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Meniscus osculation and adsorption on geometrically structured walls
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We study the adsorption of simple fluids at smoothly structured, completely wet walls and show that a
meniscus osculation transition occurs when the Laplace and geometrical radii of curvature of locally parabolic
regions coincide. Macroscopically, the osculation transition is of fractional, 7

2 , order and separates regimes in
which the adsorption is microscopic, containing only a thin wetting layer, and mesoscopic, in which a meniscus
exists. We develop a scaling theory for the rounding of the transition due to thin wetting layers and derive critical
exponent relations that determine how the interfacial height scales with the geometrical radius of curvature.
Connection with the general geometric construction proposed by Rascón and Parry is made. Our predictions are
supported by a microscopic model density functional theory for drying at a sinusoidally shaped hard wall where
we confirm the order of the transition and also an exact sum rule for the generalized contact theorem due to
Upton. We show that as bulk coexistence is approached the adsorption isotherm separates into three regimes:
A preosculation regime where it is microscopic, containing only a thin wetting layer; a mesoscopic regime, in
which a meniscus sits within the troughs; and finally another microscopic regime where the liquid-gas interface
unbinds from the crests of the substrate.
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I. INTRODUCTION

Capillary condensation [1–7], wetting [8–13], and wedge
filling [14–22] are but a few examples of surface phase
transitions in which the surface tension plays a crucial role
determining the location of the phase boundary and even the
nature of the transition itself. Recent studies of capillary con-
densation in open slits, possessing corners or edges, have also
highlighted another phase transition involving the depinning
of the meniscus, located at the end(s) of the capillary as the
pressure is increased [23,24]. At a macroscopic level, menis-
cus depinning is continuous with the order of the transition
depending on the wetting properties of the confining walls.
For example, it is third order if the walls are completely wet
and second order if they are partially wet. In each case, the
transition is rounded or smoothed by a mesoscopic length
scale, specifically the parallel correlation length, associated
with wetting layers at the capillary walls. The crossover scal-
ing describing the rounding of meniscus depinning shows a
remarkable consistency with the underlying theory of wetting
transitions, including conjectured critical exponent relations,
giving physically intuitive results for mesoscopic corrections

to macroscopic predictions for the adsorption at the phase
boundary.

In this paper we point out that there is another type of
phase transition involving a meniscus in a different confining
geometry, which can be understood macroscopically, which is
also rounded by mesoscopic wetting length scales. We refer
to this as meniscus osculation and is associated with the van-
ishing of the meniscus, that is, the change from macroscopic
to microscopic adsorption, when its curvature coincides with
the geometrical curvature of a confining sculpted wall that is
completely wet. As we will show, macroscopically, meniscus
osculation is continuous but of fractional order, different from
depinning, and that the rounding, while also due to wetting
behavior, is described by a different crossover scaling theory.
This crossover scaling will allow us to make a connection
with very general expectations of how substrate geometry
influences wetting behavior.

Our paper is arranged as follows. In Sec. II we recall briefly
the macroscopic and crossover scaling theory for meniscus
depinning, emphasizing the underlying consistency with the
theory of (complete) wetting. We then turn to meniscus oscu-
lation, beginning first with the macroscopic description before
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discussing the rounding due to complete wetting layers. This
allows us to make a connection with a more general pro-
posal for how geometry influences adsorption on structured
surfaces [25]. In Secs. III and IV we present the results
of a microscopic model density functional theory (DFT)
study of adsorption at a corrugated sinusoidal wall, which
shows not only meniscus osculation but also a modified com-
plete wetting transition. Indeed, as the chemical potential
approaches bulk coexistence, we show that the adsorption
changes from being determined by microscopic length scales
(preosculation) to macroscopic (geometry-dominated) length
scales and back to microscopic length scales when it eventu-
ally unbinds from the crests of the sinusoid.

II. MENISCUS DEPINNING
AND MENISCUS OSCULATION

Before describing the osculation transition, we recall the
macroscopic and mesoscopic crossover scaling theory for
meniscus depinning in an open capillary, following closely the
presentation in Refs. [23,24]. This will act as a guide for de-
veloping and interpreting the scaling theory for the osculation
transition occurring in parabolic and sinusoidally corrugated
geometries.

A. Meniscus depinning

1. Macroscopic

Consider an open capillary, made from two opposing pla-
nar walls separated by a distance L. The bottom wall is of
infinite extent while the top wall is of finite length H , which
for our present purposes we suppose is much larger than L.
Each end of the capillary is a right-angle edge and is in con-
tact with a bulk reservoir of gas at temperature T , far below
the bulk critical temperature Tc, and pressure p (or chemical
potential μ) below bulk saturation psat (see Fig. 1). We define
δp = psat − p. All the walls are considered completely wet
by the liquid phase corresponding to an equilibrium contact
angle θ = 0. We suppose that the pressure is sufficiently close
to bulk saturation that the fluid within the capillary has already
condensed to a liquidlike phase. For very long capillaries,
this capillary condensation will occur near δpCC ≈ 2γ /L, as
dictated by the macroscopic Kelvin equation, where γ is the
surface tension of the liquid-gas interface. The full H depen-
dence of the pressure shift δpCC can be determined but is not
needed for the present purposes [23,24]. The capillary liquid
phase is characterized by two menisci, each of which is an arc
of circles of Laplace radius R = γ /δp located near the ends
of the capillary. Since the equilibrium contact angle θ = 0,
these meet the bottom wall tangentially. However, there are
two possibilities for how they attach to the top wall. For
δp > δpMD, with δpMD = γ /L, the menisci are pinned at the
corners and are characterized by an edge contact angle θe. This
is pressure dependent, given by

θe = cos−1
(L − R

R

)
. (1)

As the pressure is increased, the edge contact angle increases
until at δp = δpMD, equivalent to R = L, it reaches its max-
imum value θe = π/2, at which point it is tangential to the

