52] (where it was denoted as A2) and I
estimate A2 = 0.0020(2) here, by extrapolating the saturated
values of 〈w2

2〉c/L4α to L → ∞, assuming that α = 0.3869
[52]. This yields R2 = A2/A2

1 = 0.13(1), which agrees with
(K (B)

m − K (B)
κ )/3 if one uses K (B)

m = 0.14 and K (B)
κ = −0.22,

as estimated above.
To compare the results from methods (A) and (B), I

start noticing that S(B) = κ3
〈w2〉3/2 = κ3

〈w3/2
2 〉 (1 + R 3

2
) and K (B)

κ =
κ4

〈w2〉2 = κ4

〈w2
2〉 (1 + R2), with Rn given in Eq. (6). Note also

that, if a and b �= 0 are two fluctuating variables, from a
Taylor expansion around 〈a〉 and 〈b〉 one has that 〈 a

b 〉 =
〈a〉
〈b〉 + ∑∞

j=1(−1) j ( 〈a〉〈(b̃) j〉
〈b〉 j+1 + 〈ã(b̃) j〉

〈b〉 j+1 ), where x̃ ≡ x − 〈x〉, so

that 〈(b̃) j〉 is the jth central moment of b [56]. This means
that

S(A) =
〈

(κ3)i

w
3/2
2

〉
= κ3

〈w3/2
2 〉 + G3 = S(B)

1 + R 3
2

+ G3 (8)

and

K (A) =
〈

(κ4)i

w2
2

〉
= κ4〈

w2
2

〉 + G4 = K (B)
κ

1 + R2
+ G4, (9)

where Gn = ∑∞
j=1(−1) j ( κn〈(b̃n ) j〉

〈bn〉 j+1 + 〈ãn(b̃n ) j〉
〈bn〉 j+1 ), with an ≡ (κn)i

and bn ≡ w
n/2
2 . Therefore, Rn and Gn are responsible for the

differences between the ratios from methods (A) and (B).
Unfortunately, it is hard to give a full account of the gen-
eral behavior of Gn (with t and L) to proceed further in
this comparison. Nevertheless, I remark that for the SSR of
1D KPZ interfaces one has κ3 = 0, so that the first term
in the summation of G3 is null. Moreover, I have numer-
ically verified that the first mixed moments 〈ã3(b̃3) j〉 also
vanish, indicating that G3 = 0 in this case, which explains the
saturation values S(A) = S(B) = 0 in Fig. 5(a). However, the
terms of the sum are nonnull for G4, pointing that G4 �= 0.
This is consistent with the numerical findings above, once
K (B)

κ /(1 + R2) = −6/7 ≈ −0.857 in the SSR of 1D KPZ
interfaces, while K (A) = −0.592(4), so that G4 ≈ 0.265 in
this case.
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FIG. 7. Temporal evolution of the (a) skewness S and (b) kurtosis
K , for the Family model on a 1D substrate of size L = 128. Data for
approaches (A), (B), and (C) are shown, as indicated.

Let us now focus on a comparison of approaches (B) and
(C). Note that the height at a given point j of the interface i can
be written as hi j (t ) = h̄i(t ) + Hi j (t ), with Hi j (t ) giving the
fluctuations about the average height h̄i(t ). Hence, in systems
where h̄i(t ) is deterministic, fluctuations in hi j are identical
to those in Hi j , meaning that S(C) = S(B) and K (C) = K (B)

m . An
example of such a system is the Family model, where h̄i(t ) = t
for all interface i = 1, . . . , N . Curves of S and K versus t ,
for the three methods, are shown in Fig. 7 for the 1D Family
model deposited on a substrate of fixed size L = 128 and, in
fact, no difference between S(C) and S(B), or K (C) and K (B)

m
are observed there. Although EW interfaces have an up-down
symmetry, such that their HDs are expected to be symmetric,
a slight deviation from S = 0 is seen in Fig. 7(a), due to
finite-size effects. Similarly to the KPZ models, the deviation
is larger in S(A), confirming that method (A) is the worse to
analyze the HDs. As expected, the kurtoses K (A), K (B)

m , and
K (B)

κ for the 1D Family model saturate at the same values
found for the 1D KPZ models, once in this dimension both
classes have equivalent statistics at the SSR. Notwithstanding,
the outcomes from approach (C) are different.

