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Effects of orientational order on modulated cylindrical interfaces
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Cylindrical interfaces occur in sheared or deformed emulsions and as biological or technological lipid
monolayer or bilayer tubules. Like the corresponding spherical droplets and vesicles, these cylinderlike surfaces
may host orientational order with n-fold rotational symmetry, for example in the positions of lipid molecules
or of spherical nanoparticles. We examine how that order interacts with and induces shape modulations of
cylindrical interfaces. While on spherical droplets 2n topological defects necessarily exist and can induce
icosahedral droplet shapes, the cylindrical topology is compatible with a defect-free patterning. Nevertheless,
once a modulation is introduced by a mechanism such as spontaneous curvature, nontrivial patterns of order,
including ones with excess defects, emerge and have nonlinear effects on the shape of the tube. By examining
the equilibrium energetics of the system analytically and with a lattice-based Markov chain Monte Carlo
simulation, we predict low-temperature morphologies of modulated cylindrical interfaces hosting orientational
order. A shape modulation induces a banded pattern of alternatingly isotropic and ordered interfacial material.
Furthermore, cylindrical systems can be divided into type I, without defects, and type II, which go through a
spectrum of defect states with up to 4n excess defects. The character of the curvature-induced shape transition
from unmodulated to modulated cylinders is continuous or discontinuous accordingly.
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I. INTRODUCTION

The ubiquitous emulsion is a metastable material where
droplets of one fluid are suspended in another. All emulsions
in practical use require surfactants in the form of amphiphilic
molecules or, in the case of solid-stabilized or Pickering emul-
sions, in the form of nano- or miocroparticles. In both cases,
the surfactants form an interfacial layer, which extends the
emulsion lifetime: molecular surfactants greatly reduce sur-
face tension, while in solid-stabilized emulsions, superlative
stability is achieved by the particles’ strong adsorption to in-
terfaces [1]. However, the interfacial layer is itself a complex
material of interacting molecules or particles, loosely confined
to a two-dimensional curved interface. Beyond the desired
stabilizing effect, the interfacial layer can impart spatially
varying mechanical properties onto the interface and influence
the morphology of emulsion droplets.

In common experience, a droplet minimizing its surface
area adopts a perfectly spherical shape. While emulsion
droplets usually conform to this expectation, at low tem-
peratures, the surface tension can vanish and effects from
a hexatically ordered interfacial layer dominate, inducing
polyhedral droplets [2,3]. Factors such as a negative surface
tension and gravity [4] induce further exotic droplet mor-
phologies such as flattened polygons, rods, and protrusions.
Solid-stabilized emulsion, whose stabilization mechanism dif-
fers, can form similarly off-spherical faceted shapes at room
temperature [5]. Despite differences in energy scales, length
scales, and driving mechanisms, the icosahedral faceted mor-

phology in several experimental systems is induced by the
interaction of hexatic order with a spherical surface topology.
The positions of particles or molecules on a two-dimensional
surface will, at low temperature, arrange in a way locally
resembling a hexagonal close packing. The phase, with quasi-
long-range correlation in the orientation of the pattern, is
known as hexatic. Just as a sphere cannot be covered by
a vector field without two point defects, where the vector
field diverges, it cannot be smoothly covered by hexatic ori-
entational order. The necessary total number of defects is
commonly realized in the form of 12 defect sites, where a par-
ticle has only five neighbors, in an icosahedral arrangement on
the sphere. The presence of 12 topologically induced defects
can be seen directly when low-temperature droplets adopt a
faceted icosahedral morphology [3].

In contrast, order on a cylindrical surface has no topo-
logically mandatory defects. While uniform hexatic order
on a cylindrical surface has a complex effect on insta-
bility and dynamics, as studied by Lenz and Nelson [6],
no phenomenon comparable to faceting is predicted in the
linear analysis. Examples of cylinderlike systems with an
interfacial layer or membrane are biological lipid nanotubes
and their nanotechnological counterpart [7]. Long tails are
also seen to grow from the above cooled emulsion droplets
[3]. An experimental system of a larger lipid bilayer tube
with a dynamic instability was introduced by Bar-Ziv and
Moses [8]. Cylinderlike geometries also occur transiently in
most industrial emulsions during the formation process [9].
As a result of arrested coalescence, modulated cylindrical
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FIG. 1. The model surface, i.e., a sinusoid periodic surface of
revolution. Positive and negative principal curvatures occur. The
sinusoidal modulation has amplitude ar0 and wavelength λ = 2π/k.
The mean radius r(a) is chosen to conserve volume relative to a
cylinder of radius r0.

structures can form and persist in emulsions. Through spe-
cialized mixing techniques, solid-stabilized emulsions with
long-lived elongated morphologies can be manufactured [10].

Observing that in a variety of cylindrical systems, a mod-
ulated or pearled morphology is induced by factors such as
spontaneous curvature or external forces, we examine whether
excess defects will appear conditionally on modulated cylin-
ders. As on toroidal droplets [11,12], the appearance of
“excess” defects in charge-neutral pairs on cylindrical sys-
tems is possible, but not topologically inevitable. A modulated
cylindrical shape is seen in a variety of cylinderlike systems,
possibly including in the coiled tails of faceted emulsion
droplets themselves. Spontaneous curvature has been pro-
posed as a mechanism behind the instability of lipid bilayer
tubules as well as cylindrical surfactant micelles [13,14].
Isotropic spontaneous curvature can exist due to an asym-
metry of layers in a lipid bilayer or due to the geometry of
lipid molecules or additives in a lipid monolayer. Here we use
an off-neutral spontaneous curvature as a representative initial
driver of a modulated morphology.

First, we establish the energetics of cylinderlike systems
dominated by spontaneous curvature only. To see how n-
atic order (the generalization of hexatic order to order with
n-fold rotational symmetry) modifies the behavior, we then
use a field-theoretic approach to in-plane orientational order
to obtain configurations and energetics of n-atic order on
modulated cylinders. This approach allows us to reveal a poly-
morphic spectrum of morphologies with different numbers of
defects.

II. GEOMETRY AND ORIENTATIONAL ORDER

Our model surface is a cylinder with a sinusoidal modula-
tion in radius (Fig. 1). In three-dimensional space spanned by
a cylindrical polar coordinate basis (eρ , eθ , ez), the surface of
revolution is described by the parametric equation

x(θ, z) = r(a)[1 + a sin(kz)]eρ + zez. (1)

The dimensionless parameter a ∈ (−1, 1), i.e., the shape
amplitude, gives the amplitude of the sinusoidal modula-

tion. The surfaces are subject to a global volume-conserving
constraint, V (a) = V0, due to the incompressible inner fluid.
Consequently, the mean radius r(a) in Eq. (1) must depend on
the shape amplitude as

r(a) = r0√
1 + a2/2

. (2)

At a = 0, the surface is a flat cylinder of radius r0. We
define the length unit by setting r0 = 1. The sinusoidal modu-
lation is additionally characterized by its wave number k and
wavelength λ = 2π/k.