FIG. 1. Schematic illustration of two possible condensed capil-
lary liquid phases in an open slit. (a) The two circular menisci of the
Laplace radius of curvature are pinned at the upper edges, which they
meet at an edge contact angle θe. The bottom of the menisci meets
the horizontal lower wall at the equilibrium contact angle θ . (b) The
two circular menisci are unpinned, spilling out into the right-angle
corners and meet both the vertical and lower walls at the contact
angle θ .

vertical sides of the upper wall and hence the menisci are
no longer pinned. Clearly, at the point of this depinning the
menisci are each a quarter circle which just fits inside the open
ends of the capillary. For δp < δpMD the menisci are unpinned
and meet the side walls tangentially at a distance R − L above
the corners. For complete wetting, meniscus depinning is a
continuous third-order phase transition. This is most easily
seen by determining the excess adsorption �� beyond the
contribution �ρHL from the volume of liquid within the
capillary, with �ρ the difference in the bulk liquid and gas
densities. For the pinned phase, with R < L, this is given by

� = 2�ρR2

[
sin θe + sin 2θe

4
+ 1

2
(θe − π )

]
, (2)

while in the unpinned phase, for which R > L, it is given
trivially by

� = 2�ρ
(

1 − π

4

)
R2. (3)

It is then easy to check that the second derivative of
the adsorption is discontinuous at the depinning transition
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satisfying

∂2�

∂R2
=

{
�ρ(4 − π ), δp = δp−

MD

�ρ(2 − π ), δp = δp+
MD.

(4)

This is associated with a discontinuity in the third derivative of
the grand potential (per unit length of the capillary), showing
that the transition is indeed third order at the present macro-
scopic level.

2. Mesoscopic

The third-order meniscus depinning transition is rounded
by length scales associated with complete wetting layers
which coat the bottom and side walls. The mechanism for
this rounding is different from the standard finite-size-scaling
theory of the rounding of phase transitions when the available
volume is finite (or the dimensionality is below that of the
lower critical dimension), which is due to fluctuations [26,27].
The rounding of the meniscus depinning transition is not due
to fluctuation effects but rather due to mesoscopic length
scales which smooth the transition from pinned to unpinned
states. Meniscus depinning is not associated with coexisting
phases, symmetry breaking, or a diverging order parameter
and therefore there cannot be any true critical behavior. The
rounding of this transition is present as soon as we go beyond
the macroscopic level, for example, in mean-field DFT or even
simpler interfacial models which accommodate the presence
of wetting layers. The length scales of relevance here are
the wetting layer thickness 
π ∼ δp−βco

s and parallel correla-
tion length ξ‖ ∼ δp−νco

‖ , arising from interfacial fluctuations,
which characterize wetting layers at planar walls, close to bulk
saturation. We note that the critical exponents depend on the
range of the intermolecular forces, but always satisfy the exact
exponent relation [8–13]

1 + βco
s = 2νco

‖ , (5)

which is of relevance to the crossover scaling theory for the
rounding of the meniscus depinning transition. This exponent
relation is the consequence of an exact sum rule which de-
termines that for wetting transitions ∂�/∂μ ∝ ξ 2

‖ [28]. As
described above, macroscopically, the depinning transition
occurs when R = L. Certainly, we can anticipate that the
presence of the wetting layer at the bottom wall decreases
the effective width of the slit by 
π . However, of greater
relevance is the rounding arising from the parallel correlation
ξ‖, associated with the wetting layer at the vertical side walls,
which smooths the point of contact of the upper part of the
meniscus with the corner (see Fig. 2). Since ξ‖ is larger than

π we can therefore expect that the depinning begins to occur
when

R − L ≈ ξ‖. (6)

This simple finite-size-scaling observation is the basis for
the crossover theory. The purely macroscopic result (4) im-
plies that the grand potential contains a singular contribution
�sing = γ (R − L)3/6L2. To allow for the rounding due to
complete wetting layers, we modify this by a multiplicative
scaling function WMD(x) whose argument is the dimensionless
scaling variable x = (R − L)/ξ‖. Thus, the appropriate scaling

FIG. 2. Schematic illustration of the length scales determining
the mesoscopic rounding of the continuous meniscus depinning tran-
sition, due to wetting layers adsorbed along the bottom and side
walls. The macroscopic phase boundary R = L for meniscus de-
pinning is rounded by the wetting layer thickness 
π and parallel
correlation length ξ‖ along the bottom and top walls, respectively.
The gray area depicts an additional contribution to the excess ad-
sorption � ∝ 
π L due to the presence of the wetting layers.

ansatz is

�sing = (R − L)3

L2
WMD

(R − L

Lνco
‖

)
, (7)

where we have ignored all constants and metric factors and
substituted that, near the depinning transition, the correlation
length scales with the slit width as ξ‖ ≈ Lνco

‖ . We require that
WMD(x) → 0 as x → ∞ and W (x) → 1 as x → −∞, which
represent the macroscopic unpinned and pinned states, respec-
tively. The form of WMD(x) describes the smooth crossover
between these two states when the mesoscopic wetting length
scale ξ‖ is allowed for. In order that �sing is nonzero at the
macroscopic meniscus depinning transition R = L, we require
that WMD(x) ∝ 1/x3, which leads to a singular or mesoscopic
contribution. The derivative of �sing with respect to δp de-
termines the singular contribution to the adsorption, over and
above the macroscopic contribution � ∝ L2. Since ∂�/∂δp ∝
R2∂�/∂R it follows that the adsorption contains a singular
contribution

�sing = (R − L)2�MD

(R − L

Lνco
‖

)
, (8)

where �MD(x) is a suitable new scaling function. We re-
quire that �MD(x) → 0 as x → ∞, �MD(x) → 1 as x →
−∞, and �MD(x) ∝ 1/x2 as x → 0. It follows that exactly
at the (macroscopic) depinning phase boundary R = L, the
excess adsorption contains a mesoscopic contribution �sing ∝
L2νco

‖ in addition to the leading-order macroscopic term � =
2�ρ(1 − π

4 )L2 determined earlier. Using the exact exponent
relation (5), it follows that the mesoscopic term can be written

�sing ∝ 
πL, R = L, (9)

which is of course simply the additional contribution to the
adsorption from the meniscus when we shift its position by the
thickness of a wetting layer 
π ∼ Lβco

s coating the side walls
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(see Fig. 2). Explicitly, for systems with dispersion forces this
yields �sing ∝ L4/3.