This happens because in the KPZ models analyzed
here h̄i(t ) is a fluctuating variable, which may assume
a different value for each interface i. Therefore, the
cumulants of hi j—i.e., those for method (C), denoted by
κ∗

n —are given by κ∗
n = κn + 〈h̄n〉c + Yn, where 〈h̄n〉c is the

nth cumulant of the distribution of the average height,
Pav(h̄), and Yn is mostly given by sums of covariances of
integer powers of Hi j and h̄i. In fact, it is straightforward
to demonstrate that Y2 = 0, Y3 = 3cov[H2

i j, h̄i] and Y4 =
3〈w2

2〉c + 4cov[H3
i j, h̄i] + 6cov[H2

i j, h̄2
i ] − 12〈h̄〉cov[H2

i j, h̄i].
Thereby, for the “1-pt squared roughness,” κ∗

2 , one obtains
κ∗

2 = 〈w2〉 + 〈h̄2〉c. As recently demonstrated in Ref. [57],
〈w2〉 � 〈h̄2〉c during the GR, such that κ∗

2 ≈ 〈w2〉 ∼ t2β

there. In the SSR, however, 〈w2〉 saturates, while 〈h̄2〉c keeps
increasing forever as 〈h̄2〉c ∼ t , yielding κ∗

2 ∼ 〈h̄2〉c ∼ t
asymptotically. This is indeed confirmed in Figs. 8(a) and
8(b), which compare curves of κn and κ∗

n against time, for the
Etching model on 1D and 2D substrates of fixed size L = 64,
for n � 4. Analogous results are found for the other KPZ
models analyzed here.

As is clearly seen in Figs. 8(a) and 8(b), the higher-order
cumulants behave similarly to the roughness in the SSR.
Namely, while κn has the expected saturation, the “1-pt cu-
mulants” keep increasing as κ∗

n ∼ t . This scaling is indeed
expected for the 1D KPZ models, since several works on the
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FIG. 8. (a), (b) Temporal behavior of the first cumulants κn [from
method (B)] and κ∗

n [from method (C)], for systems with fluctuating
h̄i on (a) 1D and (b) 2D substrates of lateral size L = 64. Similar
results are found for other L’s. The dashed lines have the indicated
slope. (c) Cumulant ratio 〈h̄n〉c/κn versus t1/z/L, for the 2D case,
for several n’s and L’s, as indicated. (d) Ratio Yn/κn against t1/z/L,
for n = 3, 4 and both 1D (where z = 3/2) and 2D (where z = 1.613
[52]) substrates, as indicated. The different colors and patterns in the
symbols in panel (d) represent data for different sizes in the ranges
L ∈ [512, 2048] (1D) and L ∈ [128, 512] (2D). All data are for the
Etching model and similar ones are found for the other KPZ models
investigated here.

large deviation function have demonstrated that 〈h̄n〉c/t attains
constant values at the SSR in this dimension [58,59]. The
results here show that the same happens also in the 2D case.
Thereby, for these systems one obtains S(C) = κ∗

3 /(κ∗
2 )3/2 ∼

t−1/2 and K (C) = κ∗
4 /(κ∗

2 )2 ∼ t−1 in the SSR, instead of the
saturation observed in approaches (A) and (B). These asymp-
totic decays are indeed found for all KPZ models analyzed
here, in both substrate dimensions (see Figs. 1–3). Hence,
for such systems, method (C) gives no information on the
underlying SSR HDs. This does not mean, however, that is
impossible to analyze these HDs by any type of 1-pt fluc-
tuations. For instance, as demonstrated in Subsec. V A just
below, by appropriately defining an ansatz for the 1-pt height
in the SSR, in the same lines of Eq. (1) for the GR, one
can access the universal SSR HDs. As an aside, I notice also
that by investigating the 1-pt fluctuations of �h(�x,�t, t0) ≡
h(�x, t0 + �t ) − h(�x, t0) the stationary HD (which is the Baik-
Rains [60] distribution for 1D KPZ systems [4,61]) can be
obtained as t0 → ∞ and then �t → ∞ [14,62].