We assume the system is closed and periodic, neglecting
the topological effects of endcaps or attachment to larger
spheroids that may be present in a real emulsion tubule. It
thus has topological genus 1, in common with the torus. While
a topological sphere has 2n topologically mandated defects,
the periodic model system has none. In comparable elongated
closed vesicles, the 2n defects are commonly localized at the
endcaps [15]. Our periodic system, omitting both endcaps
and their defects, facilitates the study of excess defect pairs
in isolation. Alternatively, our periodic model can represent
a bridge between larger fluid reservoirs in a material with a
more complex topology, whose Gaussian curvature is simi-
larly omitted along with the associated defects.

The external Hamiltonian HE describes the energy of the
membrane or interface, which is the part of the system energy
not due to internal degrees of freedom of the interfacial layer.
The Helfrich [16] Hamiltonian is a widely used estimate of
the energetics of cell membranes (lipid bilayers) with surface
tension and bending rigidity,

HE = γ0

∫
S

dS + κ

2

∫
S
(2H − H0)2dS + κ̄

2

∫
S

KdS, (3)

with γ0 a general microscopic surface tension, H mean
curvature, H0 the material’s spontaneous total curvature, K
Gaussian curvature, and κ and κ̄ two bending rigidities.

All integrals are over one period of the surface,
∫

S dS =∫ λ

0

∫ 2π

0 dθdz
√

g. The square root of the metric determinant,√
g = √

gzzgθθ , can be seen as the measure of the integral,
describing the relative size of an infinitesimal area element.
The metric tensor, in the basis of the cylindrical coordinate
system, can be calculated as gi j = ∂ix · ∂ jx,

gθθ = r(a)2[1 + a sin(kz)]2,

gzz = 1 + a2k2 cos2(kz),

gθz = gzθ = 0. (4)

We will additionally use the shape tensor Ki
j . When diago-

nal, it gives the two principal curvatures at each point. It can
be derived as Ki j = n̂ · ∂i∂ jx, Ki

j = Kk jgki, where n is the unit
normal to the surface and the index-raising gi j is the inverse
of the metric tensor. Here the principal curvatures are

Kθ
θ = −1√

g
,

Kz
z = −r(a)ak2 sin(kz)

(gzz )3/2
. (5)
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Since Ki
j is diagonal in our basis, mean curvature H and

Gaussian curvature K are given by its trace and determinant
as 2H = Kθ

θ + Kz
z and K = Kθ

θ Kz
z , respectively.

For further discussion of geometric quantities and the Hel-
frich Hamiltonian, see review [17].

Here we examine a surface layer with n-atic orientational
order. The n-atic order parameter represents correlations in,
for example, the 1-atic vector direction of the tilt of lipid
molecules, 2-atic orientation of a nematic liquid crystal layer,
or hexatic order in the orientation of hexagonal arrangements
of the positions of particles. Order is described by order
parameter field 	(x), which holds information on n-atic ori-
entational order of molecules or particles which make up the
interfacial layer.

From the local structure of the interfacial layer, the
complex-valued order parameter field is defined as

	(x) = 〈einφ(x)〉. (6)

The angle φ(x) indicates the orientation of a local molecule
or particle. This may be the tilt of a molecule (n = 1), the
orientation of a rodlike molecule or particle (nematic, n = 2),
or the direction of an imagined bond between the positions of
a particle and its neighbor in a hexatic arrangement (n = 6).
The factor n is the order of the discrete rotational symmetry of
the material. The brackets 〈〉 denote a local spatial averaging.
The magnitude as well as the phase of 	(x) may vary, with
|	| = 0 corresponding to the isotropic state.

The angle φ in Eq. (6) is defined with respect to one arbi-
trarily chosen axis of an intrinsic coordinate system spanned
by the unit tangent vectors t to the surface. They are, in the
basis ei,

ti = ∂ix
|∂ix| . (7)

The order parameter field is subject to a Ginzburg-Landau
potential, the simplest analytic expression reproducing the
desired phase behavior and coupling to surface curvature,

HI =
∫

S
dS

(
α|	|2 + c|Di	|2 + u

2
|	|4

)
. (8)

Coefficient α is a temperature-dependent material parameter
which is negative below the critical temperature; and c and
u are positive parameters. The Landau-Ginzburg model for
the n-atic order of membranes on curved interfaces has been
introduced for spheres by Park et al. [18] and studied on
spheres and tori by Evans [11,19]. For a summary of further
developments in the study of Landau-Ginzburg n-atic order
and of other representations of order on a variety of surface
shapes, see the review by Bowick and Giomi [12].

The field magnitude |	| is sometimes taken to be constant
except for point defects, so that only the gradient energy
varies, for example by Lenz and Nelson [6], treating the
onset of instabilities of spheres and cylinders with hexatic
order, or in a treatment by Kumaralageshan et al. [20], which
showcases the elegant differential geometric solutions enabled
by the assumption. Here we retain varying magnitude. The
more general theory allows us to represent a high-temperature
regime where α is close to the critical value [21], at the
expense of analytical tractability.

On flat surfaces and in the absence of thermal fluctua-
tions, well-known solutions minimizing the Landau theory,
i.e., Eq. (8) without the gradient term, are a spatially constant
field 	(x) = 	0 with magnitude

|	0| =
{√

−α
u , α � 0

0, α > 0,
(9)

and arbitrary phase. In this case, the material has an energy
density,

f0 =
{
−α2

2u , α � 0
0, α > 0;

(10)

the negative free energy density of the ordered interface (rel-
ative to surfactants in the bulk) at low temperatures can act as
an effective negative surface tension [3]. The material has a
persistence length [22] of

ξ =
{√

c
2|α| , α � 0√ c
α
, α > 0.

(11)

On curved surfaces, the field is coupled to surface geome-
try via the covariant derivative operator,

Di = ∂i − inAi, (12)

where Ai is the spin connection, a quantity related to the
surface shape at each point. The spin connection corrects for
deviations in parallel transport on curved surfaces, allowing
comparison of the vector field at two distant points. The for-
mulation of the covariant derivative operator, first introduced
in this form for the study of n-atic material on curved surfaces
by Park et al. [18], multiplies the spin connection by a factor
of in to account for the mapping of 1/n of a full turn in
orientation to a full rotation of the complex phase. One way
to derive the spin connection is Ai = tθ · ∂itz. Starting from
Eq. (1) and retrieving tangent vectors via Eq. (7), the spin
connection for the given surface is

Az = 0,

Aθ = r(a)ak cos(kz)√
gzz

. (13)

III. SPONTANEOUS CURVATURE

For cylindrical systems dominated by surface tension,
HE = γ

∫
S dS only, the well-known Plateau-Rayleigh limit of

stability is (in units of 1/r0) the critical wave number kc = 1.
The limit of stability can be derived by examining the lin-
earized energy difference associated with a small perturbation.
Sinusoidal perturbations with smaller wave number (longer
wavelength) than the limiting value decrease the energy of the
system and therefore grow. For our system, the calculation is
repeated using Eq. (3) only [in the absence of orientational
order described by Eq. (8)].

