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We have elaborated a theoretical approach for the description of polar nematic phases observed by Nishikawa
et al. [Adv. Mater. 29, 1702354 (2017)], their structures, and transitions between them. Specific symmetry
contributions to the pair molecular potentials provide the molecular mechanisms responsible for the formation
of proper and improper polarity on the macroscopic level. An improper antiferroelectric nematic M2 phase can
arise between paraelectric nematic M1 and proper ferroelectric nematic MP in the temperature scale. The local
polarization in M2 arises mostly due to the local splay deformation. The director distribution in M2 represents
the conjugation of cylindrical waves with opposite splay and polarization signs. The director and polarization
are parallel to the cylindrical domain axes in the middle of each cylinder but exhibit considerable (mostly radial)
deformation on the periphery of each cylinder. Polarization vectors are mostly stacked antiparallel on the borders
between the domains without the director disruption. The domain size decreases with the decreasing temperature,
the percentage of the antiferroelectric decouplings increases, and M2 exhibits the first-order phase transition
into proper ferroelectric MP. With the increasing temperature the domain size in the M2 phase increases, the
domination of particular polar orientation of molecules reduces, and finally, the domain size diverges at particular
temperature corresponding to the second-order phase transition from M2 to paraelectric M1. Variations of the
polar and nonpolar orientational order parameters are estimated within each phase and between the phases. Our
experimental and computer simulation results (also presented in the paper) fully support our theoretical findings.
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I. INTRODUCTION

Liquid crystals are important materials for many appli-
cations, such as modern display technologies [1–4], light
modulators and filters [5,6], chemical and other sensors
[7–11], microwave, and millimeter wave electronics (phase
shifters, filters, antennas, etc.) [12,13]. Recently, a new class
of liquid crystalline materials was developed, the so-called
“polar nematics” [14–18]. They have extraordinary large po-
larization and, at the same time, possess nematic ordering.
Polar nematics have great potential in many research fields,
such as electronics and electro-optics [14,19], nonlinear optics
[16], and many others.

Symmetry arguments for the existence of ferroelectricity
in liquid crystals were considered and confirmed by Meyer
[20,21]. Antiferroelectric and several intermediate (ferrielec-
tric) phases were discovered by Fukuda and co-workers in
Refs. [22–24]. Most of the phases reported in these and other
papers are improper ferroelectric or antiferroelectric [25], be-
cause polarization in these phases is not the phase transition
parameter. Meanwhile, several publications [26–29] reported
on the so-called “re-entrant” ferroelectric phase. The origin of
this phase was investigated later in Ref. [30], and this phase
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was found to be the proper ferroelectric, because the inter-
actions of dipoles located in the long molecular tails solely
induce the polarization (no other polar vectors and parameters
are needed for characterization of the phase) and trigger the
reentrance of ferroelectricity. Up to recent times, this was
the only ferroelectric phase in low-mass liquid crystal melts,
whose origin was addressed to the proper ferroelectricity.

In 2017 the existence of a polar nematic (MP) phase was
reported in the DIO liquid crystal [14]. It was registered on
the cooling cycle from the paraelectric nematic M1 phase,
while some nontrivial intermediate phase (designated as M2)
was registered between the M1 and MP phases in the tem-
perature scale. The M2 phase appeared to be spontaneously
deformed (with the nonuniform director distribution). The
transition between the MP and M2 phases is of the first order,
while the transition between the M1 and M2 phases was
reported to be of the second order in Ref. [15]. It should be
also mentioned that the direct second-order phase transition
between the MP and M1 phases was also observed in dif-
ferent material in Ref. [15]. The existence of the M2 phase
should be addressed to the fact that the molecules of DIO
are polar and should better fit each other in the space if they
are organized in some locally splayed domains. In this case,
the role of flexoelectric polarization is important. The lat-
tice model for the splay flexoelectric effect in nematic liquid
crystals was considered by Dhakal and Selinger [31], and the
transitions between isotropic, nematic, and polar phases were
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described using Monte Carlo simulations. Recently, a novel
splay nematic phase was reported by Mertelj and co-workers
[32]. The phase transition between the splay nematic phase
and conventional nematic phase was reported in Ref. [33] to
be a weak first-order phase transition and described in the
framework of phenomenological Landau–de Gennes theory
in Ref. [34]. The single and double splay waves were pre-
dicted in Refs. [35,36] as possible structures of the splay
nematic phase. An important role of the flexoelectric effect
in the formation of the splay nematic phase has been outlined.
The mechanism responsible for elastic constant softening was
reported in Ref. [37]. Here we expect that the M2 phase ob-
served in DIO material is the splay nematic phase and provide
a theoretical approach describing the structures and transitions
between the M1, M2, and MP phases, based on molecular
symmetry arguments and statistical distributions. We also de-
rive a simple analytical equation describing the structure of
the double splay phase following from minimization of the
free energy.