During the GR, since 〈h̄2〉c/〈w2〉 � 1 [57], one may write

S(C) = S(B)

[
1 + Y3

κ3
+ 〈h̄3〉c

κ3
− 3

2

〈h̄2〉c

κ2
+ · · ·

]
(10)

and

K (C) = K (B)
κ

[
1 + Y4

κ4
+ 〈h̄4〉c

κ4
− 2

〈h̄2〉c

κ2
+ · · ·

]
. (11)

As demonstrated by Lee and Kim [59], for 1D KPZ inter-
faces in the GR 〈h̄n〉c ∼ t n−2/3/Ln−1, such that 〈h̄n〉c/κn ∼
[t1/z/L]n−1, which vanishes as L → ∞. Although the cumu-
lants of Pav(h̄) have never been analyzed in literature for 2D
interfaces, to the best of my knowledge, from the generality of
the scaling behavior it is reasonable to expect that 〈h̄n〉c/κn ∼
[t1/z/L]γ also in this dimension. This is indeed confirmed in
Fig. 8(c), which shows that curves of 〈h̄n〉c/κn, for a given n
and different L’s, collapse onto a single curve when plotted
against [t1/z/L]. Hence, also in the 2D case, all terms of
type 〈h̄n〉c/κn, in Eqs. (10) and (11), vanish asymptotically.
Figure 8(d) shows Yn/κn versus [t1/z/L], for n = 3, 4 and
1D and 2D systems. Once again, the data for different sizes
(for a given n and dimension) collapse, demonstrating that
Yn/κn ∼ [t1/z/L]δ . So, these terms also become irrelevant in
Eqs. (10) and (11) as L → ∞, confirming that asymptotically
one indeed has S(C) = S(B) = S(A) and K (C) = K (B)

κ = K (B)
m =

K (A)
κ in the GR, as indicated by the results from the previous

sections.
It is worth noticing that, in opposition to methods (A) and

(B), in case (C) the HDs’ cumulants are calculated without
using the average height of each interface, so that S(C) and
K (C) are not directly affected by the finite-size and -time
corrections in h̄i. Moreover, the process of calculating the
raw moments for all interfaces together, as done in (C), is
analogous to join the N samples to form a single interface
of lateral size N

1
d L, which is expected to have much weaker

corrections than those of size L when N is large. In fact,
although each interface may have a different h̄i, which might
introduce corrections in the composed system of size N

1
d L, the

fluctuations in h̄i are very small when compared with those in
Hi j in the GR. This explains the superiority of approach (C)
for estimating S and K for the GR HDs.

A. “KPZ ansatz” for the steady-state HDs

From the discussion just above, and bearing in mind the
“KPZ ansatz” in Eq. (1) for the 1-pt height at the GR,
it is interesting to devise a similar ansatz for the SSR.
To do this, let us start recalling that only two nonuniver-
sal parameters are need to fix the KPZ scaling: λ (the
nonlinear coefficient of the KPZ equation [5]) and A (the
amplitude of the height-difference correlation function Ch =
〈[h(�x + �r, t ) − h(�x, t )]2〉 � A|�r|2α) [1,3,63]. In fact, from a
dimensional analysis one obtains 〈w2〉 ∼ AL2α in the SSR,
indicating that

hi j = h̄i + sλA
1
2 Lαζ + · · · , (12)

where sλ = ±1 gives the signal of λ for a given KPZ system,
ζ is a random variable expected to be given by universal HDs
and the dots indicate the existence of corrections.

As discussed above, in the GR the fluctuations in h̄i are
negligible when compared with those in Hi j [given by (�t )βχ

in Eq. (1)], justifying the replacement of h̄i by its asymptotic
(and deterministic) behavior h̄i → v∞t in the ansatz 1. The
same thing can not be done in the SSR, once the fluctuations
in the rhs of Eq. (12) are dominated by h̄i in this regime.
Notwithstanding, one may uncover the universality of the HD
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FIG. 9. Variances 〈H2
r 〉c of the 1-pt SSR height fluctuations about

the mean versus L−� for the KPZ models on (a) 1D and (b) 2D
substrates. The solid lines are linear fits used in extrapolations. The
exponents that best linearize the data in each case are � = α [0.8] for
the RSOS, � = 2α [0.5] for the Etching and � = 2α [0.8] for the BD
model in the 2D [1D] case. The black dot in panel (a) indicates the
exact result 〈ζ 2〉c = 1/12. The values of L−� for the RSOS model
in panel (b) were divided by 10 to appear in the same interval of the
rest.