Our surface is a periodic tube; we will take this model
literally and assume it is a closed surface of topological genus
g = 1. On a closed surface of constant topological genus, the
total surface integral of the Gaussian curvature is a constant
2πχ , determined completely by the surface’s Euler charac-
teristic χ = 2 − 2g (Gauss-Bonnet theorem). Thus, the third
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term in Eq. (3), relating to total Gaussian curvature, is a
constant and will be dropped.

Expanding the second term in Eq. (3), a cross term
−2κKθ

θ Kz
z is also proportional to the Gaussian curvature, and

thus its integral is also a constant. The external Hamiltonian
is reduced to

HE = Hsurf
E + Hcurv

E ,

Hsurf
E = γ0

∫
S

dS,

Hcurv
E = κ

2

∫
S

dS
[(

Kθ
θ

)2 + (
Kz

z

)2 − 2Kθ
θ H0 − 2Kz

z H0 + H2
0

]
.

(14)
Inserting expressions from Eqs. (5) and (4), we expand all

analytic functions in Eq. (14) as a series in small a, and in-
tegrate over one period. Examining the next-to-leading-order
term, we retrieve the energy difference on a small sinusoidal
perturbation of amplitude a and wave number k:

�HE

A0a2
= γ

4
(k2 − 1) + 1

8
[2k4 + (4H0 − 1)k2 + 3], (15)

where A0 = 4π2/k is the surface area of a section of length
λ = 2π/k of the unperturbed, cylindrical surface. The last
term in Eq. (14) has been absorbed into the surface tension
γ = γ0 + H2

0 /2 and the equation has been nondimensional-
ized by choosing units where κ = 1.

The roots of Eq. (15) are the critical wave number,

kc(H0) = 1
2 [1 − 2γ − 4H0

±
√

8(2γ − 3) + (−1 + 4H0 + 2γ )2]1/2. (16)

Equations (15) and (16) are known in various forms and
special cases in the literature on the pearling instability of lipid
bilayer membrane tubules [23].

The surface tension is composed of the constant H2
0 /2 from

Eq. (14), a local energy density f0 of the possibly ordered
interfacial material as described by Eq. (8), and any other
effects that may be present, represented by γ0. For simplicity
of calculations, we neglect additional effects, such that γ0 = 0
and γ := f0 + H2

0 /2. In the low-temperature isotropic phase,
f0 = 0 and we have only γ := H2

0 /2: the effective surface
tension is dominated by a constant energy density from spon-
taneous curvature.

The critical wave number as a function of spontaneous cur-
vature in the absence of orientational order is shown as the line
in Fig. 2. The system is absolutely stable against shape per-
turbation of all wavelengths at spontaneous curvatures from
H0 = −1 to

√
3. While there are two real solutions kc(H0)

to Eq. (15) for intrinsic curvatures between H0 = −√
3 to

H0 = −1, all wave numbers below the upper curve should be
counted as unstable because these long-wavelength systems
are unstable against smaller-wavelength shape modulations.

At extreme spontaneous curvature of either sign, the ef-
fective surface tension γ = κH2

0 /2 dominates and the system
approaches the original Plateau-Rayleigh stability criterion,
kc = 1.

Orientation of the surface is defined so that the original
cylinder has the negative total curvature 2H = −1/r0 = −1.
Surprisingly, a spontaneous curvature with the same sign and
slightly larger magnitude has a more prominent destabilizing

FIG. 2. Stability as a function of wave number and spontaneous
curvature in the absence of orientational order. The red line kc(H0) is
the critical wave number below which cylinders are linearly unstable
according to the perturbative calculation, while background shading
indicates shape amplitude a that is the global minimum of HE (a)
at the given k and H0. (a) Light background shading (a > 0) and
wave numbers below the critical value kc(H0) indicate instability ac-
cording to both linear and numerical analysis. (b) Black background
shading (a = 0) and wave numbers larger than kc indicate that the
unperturbed cylinder is stable according to both indicators. (c) Where
the two indicators of stability disagree, the cylinder is metastable.

effect than a positive spontaneous curvature. The maximum
critical wave number kc = √

3 occurs at H0 = −3. The insta-
bility can be explained by considering the axial curvature of
a sinusoidal perturbation. The larger parts of the channel have
both principal curvatures negative, approaching spherelike.
The positive axial principal curvature on the narrow neck
occupies a smaller surface area.

We have derived the limit of stability kc(H0) by consid-
ering the effects of a small-amplitude modulation, |a| � 1.
In addition, going beyond the linear regime, we integrate
the energy functional seminumerically. Elliptic integrals were
used to integrate terms in Eq. (14) over the sinusoidal sur-
face shape where applicable and remaining nontractable terms
were integrated numerically. A shape amplitude amin mini-
mizing the energy was found for a grid of values of (k, H0).
The values are shown as the background shading in Fig. 2.
The region where the linear limit of stability and numeri-
cal results disagree is to be interpreted as a region where
the unmodulated cylinder is a metastable state. In fact, this
metastability is driven by the effective surface tension term
and is known for the classic Plateau-Rayleigh instability. In
the classic, surface-tension-dominated case, for a range of
wave numbers k � 1, shape amplitude |a| = 0 is a metastable
local minimum of surface area A(a), a large nonzero shape
amplitude is the global minimum. As previously described by
Carter and Glaeser [24], the system is unstable once nucleated
with a sufficiently large shape fluctuation a; a new criterion for
instability can be formulated in terms of both k and a.

The seminumerical investigation additionally indicates
that, particularly near H0 = ±1, an intermediate shape ampli-
tude 0 < |a| < 1 may be the energetic minimum. The analysis
is restricted to a single wavelength at a time; the real system
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may be unstable against fluctuations of smaller wavelengths.
In Appendix A, we estimate whether a modulated shape will
indeed be stable by examining the stability of the narrow neck
against fluctuations of smaller wavelengths. For spontaneous
curvatures around H0 = ±1, a slightly modulated channel
shape is, in fact, the stable equilibrium, despite the wave num-
ber k < kc being marked as unstable by the linear analysis.

IV. ORIENTATIONAL ORDER

A. Configurations of orientational order

Below the isotropic–n-atic transition temperature, the coef-
ficient α is negative and the interfacial layer is orientationally
ordered.