Before moving on to consider the meniscus osculation tran-
sition we point out that the above crossover scaling theory has
a remarkable internal consistency which appears to connect,
very naturally, the macroscopic physics of the meniscus with
the microscopic physics associated with wetting behavior.
Suppose, for example, we did not know what length scale was
responsible for rounding the depinning transition. Instead, we
simply marry the macroscopic result that � ≈ (R − L)2 with
the direct geometrical requirement that at R = L there must be
a higher-order contribution L
π , due to the wetting layers at
the side walls which just shift the position of the meniscus. To
do this, we write �sing = (R − L)2�MD[(R − L)/λMD], which
contains an as yet undetermined length scale λMD responsi-
ble for the rounding. At R = L it follows that the singular
contribution must scale as λ2

MD, which we identify with L
π .
Substituting that 
π ∼ δp−βco

s and that R = γ /δp, it follows
that the length scale responsible for the rounding must behave
as λMD ∼ δp−(1+βco

s )/2. Using the exact exponent relation (5),
it follows that length scale responsible for the rounding
must be

λMD = ξ‖, (10)

consistent with Eq. (6). This is a remarkable self-consistency:
Adding a geometrical shift to the adsorption, due to the wet-
ting layer thickness 
π , we have generated a length scale,
associated with wetting, which is the parallel correlation
length. In other words, crossover scaling demands that the
exponent relation 1 + βco

s = 2νco
‖ is true.

B. Osculation transition

1. Macroscopic

We now turn attention to the phenomenon of meniscus
osculation and suppose that the confining wall has a cross
section of a parabola

ψ (x) = x2

2Rw

, (11)

with translational invariance assumed in the other direction.
We restrict ourselves entirely to walls that are completely wet
corresponding to equilibrium contact angle θ = 0. The wall
is again supposed to be in contact with a bulk gas at subcrit-
ical temperature T and pressure p < psat. As the pressure is
increased to bulk coexistence the adsorption diverges due to
the growth of a meniscus near the bottom of the parabola.
At a macroscopic level this once again takes the shape of
a circular arc of Laplace radius R = γ /δp which meets the
walls tangentially at ±x0 at height z0. We denote by 
0 the
height of the meniscus above the bottom (see Fig. 3). These
length scales are trivially determined, yielding

x0 =
√

R2 − R2
w, (12)

z0 = R2 − R2
w

2Rw

, (13)


0 = (R − Rw )2

2Rw

. (14)

FIG. 3. Geometrical construction determining the macroscopic
meniscus of a parabolic, completely wet wall. The dashed circle is of
R = γ /δp and connects with the wall tangentially at points (−x0, z0)
and (x0, z0). The height of the meniscus above the wall is 
0. The
construction is only possible if R is larger than the geometrical radius
of curvature at the bottom Rw .

As pointed out in Ref. [25], as δp → 0 these length
scales diverge with universal exponents which are geometry
dominated, independently of the range of the intermolecular
forces. More generally, for walls which have a power-law
cross section ψ (x) ∝ |x|φ , the divergence of the adsorption
as δp → 0 is geometry dominated provided φ > βco

s /νco
‖ . For

φ < βco
s /νco

‖ the adsorption diverges similarly to complete
wetting at a planar wall which depends strongly on the range
of intermolecular forces. Returning to the parabola, we focus
here on the disappearance of the meniscus as the pressure is
reduced to point at which

R = Rw. (15)

We refer to this as meniscus osculation. Macroscopically, for
R < Rw there is no adsorption of liquid at the walls since
no meniscus can be fitted into the geometry. More generally,
beyond the macroscopic level, meniscus osculation separates
regimes in which the adsorption is geometry dominated and
microscopic, respectively. Associated with the osculation is
a singular contribution to the grand potential � per unit
length of the wall. At a purely macroscopic level this is
determined by

� = δpA + γ (
m − 
w ), (16)

where A is the area of liquid, 
m is the meniscus length, and 
w

is the contact length of the liquid with the wall. Again, these
are very simply determined as

A = x0

3Rw

(
2R2 + R2

w

) − R2 sin−1
(x0

R

)
, (17)


m = R sin−1

(√
R2 − R2

w

R

)
, (18)
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and


w = R

Rw

√
R2 − R2

w + Rw sinh−1

(√
R2 − R2

w

Rw

)
. (19)

This implies that the grand potential is given explicitly by

�

γ
=

√
R2 − R2

w

3Rw

(
R2

w

R
− R

)
+ R sin−1

(√
R2 − R2

w

R

)

−Rw sinh−1

(√
R2 − R2

w

Rw

)
. (20)

As the pressure is decreased and R reduces to Rw, this exhibits
the (macroscopic) critical singularity

�

γ
≈ −16

√
2

105

(R − Rw )7/2

R5/2
w

, (21)

which is of fractional higher order than the third-order
meniscus depinning. The derivative of the grand potential
determines the associated singularity in the adsorption, which
disappears as

�sing ≈ 8
√

2

15

�ρ(R − Rw )5/2

√
Rw

, (22)

which is simply �ρ times the meniscus area A. For R < Rw

there is no macroscopic adsorption.
Meniscus osculation is closely related to the phenomenon

of capillary emptying in horizontal capillaries, under the influ-
ence of gravity, of an elliptical cross section [29]. Specifically,
the rich phase behavior associated with emptying is related
to whether menisci, which now represent the cross-sectional
shape of horizontal liquid tongues, can be locally inscribed
within the ellipse (see, e.g., the cross sections shown in Figs. 1
and 2 in Ref. [29]).