P(ζ ) by analyzing the rescaled relative height

Hr ≡ hi j − h̄i

sλA1/2Lα
, (13)

such that Hr → ζ as L → ∞. Since P(ζ ) gives the fluctua-
tions about the mean, it is asymptotically Gaussian-distributed
for 1D KPZ and EW systems with PBC, meaning that
its higher-order cumulants vanish, i.e., 〈ζ n〉c = 0 for n > 2.
Moreover, the variance is 〈ζ 2〉c = 1/12, once the saturated
squared width is exactly know to behave asymptotically as
〈w2〉 = AL/12 [1–3]. This is indeed verified in Fig. 9(a),
where numerical estimates of 〈H2

r 〉c are extrapolated to L →
∞ and, for all KPZ models analyzed here, attain values very
close to 1/12. In such plots the parameters ARSOS = 0.83 and
ABD = 2.7 were used, as obtained in Ref. [12]. Although there
is no estimate of A for the 1D Etching model in the literature,
there exist several numerical evidence that its scaling ampli-
tudes are equal to those for the BD model. In fact, by using
AEtch = 2.7 in Fig. 9(a), one obtains 〈ζ 2〉c for the Etching case
in striking agreement with the other models and with the exact
value 1/12.

For the 2D KPZ models, the values ARSOS = 1.22 and
AEtch = 3.629 were explicitly estimated in Ref. [23]. More-
over, from the parameters reported in Ref. [41] for the BD
model, it is simple to calculate ABD ≈ 3.626, which provides
additional evidence that AEtch = ABD. Figure 9(b) shows ex-
trapolations of the variances 〈H2

r 〉c to the L → ∞ limit, which
return very consistent results, being 〈ζ 2〉c = 0.1024, 0.1023
and 0.1035 for the RSOS, Etching and BD models, respec-
tively. Therefore, this yields 〈ζ 2〉c = 0.1027(5) for the 2D
KPZ height fluctuations about the mean in the SSR. Joining
this result with the values obtained above for S(B) and K (B)

m one
finds also estimates for 〈ζ 3〉c and 〈ζ 4〉c, which are depicted
in Table I, along with the exact results for the 1D case. I
have verified that extrapolations of 〈Hn

r 〉c to L → ∞, for n =
3, 4, return cumulants in agreement with those in Table I, as
expected.

I notice that an additive, stochastic correction, η, has been
widely observed in Eq. (1) (see, e.g., Refs. [9–12,21,23]).
Hence, a similar correction might be expected also in Eq. (12),

TABLE I. First cumulants of the SSR HDs, from the ansatz 12,
for KPZ systems on 1D and 2D substrates with PBC.

〈ζ 〉 〈ζ 2〉c 〈ζ 3〉c 〈ζ 4〉c

1D 0 1/12 0 0
2D 0 0.1027 0.0088 0.0015

such that hi j = h̄i + sλA1/2Lαζ + η + · · · , with 〈η̄〉 = 0. In
fact, this yields

〈H2
r 〉c = 〈ζ 2〉c + sλ

2〈ηζ 〉
A1/2

L−α + 〈η2〉c

A
L−2α + · · · (14)

Since sλ = −1 for the RSOS model, assuming that 〈ηζ 〉 > 0,
this explains why the variances converge from below in this
case, while in the other models (where sλ = 1) the conver-
gence is from above (see Fig. 9). Note also that the variances
for the Etching in d = 1 and RSOS in d = 2 are well lin-
earized with exponents � = α, suggesting that 2〈ηζ 〉/A1/2 is
not negligible in such models. However, for the 2D Etching
and BD models this term seems to be negligible, once the
dominant correction is ∼L−2α . In other cases, the effective
correction exponent is α < � < 2α, possibly due to a “com-
petition” of both correction terms in Eq. (14).