In the azimuthal gradient term of Eq. (8),

|Dθ	|2 = |∂θ	|2 + 2nAθ

r2(a)
Im[(∂θ	)	∗] + n2|Aθ |2|	|2,

(17)
we note that the cross term can take negative values, sug-
gesting that gradient energy can be decreased by orientational
order whose direction rotates as it winds around the cylinder
in the azimuthal direction. The factor gθθ = 1/gθθ = 1/r2,
explicitly written in the middle term, is also implicitly present
in tensor inner products |Xi|2 in the other two terms. Moreover,
the equation suggests that a certain handedness of rotation is
selected for. This is a consequence of our choice to represent
n-atic rotational order by Eq. (6) rather than its complex
conjugate field or, equivalently, to use the charge n rather than
−n in the coupling. In reality, states that are solutions to either
set of equations occur; the chiral symmetry is spontaneously
broken when a vortex state develops.

In analogy with superconductors, we distinguish between
type-I and type-II behavior. In type-I superconductors, the
material transitions directly from the superconducting state,
which expels an applied magnetic field (n-atic order which
expels Gaussian curvature), to a nonsuperconducting state
penetrated by a magnetic field (isotropic state on a modu-
lated surface). In type-II superconductors, on the other hand,
there is an intermediate vortex state, where the material is in
the superconducting state almost everywhere, but its phase
(orientation of order) rotates around point defects, at which
the magnetic field (Gaussian curvature) is concentrated. It
is not surprising that behavior analogous to superconductors
emerges, as the description of n-atic order coupled to surface
curvature is adapted from the Landau-Ginzburg equations for
superconductors. The analogy with the Abrikosov vortex state
for spheres has been pointed out by Park et al. [18], study-
ing spheres. On near-spherical objects, the range of available
curvatures is dictated by size and topology, while on our
sinusoidal model geometry, a wider range of local curvatures
is accessible. The modulated cylindrical model system thus
bears a closer, but still constrained, resemblance to super-
conductors, where arbitrary external magnetic fields may be
applied.

On the given closed surface, the n-atic field can undergo
N/n rotations as it winds around the cylinder once, with
integer N . Such a field is represented by the mode 	 =
|	|eiNθ , with the linearly varying orientation minimizing gra-
dient energy. Plugging this trial mode into Eq. (17), the local

azimuthal gradient term is proportional to

|Dθ	|2 = (N + nAθ )2 |	|2
r2(a)

. (18)

The first transition, when the energy can be minimized by
selecting N = 1 rather than N = 0 rotations, occurs at the
axial location kz = mπ , where the spin connection attains its
maximal value, at wave number

k(a) =
√

2 + a2

a
√−2 + 8n2

. (19)

In the case of n = 6, the lower bound wave number for the
onset of type-II behavior is

√
3/286 ≈ 0.102, whereas in the

case of n = 1, it is 1/
√

2 ≈ 0.707. Analogous calculations for
the transition from other values of N to N + 1 states suggest
that for 1-atic fields, modes with more than N = 1 azimuthal
rotations are never energetically advantageous, while for hex-
atic fields, the spectrum extends to N = 6. In other words,
on one period of the surface vector order has either 0 or 4
defects, while for hexatic order, it may have any number 4N ,
up to 4N = 24, of defects. The wave number of the onset
predicted here is a lower bound based on local energy balance
at locations kz = mπ . This theoretical lower bound depends
on n, but not on values of field parameters α < 0, c. The
true wave number of the onset for the whole system will
be increased by the interplay of several additional factors,
including the energetic cost of defect cores, axial gradients,
and the fact that the spin connection is less extreme at other
locations; it does depend on coefficients c and α.

When the system is known to be confined to type-I be-
havior, the equations can be simplified: the field minimizing
Eq. (8) does not vary azimuthally, ∂θ	 = 0, and the gradient
term is reduced to

c|Di	|2 = c|∂z	| + cn2|Aθ |2|	|2. (20)

The second term can be understood as an addition to co-
efficient α, forming the axially varying effective coefficient
α′(z) = α + cn2|Aθ |2. The isotropic–n-atic transition temper-
ature thus varies locally: it is increased on regions which are
curved in the sense of having a nonzero spin connection. The
effect is largest in two regions adjacent to the narrowest lo-
cation kz = 3π/2: |Aθ |2 is proportional to cos2 kz, but also to
1/r2(z). The resulting field configuration is one with constant
phase and axially varying magnitude |	|(z) minimizing the
equation,

HN=0
I =

∫
dS

[
α′(z)|	|2 + c∂z|	|∂z|	| + u

2
|	|4

]
. (21)

We investigate field configurations on curved surface
shapes using lattice-based Markov chain Monte Carlo simu-
lations (Appendix B). Here, the order parameter field 	(x)
is represented as a discretized lattice of complex values.
Each simulation represents a system with material param-
eters (n, α, c) on a fixed surface shape (k, a). For a given
field configuration, total field energy HI [	(x)] is calculated
numerically, as described in Appendix B. Field configura-
tions are evolved according to a low-temperature Monte Carlo
sampling protocol so that the simulation converges on an
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FIG. 3. Examples of type-I behavior. Here the field configuration remains defect free on a series of shape amplitudes from a = 0 to
a = 0.9. The averaged field magnitude profile 〈|	|〉θ,t as a function of z is shown as a graph, with a horizontal axis where |	| = 0 and |	| = 2
at a = 0. (a) Magnitude profiles from a series of simulations with n = 6, α = −4, c = 6.5, k = 0.9. As the shape amplitude increases, the field
transitions from ordered field to locally depressed, then to everywhere isotropic. The characteristic magnitude profile is most depressed at two
locations on either side of the narrow neck. Two simulation snapshots, i.e., a banded configuration and the uniform isotropic state, are rendered
on the surface shape. (b) Series of magnitude profiles from simulations n = 1, α = −4, c = 4.5, k = 0.9. The 1-atic field is more weakly
affected by shape modulations. Inset: Color map representing the complex-valued field. Saturation, ranging from 0 to |	| = 2, indicates field
magnitude or amount of n-atic order, while hue indicates the phase of the complex field or the direction, modulo 1/n, of orientational order.

energy-minimizing configuration. For each surface shape and
set of material parameters, we are then able to visually in-
spect the resulting field configuration as well as extract the
minimized energy value.

If, for a given set of material parameters and a wave num-
ber k, the field configuration remains vortex free for all shape
amplitudes 0 � |a| < 1, we classify the material and shape
as type I. Two examples in the type-I regime are shown in
Fig. 3. In this regime, increasing the amplitude of the shape
modulations causes the field magnitude to decrease locally,
resulting in modulated magnitude profiles |	|(z) minimizing
the one-dimensionalized Eq. (21). For large shape deforma-
tions, the field is isotropic everywhere.