2. Mesoscopic

Similar to depinning, the continuous osculation transition
must be rounded by length scales due to mesoscopic com-
plete wetting layers. There will always be some residual
microscopic adsorption even when R < Rw, implying that the
crossover from the geometry-dominated regime R > Rw must
be smooth since there is neither symmetry breaking nor any
diverging order parameter or length scale. For the meniscus
depinning the rounding of the macroscopic phase boundary
R = L can be understood directly, by considering how the
macroscopic meniscus attaches to the edge of the opening
when wetting layers are present, leading to R − L ≈ ξ‖. This
line of reasoning is not so obvious for the rounding at oscu-
lation since the meniscus itself is disappearing. The simplest
length scale and observable to focus on is the value of the
interfacial height 
0 when R = Rw, for which there is no
macroscopic contribution. We wish to determine how, exactly
at osculation R = Rw, the interfacial height scales with the
radius of curvature and introduce a new osculation critical
exponent βosc to characterize this,


0 ≈ Rβosc
w , R = Rw, (23)

where we have omitted any unimportant dimensional prefac-
tors. To determine the osculation exponent, we suppose that in

the vicinity of the osculation transition the interfacial height
shows crossover scaling


0 = (R − Rw )2

2Rw

Losc

(R − Rw

λosc

)
, (24)

with λosc the undetermined rounding length scale and Losc(x)
the appropriate scaling function. The macroscopic limit,
corresponding to Eq. (14), is recovered by imposing that
Losc(x) → 1 as x → ∞. We also require that Losc(x) ∼ x−2

as x → 0, in order that at osculation the value of 
0 remains
finite, implying 
0 ∝ λ2

osc/Rw. Since the wall is completely
wet we also require that this diverges as Rw → ∞, i.e., as we
follow the line of osculation transitions to bulk coexistence.
This means that we can eliminate the possibility that the
rounding length scale is the planar wetting layer thickness 
π ,
since in that case 
0 does not diverge. In addition, the identifi-
cation λosc ≈ ξ‖, while appropriate for meniscus depinning, is
unsatisfactory since, on using the exact exponent relation (5),
this only yields 
0 ≈ 
π . This is most likely only a lower
bound since it is physically reasonable that the residual in-
terfacial height at osculation is greater than the planar wetting
layer thickness at the same pressure.

To identify the rounding length scale we instead focus on
the value of 
0 deep in the preosculation regime Rw 	 R and
ensure that our scaling ansatz is compatible with the necessary
curvature-induced enhancement of the adsorption. For wetting
on spheres and cylinders of radius Rc, say, which have a
negative curvature, it is well known that the increase in the
surface tension contribution thins the wetting layer equivalent
to a shift in the effective value of the partial pressure from
δp to δp + γ /Rc [30–34]. For the parabola it is therefore
reasonable to expect that when Rw 	 R the local interface
height is enhanced by the positive curvature so that 
0 is the
same as the planar wetting layer thickness but evaluated at
an effective reduced partial pressure δp − γ /Rw, i.e., 
0 →
(1/R − 1/Rw )−βco

s . This requirement is highly restrictive and
is only compatible with the crossover scaling ansatz (24)
provided that the scaling function Losc(x) ∝ |x|−2−βco

s as x →
−∞ and identifies that the rounding length-scale scales with
Rw and R according to

λ
2+βco

s
osc = R1+βco

s
w Rβco

s , (25)

where again we have omitted unimportant microscopic length
scales. Using this value for λosc, it follows that the osculation
and wetting exponents are related via

βosc = 3βco
s

2 + βco
s

, (26)

which is the central prediction of our mesoscopic scaling the-
ory. In three dimensions and with dispersion forces and also
in two dimensions with short-range forces, for which βco

s = 1
3 ,

this predicts that βosc = 3
7 , pointing to a rather nontrivial in-

terplay between geometry and wetting at osculation. In three
dimensions and with short-range forces it is likely that the
prediction βosc = 0 corresponds to a logarithmic dependence
of 
0 on Rw. Having identified the rounding length scale λosc,
the crossover scaling theory can be applied to other quantities.
For example, we can expect that the singular contribution to
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the grand potential per length scales as

� = (R − Rw )7/2

R5/2
w

Wosc

(R − Rw

λosc

)
, (27)

where we have ignored the prefactors. The scaling function
Wosc(x) must satisfy Wosc(∞) = 1 in order to recover the
macroscopic singularity in the geometry-dominated regime.
On approaching the osculation transition at R = Rw, the scal-
ing function must also behave as Wosc ∝ x−7/2 in order to leave
a finite singular contribution, which we define as

� ≈ R2−αosc
w . (28)

This identifies the exponent as

2 − αosc = 3

2

(
3βco

s − 1

2 + βco
s

)
, (29)

again relating it to the singularities at complete wetting.
This exponent relation is noteworthy because it predicts that
2 − αosc = 0 when βco

s = 1
3 , as is pertinent to three-

dimensional systems with dispersion forces and two-
dimensional systems with short-range forces, and is presum-
ably indicative of a marginal logarithmic singularity. We
mention this because precisely the same marginal singularity
is predicted for meniscus depinning for systems with disper-
sion forces [23,24]. Exactly at the depinning transition R = L,
the singular contribution to the grand potential is predicted to
be � ≈ L2−αMD , where 2 − αMD = (3βco

s − 1)/2, which ob-
viously also vanishes when βco

s = 1
3 . The vanishing of both

these exponents is consistent with the known marginal loga-
rithmic contribution to the free energy of a finite-size droplet
in these systems [35]. This consistency between osculation,
depinning, and complete wetting for systems with dispersion
forces is not achieved if we choose λosc ≈ ξ‖ which, as men-
tioned above, we believe is a lower bound for the rounding
length scale at osculation.