VI. SUMMARY

I have investigated different procedures for estimating the
skewness, S, and kurtosis, K , of the height fluctuations for a
given set of translation-invariant KPZ and EW interfaces, de-
posited on both fixed-size and enlarging substrates. In general,
method (A)—where S and K are calculated for each interface
and then averaged over the N samples—presents the stronger
finite-size corrections. In approach (B) the cumulants, κn, or
central moments, mn, of each interface are estimated and then
averaged over the N samples, with S and K being calculated
only at the end. Hence, S(B) and K (B)

m are related to the height
fluctuations about the mean height, h̄i, of each interface i.
Different kurtosis are obtained from this method, with K (B)

κ =
K (B)

m − 3R2, due to the width fluctuations, Pw2 (w2), whose
squared variation coefficient is R2 > 0. Procedure (C) consists
in evaluating the raw moments considering all points of the N
interfaces together, from which S and K are then calculated.
This is equivalent to analyze the height fluctuations at a single
point of the interface, so that S(C) and K (C) are related to the
“1-pt” HDs.

As expected, in systems where h̄i evolves deterministi-
cally in time, the “1-pt fluctuations” become identical to
the fluctuations about the mean, so that S(C)(t ) = S(B)(t ) and
K (C)(t ) = K (B)

m (t ). However, these equalities are broken when
h̄i is a fluctuation variable and, then, one obtains S(A)(t ) �=
S(B)(t ) �= S(C)(t ) and K (A)(t ) �= K (B)

m (t ) �= K (B)
κ (t ) �= K (C)(t ).

During the GR, the signature of the universal HDs in finite-L
systems is a maximum in the curves of S × t and K × t , whose
values converge to the asymptotic ones as L → ∞. It turns out
that for procedures (A) and (B) such maxima may only appear
for very large L’s, depending on the model, and may display
a slow convergence. Remarkably, method (C) presents very
weak corrections in these quantities, with curves of S(C)(t )
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TABLE II. Absolute value of the skewness, |S|, and kurtosis,
K , from methods (A) and (B), for the KPZ HDs in the steady-state
regime for 1D and 2D substrates with PBC.

|S(A)| |S(B)| K (A) K (B)
m K (B)

κ

1D 0 0 −0.592 0 −6/5
2D 0.232 0.266 −0.134 0.14 −0.22

and K (C)(t ) having maxima or approximated plateaus very
close to the asymptotic values already for small L’s and t’s. In
addition, the roughness may also have weaker corrections to
the scaling, 〈w2〉 ∼ t2β , when estimated from procedure (C)
in expanding (or curved) systems. These findings might be
particularly important in experimental studies of HDs, where
one usually deals with small interfaces and short deposition
times, provided that different samples are statistically equiv-
alent to be reliably analyzed via method (C). Furthermore,
since the maximum in the S(C)(t ) and K (C)(t ) curves can
be estimated with high accuracy for small L’s in numerical
works, their extrapolation to L → ∞ is a very good route to
access the asymptotic values of these ratios for the GR HDs. In
fact, this might be much less computationally demanding than
the strategy adopted in several previous works, considering
very large L’s and times, and extrapolating the curves of S(t )
and K (t ) for the t → ∞ limit.

Since in the GR the ratios from the “1-interface” [method
(A)], “multi-interface” [(B)] and “1-pt statistics” [(C)] con-
verge to the same asymptotic values, they are all related to a

single HD. In the SSR, however, different asymptotic results
can be obtained from these statistics. For example, one finds
S(C) ∼ t−1/2 and K (C) ∼ t−1 whenever h̄i is a fluctuating vari-
able, so that method (C) does not provide information on the
universality of the SSR HDs for these KPZ systems. Using the
ansatz introduced in Eq. (12) for the 1-pt height in the SSR,
however, it is possible to access the universal cumulants and
their ratios for the underlying SSR HD. This “1-pt” approach
via the ansatz is equivalent to method (B) for the moments,
once they both give the fluctuations about h̄i. A different, but
universal, set of asymptotic values for S and K are obtained
from approach (A). All the ratios obtained here for the SSR
are summarized in Table II for the 1D and 2D KPZ class
(mostly estimated for the RSOS model), which might be very
useful for later reference. In fact, while all previous works
have focused on a single method/quantity to investigate the
universality of the SSR HDs, this variety of values makes it
clear that, if one wants to use these HDs to demonstrate that a
given system belongs to the KPZ class, the most reliable way
to do this is by calculating all these ratios. When doing this, it
is important to have in mind that fluctuations in the SSR may
depend on the boundary conditions and all results presented
here are for the periodic case.
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