On the other hand, examples of field configurations from
those simulations which displayed type-II behavior are shown

in Fig. 4. As in the type-I cases, order is locally decreased,
especially on either side of the narrow neck. At higher shape
amplitude a, we observe the predicted vortex state: between
the widest region and the narrow neck, orientational order
rotates azimuthally N times around the cylinder; on the other
half, it winds around the cylinder N times in the opposite
direction. There must be 2N defects with the total defect
charge ±2N/n where the counter-rotating bands meet at the
narrowest and widest regions, for a total of 4N defects on
the surface and a vanishing total defect charge. The defects
on the narrow neck are topologically present, but are often
visually obscured by an isotropic band. At more extreme
curvatures, the defects lie on a line at the narrowest or widest
locations, whereas placement is more distributed in cases of
less extreme curvature at lower wave number.

FIG. 4. Examples of type-II behavior in hexatic fields. The final field configuration snapshot is shown on the (z, θ ) plane using the complex
color map (Fig. 3, inset) to represent complex values. (a) Series in a with n = 6, α = −4, c = 1.5, k = 0.9. As shape amplitude increases, the
field here transitions from adapting to curvature via defect-free magnitude modulations to a state with N = ±2 discrete azimuthal rotations
and, finally, to one with N = ±3 rotations. There are �N = 2|N | visible defects on the widest part of the cylinder, while their counterparts on
the narrow neck are often merged to an isotropic band. (b) An example of a more complex banding pattern on a longer cylinder simulation,
n = 6, α = −4, c = 2.5, k = 0.6, a = 0.5

064802-6



EFFECTS OF ORIENTATIONAL ORDER ON MODULATED … PHYSICAL REVIEW E 105, 064802 (2022)

FIG. 5. Mean gradient energy 〈E〉 obtained from simulations on an array of surface shapes (k, a). (a) In the n = 1 case, the field energy
increases monotonically in a for all k examined here. (b) For n = 6, there are multiple steps in the energy landscape, as the field transitions
from the defect-free state to a spectrum of states N , with 4N defects. (a) n = 1, α = −1, (b) n = 6, α = −4.

We have not studied the system on the level of defects;
rather, defects appear as an emergent phenomenon. The anal-
ysis and simulation have not been directly informed by laws
describing the interaction of defects and Gaussian curvature. It
is therefore encouraging that the lattice simulation reproduces
the well-known association between defect charge and local
Gaussian curvature. Seeing Gaussian curvature as an effective
charge, we can apply the effective charge cancellation [25]
principle, in which the sum of defect charge and Gaussian
curvature charge in a small region s approximates a locally
neutral total charge,

qM + 1

2π

∫
s
dSK ≈ 0, (22)

where M is the number of defects in a region s and q = ±1/n
is their charge.

Equation (22) can be derived in the special case of our
cylinderlike system as follows: As we reasoned above, at each
axial location, in an idealized system the local number of
azimuthal rotations N takes the integer value most closely
minimizing local gradient energy [Eq. (18)], that is,

N + nAθ ≈ 0. (23)

On the cylinderlike shape, the total number and sign of defects
in a region between two axial locations z1 and z2 is the sum of
differences in local rotation numbers, ±M = ∫ z2

z1
dz

√
gzz∂zN .

We similarly take an axial derivative and integrate axially over
the second term of Eq. (23) to obtain

±M

n
+

∫ z2

z1

dz
√

gzz∂zAθ ≈ 0. (24)

By relating spin connection to Gaussian curvature via the
Mermin-Ho theorem [17] as ∂zAθ = √

gθθ K and by labeling
charge q = ±1/n, we recognize Eq. (22). The factor of 2π is
equivalent to additionally carrying out an azimuthal integra-
tion over the latter term.

The number of defects on the wider half of the cylinder
predicted via the effective topological charge cancellation
mechanism roughly agrees with that from our previous rea-
soning about rotation numbers N at certain locations of
maximal spin connection [Eq. (19)] and with the number of
defects appearing in simulation in the examples shown in
Fig. 4. Like Eq. (19), the number of defects predicted by topo-
logical charge cancellation is an upper bound; for materials
with large persistence length, fewer defects may be realized.

For an array of simulations on a range of fixed surface
shapes (a, k), we collect average field energy 〈E〉 of the equi-
librated simulations. A vectorial and a hexatic example are
shown in Fig. 5. In general, gradient energy density increases
on surface shapes which are more curved in the sense of
the spin connection, having larger shape amplitude and wave
number. For hexatic order, a stepped dependence of gradient
energy on shape is apparent. The first discontinuity in energy
corresponds to the onset of type-II behavior in the form of the
first defect state with N = 1, with each additional discontinu-
ity corresponding to a transition to the next vortex state. The
wave number of onset is about k = 0.2 in the hexatic example
with c = 1. In an analogous set of simulations with n = 1,
the onset of type-II behavior is not seen for any k sampled
here, up to k = 2.0. While a transition to type-II behavior is
theoretically possible at some k � 0.707, for vector order it
apparently occurs at larger wave number, smaller field stiff-
ness c, or larger alignment |α| than those studied here.

B. Effect of orientational order on shape

We now consider the effect of the interfacial order on
the shape modulations. First, in line with the previous
linear stability analysis of a cylindrical interface with spon-
taneous curvature, we examine the linear effect of n-atic
order. Assuming the field is initially ordered (	(x) = 	0) on
the unperturbed cylinder, at small shape perturbations with
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FIG. 6. Solid colored lines show mean-field energy HI (a) (per unit length of cylinder) retrieved from simulations on fixed surfaces with
k = 0.9 and a range of a. As a reference, we show the energy that a uniformly ordered field would have on the curved surface shape (colored
dotted lines), obtained by seminumerically integrating Eq. (27), and the energy of a uniformly isotropic field (black dashed line, zero). (a) For
n = 1, the field is ordered at low a and at higher a adjusts by locally adapting magnitude, lowering energy slightly below that of the perfectly
uniform field on the same surface. (b) For n = 6, the field with high bending rigidity c transitions to the uniformly isotropic state on curved
surfaces. For lower c, the hexatic field, in addition to locally adapting its magnitude, is able to decrease its energy by adopting rotational states
with defects, resulting in a stepped energy response. (a) n = 1, (b) n = 6.

amplitude a � 1, it can be shown that the induced changes
in field configuration are negligible in terms of their energetic
contribution. To leading order, the difference in internal en-
ergy is the gradient energy difference plus a term proportional
to surface area change,

�H
A0a2

= χk2 − α2

2u
�A, (25)

collecting field characteristics as χ = |α|cn2/(2u). The sec-
ond term, an energy difference proportional to change in
surface area �A, will be absorbed into the surface tension.
Lenz and Nelson [6], treating a hexatic field with constant
magnitude equivalent to |α|/u = 1, obtain a linear energy
difference equivalent to the first term. Adding the effect of
n-atic order to the energy difference given by Eq. (15) and
again finding roots, the limit of stability is

kc(H0, χ ) = 1
2 [1 − 2γ − 4H0 − 8χ

±
√

8(2γ − 3) + (−1 + 4H0 + 2γ + 8χ )2]1/2,

(26)

with energy densities again in units where κ = 1, r0 = 1,
and with γ here representing both the surface energy density
f0 = −α2/(2u) and an effective surface tension from spon-
taneous curvature: γ = −α2/(2u) + H2

0 /2. According to the
linear analysis, a preferentially ordered field (α < 0) has a
stabilizing effect on the system via the first term of Eq. (25).
While the second term, a negative effective surface tension
from the ordered material, can theoretically induce an inverse
Plateau-Rayleigh instability, where short-wavelength fluctu-
ations grow to increase surface area, in the regime |α| ≈ c
studied here, the stabilizing effect is dominant. Examples of
the effect of order on the critical wave number are shown as
red lines in Fig. 7.