The prediction of the mesoscopic crossover scaling theory,
which at osculation 
π is a lower bound for the value of 
0, is
consistent with a simple idea proposed by Rascón and Parry,
who suggested that the total adsorption on a completely wet
sculpted surface can be determined by first coating the wall
with a wetting layer of thickness 
π , defined normal to each
surface point [25]. This coating modifies the original wall
shape ψ (x) → ψ̃ (x), onto which we then fit a meniscus of
Laplace radius R. This simple modified macroscopic construc-
tion reproduces with remarkable accuracy different scaling
regimes, arising due to the competition between microscopic
forces and geometry, obtained from numerical studies of inter-
facial Hamiltonian models and experiments [36–38]. We will
return to this in the next section.

III. ADSORPTION ON A CORRUGATED WALL

In preparation for studying meniscus osculation in a micro-
scopic DFT, we turn our attention to the adsorption occurring
near a sinusoidally corrugated wall described by the height
function

ψ (x) = A

[
1 − cos

(
2πx

L

)]
, (30)

where A is the amplitude and L is the period. The axes
here are chosen such that ψ = 0 at the bottom wall. The
adsorption and wetting properties on such corrugated surfaces
have been studied previously, but usually concentrating on
the partial wetting regime where, for simple fluids, prewetting
and unbending transitions (equivalent to a local condensation
of liquid within the troughs) compete [39–44]. The surface
behavior is very rich for complex fluids (liquid crystals) where
dislocations near the crests must be taken into account [45,46].
Here we restrict ourselves to simple fluids and to complete
wetting (θ = 0) where none of these features are present. In
spite of this, the adsorption isotherm is still quite rich and we
anticipate falls into three regimes (see Fig. 4).

A. Microscopic preosculation regime

When the pressure is low, such that the Laplace radius
of curvature R 
 Rw, where Rw = L2/4π2A, no meniscus is
present. In this case the adsorption is entirely microscopic
comprising a thin wetting layer of approximate thickness 
π

which coats the wall. As the pressure is increased, a rounded
meniscus osculation transition occurs near R = Rw − λosc,
where the adsorption changes from microscopic to macro-
scopic due to the growth of the meniscus. In three-dimensional
systems and for short-range forces λosc ≈ √

Rw and therefore
is of a similar size to ξ‖. A signature of this rounded transition
would be a dramatic change in the behavior of the second and
third derivatives ∂2�/∂μ2 and ∂3�/∂μ3, respectively, which
reflect the fractional order of the macroscopic transition.

B. Macroscopic geometry-dominated regime

When R < Rw a meniscus sits near the troughs of
the corrugated wall connecting tangentially with its sides.
As the pressure is increased the meniscus grows until it
is near the crests of the sinusoid. Macroscopically, this
geometry-dominated regime extends from osculation (R =
Rw), equivalent to

δposc = 4π2Aγ

L2
, (31)

to saturation, δp = 0. It can again be shown easily that for
the sinusoidal wall (30) the height of the meniscus above the
bottom is


0 = z0 +
√

R2 − x2
0 − R, (32)

where ±x0 and z0 are the coordinates denoting the contact
of the meniscus with the wall (see Fig. 3) which are given
implicitly by solving simultaneously

A sin

(
2πx0

L

)
= Lx0

2π

√
R2 − x2

0

(33)

and

z0 = A

[
1 − cos

(
2πx0

L

)]
. (34)

The presence of wetting layers qualitatively and quantitatively
affects this and is described approximately by the Rascón-
Parry (RP) construction, in which we coat the wall with the
wetting layer prior to fitting inside the circular meniscus (see
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FIG. 4. Schematic illustration of three possible adsorption regimes of a completely wet (θ = 0) sinusoidal wall. (a) In the low-adsorption
preosculation regime, far away from bulk coexistence, a microscopic amount of liquid coats the wall and the liquid-gas interface follows the
wall shape. (b) Within the second regime, the voids of the wall become gradually filled with liquid. (c) In the third regime, the liquid-gas
interface unbinds from the wall and its height diverges as the coexistence is approached, similarly, but not identically, to planar walls. While
the first and third regimes are governed by microscopic forces, the second regime is controlled by the wall geometry and can be described
macroscopically.

Fig. 5). Similarly, the approach to saturation is more properly
a crossover from a geometry-dominated regime where the
meniscus lies within the wells to a second microscopic regime
where the liquid-gas interface unbinds from the crests. This
second crossover occurs when the period L ≈ ξ‖, i.e., when
the characteristic scale of the interfacial fluctuations is similar
to the geometric scale.

C. Microscopic interfacial unbinding regime

On approaching saturation, the liquid-gas interface must
unbind from the wall and will display properties which are
very similar to complete wetting at a planar surface. The di-
vergence of the film thickness in this limit cannot be described
macroscopically and we must allow for the intermolecular
forces and the effective binding that result between the in-
terface and the wall. The shape of the wall does have some
influence on the equilibrium shape of the liquid-gas interface,
but this is negligible, at leading order, when the parallel
correlation length is larger than the period L, corresponding
to the regime δp 
 L−1/νco

‖ in which case the interface is
effectively planar. Critical exponents which characterize the
divergence of the film thickness and parallel correlation length
are unchanged. The question whether there is any signature of
the wall shape on the complete wetting layer, as it unbinds
from the crests, is rather subtle and is related to the nature of
the binding potential. This is particularly subtle for systems
with short-range forces and we intend to focus on this problem
in a separate work [47].

IV. DFT ANALYSIS OF ADSORPTION
ON A SINUSOIDAL HARD WALL

Here we present the results for adsorption on a sinusoidal
hard wall obtained using a microscopic DFT. We present first
the model whose accuracy we test using an exact sum rule
due to Upton [48]. Numerical results illustrating the meniscus
osculation transition and different adsorption regimes are then
presented.