As reference energies, we calculate the energy that a uni-
formly ordered field 	(x) = 	0 and a uniformly isotropic

field 	(x) = 0 would have on a more heavily modulated
surface. The energy that a spatially uniform ordered field
|	|(x) = |	0| = √−α/u would have on the modulated sur-
face, including its contribution via γ , is

HI [	(z) = 	0] = 2χ

∫
S

dS|Aθ |2 − α2

2u

∫
S

dS. (27)

The energy that a uniformly isotropic field would have on the
surface shape is

HI [	(z) = 0] = 0. (28)

For a range of shape amplitudes a, Eq. (28) was evaluated
using elliptic integrals for the second term and numerical
integration for the first term.

The above analytic upper bounds describe spatially uni-
form field configurations. In our simulations, as in reality, the
field representing orientational order is free to vary spatially.
The field was allowed to converge on energy-minimizing
configurations in a series of simulations on fixed surfaces
with increasing shape amplitudes. In Fig. 6, we compare the
resulting energy function HI (a) from the series of simulations
to the analytic reference energies. Unsurprisingly, the energy
of the simulated field is lower than that of either of the two
uniform reference states. In Fig. 6(b), showing the n = 6
case, stepped energy graphs are again the signature of type-II
behavior. Increasing shape amplitude leads to an increase in
gradient energy, alleviated by the introduction of additional
vortices. The nonmonotonic dependence of field energy on
shape amplitude implies that certain surface shapes (k, a) are
more compatible with the ordered interfacial layer than others,
so that morphologies will be biased towards a discrete set of
shapes.

Having gathered an array of field energy values HI (k, a)
from simulation, we combine these with seminumerically
integrated values HE (k, a, H0) from Sec. III. To predict the
shape of the cylinder, for each point (k, H0) in parame-
ter space, we search numerically for the shape amplitude a
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FIG. 7. The effect of hexatic order with c = 1 and α = −1 (left) or α = −4 (right) on critical wave number as a function of spontaneous
curvature. The linear limit of stability is suppressed compared to the case with no order (compare Fig. 2). There is a qualitative transition
from type-I field behavior at low wave numbers kc � 0.215, inducing a continuous shape transition adhering to the linear prediction, to
type-II behavior at higher wave numbers. In the latter case, the transition is discontinuous and the linear limit of stability gives an incomplete
description of the system. We mark the apparent critical endpoints (orange x) separating continuous from discontinuous transitions. As in
Fig. 2, there are metastability regions (c) where linear analysis indicates perturbative stability of the unmodulated shape, but numerics reveal
that the global energy minimum of the system is a modulated shape. In metastable type-II systems, the metastability effect is enhanced by
coinciding shape and vortex metastabilities and the ultimately stable state is a vortex configuration on a modulated shape.

minimizing total system energy H(a) = HI (a) + HE (a). The
energy-minimizing shape amplitude, as a function of wave
number and spontaneous curvature, is shown in Fig. 7 as the
shaded background. We compare the linear limit of stability
predicted by Eq. (26). Below a certain wave number k ≈
0.215, where behavior is type I, the linear limit of stability is
a good description and the shape transition is continuous. On
the other hand, at larger k, in the regime of type-II behavior,
the transition from flat to modulated cylinders induced by
increasing |H0| is discontinuous. In this regime, nonlinear
effects, namely, the emergence of the vortex state, become
important. The phenomenon coincides with and adds to the
metastability due to nonlinear surface area changes which
were already present in the classical Plateau-Rayleigh case;
the metastable region is strongly extended and modified by
effects of orientational order.

V. DISCUSSION

Cylinderlike vesicles and emulsion structures may be
driven to a pearled morphology by factors such as a spon-
taneous curvature. For a model system that is topologically
simple but highly curved, we showcase significant nonlinear
effects of local curvature on n-atic order and ultimately the
effects of that order on the equilibrium morphology.

For shapes close to cylindrical, where we can expand lin-
early around an unmodulated cylindrical shape, n-atic order
is trivially uniform and defect free. In the regime of relative
high field stiffness studied here, it has a dominant stabilizing
effect. However, taking the possibility of externally induced
modulated morphologies into account, strongly curvature-
coupled order may interact with modulated surface shapes in
complex ways. First, on a surface shape with local Gaussian
curvatures the isotropic–n-atic transition temperature of the
ordered material is locally depressed, inducing a banded state
of alternating ordered and isotropic regions. Furthermore, at
a threshold curvature, interfacial materials can adopt a vortex
state, with orientation of order undergoing maximally ±N full
rotations as the field winds around the cylinder azimuthally
and with 4N defects. By considering the maximal number
of rotations that could be induced locally at the location of
maximal spin connection, a lower bound, where the onset of
the defect state becomes possible, is identified. Simulations
reveal the global emergence of a defect state; the complex
interplay of a number of factors increases the wave number
of onset above the lower bound estimate.

The delineation into systems which attain a defect state,
analogous to a vortex state in a type-II superconductor, from
those that transition directly from ordered to isotropic fields,
is significant for predicting the morphology of cylinders with
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both spontaneous curvature and order. In the latter case, the
transition is continuous and the linearized theory is a good de-
scription. The system has a critical endpoint at a certain wave
number and spontaneous curvature, above which nonlinear
effects in the interplay between order and curvature strongly
influence morphology. Within the regime of excess defects,
there are further transitions between discrete states with 4N
defects, which will bias the spectrum of morphologies towards
a discrete spectrum of wavelength-amplitude combinations.

In both cases, on certain regions which are more curved in
the sense of the spin connection, the isotropic–n-atic transition
temperature is effectively increased by curvature; order can be
thought of as locally “melted” by curvature. Both effects—the
quasi-high-temperature phenomenon of decreased order and
the low-temperature state of isolated defects—coexist in the
same system. Working with the general formulation of Eq. (8),
rather than a representation as defects in a constant-magnitude
field, which is well suited for the low-temperature regime
[21], is crucial to revealing this polymorphism. The resulting
banded pattern of order and disorder is reminiscent of the
banded partitioning of different species of lipid molecule,
compatible with different spontaneous curvatures, on mod-
ulated cylinders. Cases have been observed experimentally
by Yanagisawa et al. [26] and extensively studied on fixed
snowman surfaces by Rinaldin et al. [27]. Among other dif-
ferences, the field describing lipid composition has Z2 rather
than On symmetry and will not form defects. Interestingly, it
nevertheless has some features in common with the n-atic field
in its type-I regime.