A. Density functional theory

Consider a simple fluid which is subject to an external field
V (r) due to a presence of a confining wall and which is in
contact with a bulk reservoir at temperature T and chemical
potential μ. Within classical DFT [49] the equilibrium density

FIG. 5. Schematic illustration of (a) geometrical construction for
macroscopic meniscus in a sinusoidal wall and (b) modified RP
construction where the wall is first coated by a uniform layer of
thickness 
π .
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profile ρ(r) of the fluid is obtained by minimization of the
grand potential functional

�[ρ] = F [ρ] +
∫

dr ρ(r)[V (r) − μ], (35)

where F [ρ] is the intrinsic free-energy functional containing
all the information about the fluid interactions. Its approxi-
mation, which is a crucial part of any DFT model, depends
largely on the choice of the fluid model and particularly for
simple fluids the intrinsic free energy can be treated in a
perturbative manner

F [ρ] = Fid[ρ] + FHS[ρ] + Fatt[ρ], (36)

which splits the functional into the ideal gas Fid, repulsive
hard-sphere FHS, and attractive Fatt contributions.

The ideal gas part is known exactly and is given by

βFid[ρ] =
∫

dr ρ(r){ln[ρ(r)�3] − 1}, (37)

where � is the thermal de Broglie wavelength which can be
set to unity and β = 1/kBT is the inverse temperature.

The repulsive interaction between fluid molecules is ap-
proximated by the hard-sphere potential and its contribution
to the free energy is described accurately using Rosenfeld’s
fundamental measure theory [50]

FHS[ρ] = 1

β

∫
dr �({nα}), (38)

where {nα} denotes a set of six weighted densities

nα (r) =
∫

dr′ρ(r′)ωα (r − r′), α = {0, 1, 2, 3, v1, v2},
(39)

given by convolutions between the one-body fluid density
ρ(r) and the weight functions {ωα} which characterize so-
called fundamental measures of the hard-sphere particles of
diameter σ :

ω3(r) = �(R − |r|), ω2(r) = δ(R − |r|), (40)

ω1(r) = ω2(r)

4πR , ω0(r) = ω2(r)

4πR2
, (41)

ωv2(r) = r
Rδ(R − |r|), ωv1(r) = ωv2(r)

4πR . (42)

Here � is the Heaviside function, δ is Dirac’s delta func-
tion, and R = σ/2. Among various possible prescriptions
for describing the free-energy density � for inhomogeneous
hard-sphere fluid, we adopt the original Rosenfeld approxima-
tion [50], which accurately describes short-range correlations
between fluid particles and satisfies exact statistical mechani-
cal sum rules [6].

For separations r > σ , a pair of fluid particles is assumed
to interact via the attractive part of the Lennard-Jones poten-
tial uatt (r), which is truncated at a cutoff which we set to be
rc = 2.5 σ , i.e.,

uatt (r) =

⎧⎪⎨
⎪⎩

0, r < σ

−4ε
(

σ
r

)6
, σ < r < rc

0, r > rc.

(43)

This attractive contribution is modeled in simple mean-field
fashion

Fatt[ρ] = 1
2

∫∫
dr dr′ρ(r)ρ(r′)uatt (|r − r′|). (44)

We assume that the external potential is a hard wall of
sinusoidal shape

V (x, z) =
{∞, z < ψ (x)

0, z > ψ (x),
(45)

where ψ (x) is given by Eq. (30). A purely hard wall is
known to be completely dry, i.e., completely wet by vapor,
corresponding to contact angle θ = π . By studying drying we
are also able to avoid the complications arising from layering
since liquid layers are absent near the surface of the wall. We
assume that the wall is of a macroscopic extent in the remain-
ing Cartesian direction and the system is thus translationally
invariant along the y axis.

The minimization of (35) leads to the self-consistent equa-
tion for the equilibrium density profile

ρ(r) = �−3 exp[βμ − βV (r) + c(1)(r)], (46)

where c(1)(r) = c(1)
HS(r) + c(1)

att (r) is the one-body direct cor-
relation function, which can be split into the hard-sphere
contribution

c(1)
HS(r) = −

∑
α

∫
dr′ ∂�({nα})

∂nα

ωα (r′ − r) (47)

and the attractive part

c(1)
att (r) = −β

∫
dr′uatt (|r − r′|)ρ(r′). (48)

We solve Eq. (46) numerically on a rectangular discrete grid
of spacing of 0.1σ using Picard iteration where the convolu-
tions in (39), (47), and (48) are determined using a fast Fourier
transform [51].

From the equilibrium density profile ρ(x, z) we can extract
the local height of the liquid-gas interface identified as

ρ(x, 
(x)) = ρg + ρl

2
(49)

and also the excess adsorption

� =
∫ L/2

−L/2
dx

∫ ∞

ψ (x)
dz[ρb − ρ(x, z)], (50)

where ρb is the bulk density. In our numerical study, we are of
course not able to model a semi-infinite system; instead, we
set the density equal to the bulk density at a fixed distance of
50σ above the crests of the sinusoid.

B. DFT results

1. Upton sum rule

The contact sum rule for a planar hard wall in contact with
a bulk fluid (i.e., in a semi-infinite geometry) elegantly relates
the fluid density at contact ρw to the bulk pressure [6]:

βp = ρw. (51)
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FIG. 6. Three-dimensional plot of the contact density profile for a corrugated hard wall (30) over a single period with L = 20σ and
A = 10σ , which is in contact with a supersaturated bulk liquid at δμ = 0.0023ε. The black line with red dots represents the value of the local
contact density ρ(s), where s = (x, ψ (x)). The corresponding full DFT density profile, in the form of a colormap on the xz plane, is also
shown.

For nonplanar hard walls, the contact density becomes posi-
tion dependent and the theorem generalizes to [48]

βp = ρ̄w. (52)

Here ρ̄w is the geometrically averaged contact density
defined as

ρ̄w = 1

Aw

∫
ρ(s)ds, (53)

where the integration is over the wall surface of total area
Aw = ∫

ds. Here ρ(s) is the value of the contact density at
position x, with s = (x, ψ (x)), and ds = dx

√
1 + ψ ′(x)2 is

the local area element.
Being exact, the contact theorem is a useful test of the

accuracy of the numerical methods used to solve Eq. (46).
Errors arise in a number of ways, including the discretization
used in the Picard iteration and also from finite-size effects,
since we have to impose that the density takes its bulk value
at some finite distance (which we set to be 50σ ) above the
crests. In Fig. 6 we plot the numerically determined contact
density along the corrugated wall, from which we can deter-
mine the geometrically averaged contact density βp/ρ̄w. As
anticipated, the local density is smallest at the troughs and
highest at the crests. In Fig. 7 we plot the numerically deter-
mined value of βp/ρ̄w as a function of the chemical potential
for two different wall amplitudes and periods which we use
to study the meniscus osculation transition and adsorption
isotherms. For the shallower geometry, with L = 100σ and
A = 20σ , there is very good agreement with the prediction of
the Upton sum rule with the worst relative error about 2%.
For the more corrugated wall with L = 30σ and A = 30σ the
agreement is still good but a little worse with the maximum
relative error about 7%.

2. Osculation transition and meniscus shapes

We now turn our attention to the adsorption occurring on
sinusoidal walls for a range of periodicities and amplitudes.
All the DFT calculations were performed at a temperature

T = 0.925Tc, where Tc is the critical temperature of the bulk
fluid (kBTc = 1.41ε). At this temperature, the corresponding
densities of the coexisting bulk gas and liquid phases are ρg =
0.104σ−3 and ρl = 0.431σ−3, respectively, and the chemical
potential of saturation is μsat = −3.943ε.

At least qualitatively, the equilibrium density profile
ρ(x, z) and adsorption fall into the three regimes as described
earlier. This is illustrated in Fig. 8 for the more corrugated
wall where L = 30σ and A = 30σ . In the density profile we
also highlight the local height of the liquid-gas interface 
(x),
which is shown as the green line. Of particular interest is the
local height above the wall bottom 
0, whose dependence on

0.50

0.75

1.00

1.25

1.50

 0  0.2  0.4  0.6  0.8  1

β p
 / 

ρ−
w

δμ / ε

L = 30σ, A = 30σ
L = 100σ, A = 20σ

FIG. 7. Numerical DFT results for the dimensionless ratio
βp/ρ̄w as a function of the bulk fluid supersaturation δμ for two
different wall amplitudes and periods showing good agreement with
Upton’s generalized contact theorem (52).
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FIG. 8. Numerical DFT results for the equilibrium density profiles for the sinusoidal hard wall with L = 30σ and A = 30σ illustrating (a) a
microscopic preosculation regime, (b) a macroscopic geometry-dominated regime, and (c) a microscopic interface unbinding regime, which
correspond to the three points highlighted in Fig. 9. The green line denotes the equilibrium height 
(x) of the liquid-gas interface.

the chemical potential is shown in Fig. 9. Figures 8(a)–(c)
and the corresponding points on the adsorption of Fig. 9
correspond to (i) the microscopic preosculation regime, (ii)
the macroscopic geometry-dominated regime, and (iii) the
microscopic interfacial unbinding regime, respectively.

Now we seek to be more quantitative. Numerical evidence
for a (rounded) osculation transition is shown in Fig. 10 for the
shallower geometry with L = 100σ and A = 20σ , where we
plot the second and third derivatives of the excess adsorption
as a function of μ. The corresponding growth of the mid-
point height 
0 is shown in Fig. 11 together with state points
whose profiles we will compare with the predictions of the
geometric construction. It can be seen from Fig. 10 that in
contrast to the second derivative ∂2�/∂μ2, the third deriva-
tive ∂3�/∂μ3 undergoes a dramatic increase near δμ/ε ≈
0.01. This qualitative difference between the second and third
derivatives is consistent with the macroscopic 5

2 singularity

 0

 20

 40

 60

 80

 0  0.1  0.2  0.3

l 0
 / 

σ

|δμ| / ε

(a)

(b)

(c)

FIG. 9. Growth of the height of the liquid-gas interface 
0 mea-
sured above the wall bottom, for the sinusoidal hard wall with
L = 30σ and A = 30σ . The points (a), (b), and (c) correspond to the
density profiles shown in Fig. 8 representative of the three adsorption
regimes.

predicted for the osculation transition [recall Eq. (22)]. The
sudden increase in the third derivative occurs close to the
value of the chemical potential where the meniscus lifts off
the trough [see Figs. 12(c) and 12(d)]. Next we focus
on the geometry-dominated regime and test the macroscopic
and mesoscopic predictions of Sec. III B for the shape and
height of the meniscus. In Fig. 11 we compare the growth of
the meniscus height 
0 with the macroscopic prediction (32)
and its mesoscopic correction following the RP construction.
The purely macroscopic prediction is only in semiquantitative
agreement with the DFT results. The predicted height 
0 is
systematically lower than the DFT results, which suggests
that the discrepancy is mainly due to the presence of thin
drying layers which are allowed for, approximately, in the
RP construction. The accuracy of this construction for the