The system has been assumed to obey a Hamiltonian with
certain rotational symmetries. (i) Mechanical bending rigidi-
ties in Eq. (3) are isotropic. In several interesting biological
systems, such as cell membranes with curvature-inducing pro-
teins, curvature elasticity can be strongly anisotropic [28].
(ii) In our model, the order parameter field is not coupled
to any extrinsic or mean curvature terms in Eq. (8). Such a
coupling exists more or less prominently in various systems,
from interactions through the bulk phase between hexatically
arranged spheres [29] to the prominently mean-curvature-
inducing properties of ordered domains of inclusions [30].
The focus on extrinsic curvature coupling has allowed us to
study a field theory with unbroken continuous On symmetry
and the associated vortex state. The research could be ex-
tended to systems where the symmetry is broken by additional
curvature-coupling terms. We expect intermediate behavior,
with a weakened or absent vortex state.

The axisymmetric model is incomplete with respect to
the examined shape deformations. It is clear that in a simi-
lar experimental system as for cooled emulsion droplets, as
in spherical droplets, faceting effects will become important
where there are defects. A more precise study of the relevant
shape variations, beyond the scope of the model surfaces
examined here, warrants further study.

Representing the order of particles and flexible interfaces
simultaneously in simulation is an ongoing challenge. With
the continuum field representation of orientational order,
general principles can be explored. A low-temperature lattice-
based Monte Carlo simulation, adapted to include multiple
effects of underlying curved surfaces, was used to obtain field
configurations in the low-temperature limit. Due to peculiar-

ities of statistical field theories represented on a nonuniform
lattice, further modifications are needed before our simu-
lation can accurately represent fluctuations and extend our
exploration to the regime of high-temperature sampling. The
model and simulation protocol used here allow an efficient
exploration of parameter space: taking advantage of the lin-
early additive formulation of effects of internal and external
energies, the model allows combination in postprocessing.
Simulation results verify and extend the analytical predictions
presented here and, crucially, allow us to delineate regions of
parameter space where linearized and quasi-one-dimensional
descriptions of the system are sufficient from those where
nonlinear effects dominate.
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APPENDIX A: SELF-SIMILAR STABILITY ANALYSIS

We study cylinders with a single sinusoidal modulation of
wave number k, which may be seen as the longest wavelength
a system can support. Instability against fluctuations of this
wavelength or any smaller wavelengths indicate instability of
the system.

Furthermore, where stabilizing curvature-related effects
are present, initial growth of a perturbation does not necessar-
ily indicate continuing exponential growth and breakup into
spheres. The numerical study indicates a shape amplitude a
minimizing the system energy. When the value is sufficiently
close to |a| = 1 (corresponding to infinitesimally thin necks),
we may assume the model of a sinusoidal cylinder breaks
down and the system will break up into spheres. However, in
some cases, small nonzero shape amplitudes, corresponding
to a slightly modulated shape, are indications of the energetic
minimum.

We estimate whether this is truly a stable configuration or
whether smaller perturbations on the resulting narrow neck
will develop further and cause pinch-off, by recursively con-
sidering the narrow neck as a self-similar subsystem.

We consider a subsystem of length 2d , where d may range
from 0 to π/2, centered on the narrowest location (Fig. 8).
While the true radius of the narrow neck varies axially, we
approximate the subsystem as a cylinder of uniform radius by
taking the mean radius

〈r〉 =
∫ d

0 r(a)[1 − a cos(kz)]dz

d
= r(a)[1 − a/d sin(kz)] (A1)

as the subsystem radius rsub. In this approximation, the initial
curvature of the subsystem is also neglected. The preexisting
axial curvature may slightly stabilize the subsystem relative
to our estimate. Finally, the narrow neck is assumed to obey
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FIG. 8. To estimate the stability of a modulated morphology
against shorter-wavelength fluctuations, we approximate a subsystem
centered on the narrow neck as an initially straight cylinder. The
subsystem has length 2d and radius rsub = 〈r〉.

the same energetics as the larger system, including a volume
constraint.

We find the critical wave number ksub
c (d ) of a subsystem of

length 2d by applying Eq. (16) to the self-similar subsystem.
By absorbing factors of rsub into κ , the subsystem has a larger
effective bending rigidity, κ ′ = κ/(rsub)2. Because surface
tension is given in units of κ ′, it has a smaller relative surface
tension, γ sub = γ (rsub)2. Effective spontaneous curvature is,
in units of the subsystem radius, to H ′

0 = H0rsub.
Starting from a system with k, H0, and the shape amplitude

a indicated by the numerical analysis in Sec. III, we check
numerically whether, for any d ∈ (0, π/2), there exists a sub-
system whose length is larger than its critical wave number,
2π/ksub

c (d ).
Where such a linearly unstable subsystem exists, this

does not necessarily indicate that the modulated cylinder will
break up. The linearly unstable narrow neck may develop a
large-amplitude fluctuation which leads to pinch-off, or the
subsystem may itself have an energetic minimum at a mildly
modulated shape, which does not itself develop any further
instabilities. We leave the further development unanswered
and merely confirm that there exist mildly modulated channel
shapes for which no linearly unstable subsystem exists. For at
least some cases, indicated by the hatched area in Fig. 9, the
mildly modulated channel shape indicated by the numerical
analysis is indeed a stable equilibrium.

APPENDIX B: SIMULATION

We turn to stochastic simulation to find field configura-
tions minimizing Eq. (8) on modulated surface shapes, and
ultimately to estimate the configurations [a, 	(x)] jointly
minimizing total energy of the system modulated with a fixed
wave number k. Our simulation is a lattice-based Markov
chain Monte Carlo simulation. While the simulation is capa-
ble of simultaneously sampling field configurations 	(x) and
surface shape amplitude a, we find that the parameter space
is more efficiently covered by collecting a database of field
energy on an array of fixed surface shapes (k, a). This data
from simulation is then combined with the external energy
HE , which can be quickly calculated, post hoc.

The n-atic order parameter field is represented as a two-
dimensional lattice of N = (50 × 
50/k�) complex values
	(zi, θ j ). On the unperturbed cylinder, each lattice cell repre-
sents an area with dimensions l0

θ = 2π/50, �0
z = 2π/
50/k�,

while on modulated cylinders, cell areas are �θ = �0
θ

√
gθθ ,

�z = �0
z
√

gzz. Each lattice cell is associated with values gzz and

FIG. 9. The hatched area indicates systems where, according
to our self-similar estimate, the modulated shape is linearly stable
against all smaller-wavelength fluctuations.

gθθ of the metric as well as a value of the spin connection Aθ .
The values are retrieved according to Eqs. (4) and (13) based
on the axial location z of the cell and shape amplitude a of the
surface.