 0

 1×107

 2×107

 3×107

 4×107

 0  0.01  0.02  0.03

∂n Γ 
/ ∂

μn

|δμ| / ε

n = 2
n = 3

FIG. 10. Numerical DFT results comparing the second (blue
line) and third (orange line) derivatives of the excess adsorption �

with respect to μ for a sinusoidal hard wall with L = 100σ and A =
20σ . The dramatic increase in the third derivative near δμ/ε ≈ 0.01
closely coincides with the growth of a meniscus near the bottom of
the wall corresponding to a rounded meniscus transition.
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FIG. 11. Comparison of the numerical DFT results (red sym-
bols) for 
0 as a function of δμ with the predictions of the purely
macroscopic theory (green line) and RP mesoscopic construction
(blue line) for a sinusoidal hard wall with L = 100σ and A = 20σ .
The continuation of the green and blue lines beyond the osculation
transition are denoted by the respective dotted lines.

meniscus shape is illustrated in Fig. 12 for five representative
DFT density profiles corresponding to the thermodynamic
points highlighted in Fig. 11. In these figures we can com-
pare the true shape of the interfacial profile 
(x) (green solid
line) with the prediction of the RP construction (green dashed
line). The RP construction gives significantly better agreement
with the DFT results (see the blue line in Fig. 11). The RP
construction is particularly accurate for the state points (a)
and (b) where the meniscus is higher up the trough, meeting
the wall above the points of inflection of the sinusoid. It is
probably not coincidental that the comparison between the
DFT results and the prediction of the RP construction is worst
near the osculation transition. In these plots we have also
highlighted a green circle of Laplace radius R which we have
purposely placed to touch the true value of 
0. It is apparent
that the interfacial shape 
(x) is always well described by
the arc of the circular meniscus in the central region of the
trough. However, it is clear from these plots that the simple RP
scheme of first coating the wall with the uniform layer of 
π

slightly overestimates the adsorption at the crests and slightly
underestimates the true interfacial height above the troughs. It
might be possible to modify the RP construction by allowing
for some local geometric dependence on the wetting that we
first coat the wall with before inserting the arc of the circular
Laplace meniscus.

Further comparisons between the purely macroscopic and
the RP predictions with the DFT results are presented in
Fig. 13 for various wall parameters. In Figs. 13(a)–13(c) we
vary the wall amplitude for the fixed periodicity (L = 100σ ),
while in Figs. 13(d)–13(f) the periodicity is varied for the
fixed amplitude (A = 20σ ). In general, the agreement between
the mesoscopic theory and the DFT is close but somewhat
deteriorates as the ratio A/L increases. This is most likely

FIG. 12. Equilibrium DFT density profiles, ρ(x, z)σ 3, over a sin-
gle period for the sinusoidal hard wall with the periodicity L = 100σ

and amplitude A = 20σ corresponding to the points in Fig. 11. For
each of these profiles, three curves are highlighted. The green solid
curve is the DFT result for the location of the interface 
(x), defined
as the locus where the local fluid density is (ρg + ρl )/2. This is com-
pared with two other curves. The green solid circle has the Laplace
radius R and has been placed so that its lowest point coincides with
the true value of 
0. The green dashed line is the RP prediction
for 
(x).
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FIG. 13. (a)–(c) Comparison of the meniscus height 
0 as a function of δμ obtained from DFT (red symbols), the macroscopic theory
(green line), and the mesoscopic RP construction (green line) for a sinusoidal hard wall with the fixed periodicity L = 100σ and varying
amplitude: (a) A = 5σ , (b) A = 10σ , and (c) A = 50σ . (d)–(f) Same comparison as in (a)–(c) but for a hard sinusoidal wall of fixed amplitude
A = 20σ and varying periodicity: (d) L = 50σ , (e) L = 30σ , and (f) L = 20σ . Note that the scale of the abscissa in (d)–(f) is an order of
magnitude larger than in (a)–(c).

because for highly curved walls any small discrepancy in

π or R has a significant impact on the resulting value of

0. It appears that for sinusoidal walls the condition A = L
represents the limit beyond which even the mesoscopic RP
construction ceases to be quantitatively reliable.

V. SUMMARY

In this paper we have studied the adsorption of fluids at
smoothly corrugated completely wet walls using macroscopic
theory, mesoscopic scaling theory, and microscopic DFT. In
particular, we have focused on a rounded meniscus osculation
transition occurring near the trough of the sinusoid which is
associated with the appearance of a meniscus as the chemical
potential is increased towards bulk saturation. Macroscopi-
cally, this transition is of 7

2 order but is rounded due to the
influence of a thin wetting layer arising from microscopic
interactions. The scaling theory that we developed for this pre-
dicts a nontrivial relationship between the interfacial height at
the osculation and the wetting layer thickness. The simple RP
construction for mesoscopic corrections within the geometry-
dominated regime was tested in our DFT where we showed
that it accurately describes the adsorption on the corrugated
surface, particularly where the meniscus is above the points

of inflection of the wall. For a sinusoidal wall the adsorption
falls into three regimes: the preosculation regime, where the
adsorption is determined by the microscopic interactions; a
postosculation regime, where the meniscus sits within the
troughs of the wall; and finally a complete wetting regime,
where the interface unbinds from the crests. This final regime
can again be only understood by taking into account the
microscopic interactions. Our work can be extended in many
ways. In particular, it will be necessary to test the prediction
for the value of the osculation exponent βosc = 3

7 in systems
with dispersion forces and also in two dimensions. Also, recall
that for meniscus depinning the order of the phase transition
changes when the walls are partially wet. This may also occur
for meniscus osculation where the phase transition also com-
petes with wetting and unbending transitions [39]. The surface
phase diagram may be very rich in these systems, similar
to predictions for wetting on chemically patterned surfaces.
Returning to the case of complete wetting, our DFT results
suggest that one may modify and improve the RP construction
by allowing curvature corrections to the thin wetting layer
that first coats the wall. Finally, it would be interesting to
examine in more detail how the shape of the wall influences
the divergence of the adsorption due to the unbinding of the
liquid-gas interface as bulk coexistence is approached. To
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correctly understand this, it is necessary to model the effect of
interaction between the interface and the wall using the fully
nonlocal binding potential [52].
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