The simulation is intended to discover field configurations
in the low-temperature limit of the theory, where fluctuations
do not play a role. To nevertheless allow adequate thermal
Monte Carlo sampling for convergence on the minimizing
field configuration, after nondimensionalizing, temperature
was set to T = 0.001 throughout the study. As the basic
update of the simulation, a single lattice cell is selected and
its value 	(zi, θ j ) is updated by an increment drawn from a
complex Gaussian distribution. The new value is accepted or

rejected with Boltzmann probability P = e− �E
kBT according to

the usual Metropolis algorithm.
The energy difference on changing the value at a single

lattice cell is calculated as

�Ei, j

�z�θ

= Emag
(
	

p
i, j

) − Emag
(
	 i

i, j

)
+ E zgrad

(
	

p
i, j, 	

i
i−1, j

) − E zgrad
(
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i
i−1, j

)
+ E zgrad

(
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) − E zgrad
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(
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(
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) − E θgrad
(
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i, j, 	
i
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)
,

(B1)

where superscript i marks initial values and p the proposed
new value. Note that the energy difference �Ei, j used in
the Metropolis algorithm is scaled by cell area �z�θ . The
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FIG. 10. Time series in total field energy E and additional observables 〈|	(zi )|〉θ , recorded at every 10th axial location zi, over the
simulation time. Early trends in these values correspond to the emergence and axial migration of defects. (a) Simulation n = 6, α = −4, c =
1, k = 0.6, a = 0.9. A well-equilibrated but nontrivial type-II example with cutoff point τ0 = 55 080. (b) Simulation n = 6, α = −4, c =
1, k = 0.4, a = 0.8. An example with a late cutoff point, τ0 = 187 440.

magnitude-associated part of the energy is

Emag(	i, j ) = (α + cn2|Aθ |2)|	i, j |2 + u

2
|	i, j |4. (B2)

For the gradient terms, as a numerical implementation
of the derivative operator, a simple backwards derivative is
chosen:

∂z	i, j ≈ 	(zi, θ j ) − 	(zi−1, θ j )

�z
,

∂θ	i, j ≈ 	(zi, θ j ) − 	(zi, θ j−1)

�θ

. (B3)

Consequently, a change to the value at lattice site (zi, θ j ) also
affects the gradient energy ascribed to neighboring lattice sites
(zi+1, θ j ) and (zi, θ j+1). For this reason, a change in gradient
terms at both the site itself and at two adjacent sites appears
in Eq. (B1). The gradient energy ascribed to a site (zi, θ j ) is

E zgrad(	i, j, 	i−1, j ) = cn2

∣∣∣∣	i, j − 	i−1, j

�z

∣∣∣∣
2

(B4)

and

E θgrad(	i, j, 	i, j−1) = cn2

∣∣∣∣	i, j − 	i, j−1

�θ

∣∣∣∣
2

+ 2cnIm

[
(Aθ	i, j )

∗
(

	i, j − 	i, j−1

�θ

)]
.

(B5)

To form one simulation step, 100 × N randomly chosen
cells are updated. Simulations were usually run for 50 000
steps. Wave numbers k � 0.8 in Fig. 7 were instead run for
200 000 steps, and for the additional data in the same figure,
covering wave numbers k = 0.15 to 0.3, the simulation was
run for 100 000 steps as the larger lattices are slower to reach
equilibration.

An adaptive sampling protocol was used. Proposed values
are drawn from a complex Gaussian distribution centered
on the old value and having sampling width σ = σl

√
g. The

base sampling width σl is evolved according to the adaptive

algorithm recommended by Garthwaite et al. [31]. The target
acceptance rate was set to 0.5. Rather than maintaining a
separate sampling width for each lattice cell, the same base
sampling width σl is used, scaled in proportion to area, for
each cell.

After each step, the total field energy E is evaluated and
recorded as the sum

E (t ) =
∑

i j

[Emag(	i, j ) + E zgrad(	i, j, 	i−1, j )

+ E θgrad(	i, j, 	i, j−1)] (B6)

over lattice cells i, j. The energy includes an energy contribu-
tion from thermal fluctuations, but in these low-temperature
simulations it is negligible: by the equipartition theorem, it is
approximately 0.4 energy units per unit length of cylinder.

In addition to total field energy E , after each step an az-
imuthally averaged magnitude 〈|	(zi )|〉θ is recorded for every
10th axial location zi. The system has several continuous
symmetries; the global phase of the field and azimuthal place-
ment of defects may vary slowly over simulation time without
indicating nonequilibration. On the other hand, the quantity
〈|	(zi)|〉θ is a suitable observable for detecting equilibration.
The optimal production dataset was detected by the method of
minimizing statistical inefficiency [32], as implemented in the
PYMBAR time-series module [33,34]. Autocorrelation in the
time series of each observable was analyzed independently
and the maximum cutoff time from among these was used
as a global cutoff for the simulation. By inspection of the
time series (Fig. 10), it corresponds well to equilibration. For
n = 6 simulations, cutoff times were, on average, τ̄0 = 11 140
for the set of simulations of length 50 000, τ̄0 = 79 160 for
simulations of length 200 000, and τ̄0 = 16 804 for simula-
tions of length 100 000. For the n = 1 simulations, which all
remained in the relatively trivial defect-free states, simulation
length was always 50 000, and the average cutoff time was
τ̄0 = 10 203. Mean quantities HI = 〈E〉t reported above refer
to averages over the production region of the simulation, from
cutoff τ0 to the end.
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The lattice simulation scheme on curved surfaces as used
here contains uncorrected artifacts related to varying cutoff
length scales and the representation of fluctuations. Unusually,
in this simulation scheme, the surface is covered by a some-
times extremely distorted lattice. On the more curved surface
shapes, we have simulation cells representing highly differing
areas in the same simulations as well as highly anisotropic
cell dimensions. The problem becomes apparent when con-
sidering that 	i j represents a spatially averaged value of the
orientational order of molecules or particles within a given
lattice cell. Realistically, magnitude and variance of this value
should differ depending on the area included in the spatial av-
eraging. The naive implementation does not correctly reflect
the scale dependence of the field theory subject to thermal
fluctuations. For more accurate high-temperature simulations,

coefficients in Eq. (8) can be renormalized to better represent
the behavior of the same field theory at the different length
scales present in the same simulation. The naive scaling of
energies by cell area used here is the correct renormalization
for a Gaussian field theory and the first term in the exact
expression for rescaled coefficients of the full field theory.
Without higher-order corrections to coefficients, our simula-
tion protocol is exact only in the low-temperature limit. On
the other hand, the uncorrected implementation used here has
the advantage of conceptual and computational simplicity.
While a balance must be struck between avoiding higher
sampling temperatures and achieving adequate Monte Carlo
sampling, the simulation protocol performs well approaching
the low-temperature limit and is suitable to give qualitative
results.
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