The paper is organized as follows. In Sec. II the exper-
imental results for DIO material are presented. In Sec. III
the molecular model is considered and the specific polar-
symmetry intermolecular interaction terms found. In Sec. IV
the director distribution in a nematic phase composed of polar
molecules is obtained by minimization of the elastic energy
following from intermolecular interaction. In Sec. V the re-
sults of computer simulations for the director distribution in
polar nematic material are presented. In Sec. VI the space
distributions and temperature dependencies of the polar and
nonpolar orientational order parameters are found, and the
transitions between M1, M2, and MP phases are described.
Finally, in Sec. VII the conclusions are made.

II. OPTICAL ANISOTROPY OF DIO COMPOUND

Let us start with consideration of optical properties of
the DIO compound. Ferroelectric ordering in the MP phase
was confirmed previously in Ref. [14], while the existence of
antiferroelectric domains in the M2 phase was confirmed in
Ref. [15]. Therefore, in our experiment we have concentrated
on the observation of microscopic images of all the phases and
birefringence measurements. The temperature dependence of
optical anisotropy �n(T ), i.e., the difference between the
extraordinary and ordinary refractive indices, is the important
characteristic of any liquid crystal (LC) material. The initial
measurement was performed in Ref. [15], but it requires some
clarification in the vicinity of phase transitions.

For this purpose we carried out the optical retardance
measurement for a planar LC cell of thickness of 5.0 μm
using a Berek compensator. Optical textures in crossed
polarizers were observed with the help of a polarizing
optical microscope (Nikon LV100N Pol, Japan) equipped
with a heating stage (TMS-93 Stage Temp Controller and
THMS 600 microscope stage, UK). The temperature variation
rate was 0.1 ◦C/min in the vicinity of the phase transi-
tions and 1 ◦C/min far from them. The optical retardance R
was measured using a Berek compensator (Nichika, Japan).
The optical anisotropy was determined as �n = R/λ (λ =
550 nm) with an accuracy of 0.005, first with the temperature
decrease from isotropic phase and then with the temperature

increase from polar phase (MP). This approach allows one
to control the orientation and phase condition of the sample
during the measurement.

First, the sample was heated to the isotropic state, and after-
wards the temperature was gradually decreasing. At 175.6 ◦C,
the stepwise isotropic-nematic (I-M1) phase transition hap-
pens and a clear planar alignment is formed [Fig. 1(a)]. Upon
farther decrease of the temperature, the optical anisotropy �n
determined gradually increases from 0.07 to 0.18 (Fig. 2).
Near T = 69 ◦C the texture distortion appears and a peculiar-
ity of the �n(T ) dependence is registered (see the insertion
in Fig. 2), indicating perhaps some new phase, which is not
discussed elsewhere and is also beyond the scope of the
present paper. This distortion is better visible in the presence
of the compensator plate, which indicates slight variations of
director tilt or of the order parameter. About one degree below,
the textures become uniform and the first-order phase transi-
tion (corresponding to the transition into the polar MP phase
reported in [14]) happens. The color variation of the sample
in crossed polarizers without compensator from yellow to red
[Fig. 1(a), T = 68.6 ◦C] can originate from π -twisted struc-
ture formation in the MP phase [15]. The value of �n varies
stepwise from 0.19 to 0.23. The further temperature decrease
slightly affects the optical anisotropy.

At the temperature increase from 42 ◦C, the S(T ) depen-
dence repeats the one obtained on the cooling cycle. The
difference is only in the appearance of slight texture distortion
in the temperature range 69 ◦C < T < 85 ◦C [Fig. 1(b)]. This
temperature range corresponds to the range of existence of
the intermediate M2 phase in the DIO material reported in
[14] and arising between the polar MP and nonpolar M1
nematic phases. As in the aforementioned case, this distortion
is clearly visible in the presence of the Berek compensator.
At higher temperatures (85 ◦C < T < 175.6 ◦C), the optical
texture becomes uniform.

Since in Fig. 1 we observe the border between the M2
and MP phases, the stepwise growth of optical anisotropy at
T = 68.6 ◦C should correspond to the phase transition. The
symmetry change between the M2 and MP phases (MP is
macroscopically polar while M2 is not, which is confirmed
by the dielectric measurements in Ref. [14]) suggests that
the M2-MP phase transition is of the first order, although
the hysteresis is very weak. On the contrary, the M1-M2
phase transition does not cause a stepwise change in optical
anisotropy.

III. MOLECULAR MODEL AND INTERMOLECULAR
INTERACTION

Let us model a nematic phase composed of polar molecules
(see Fig. 3).

In Ref. [14] it was discussed that the DIO liquid crys-
tal composed of polar molecules can demonstrate several
nematiclike phases. The higher-temperature M1 phase is para-
electric, the lower-temperature MP phase is ferroelectric, and
the M2 phase observed between them in the temperature
scale demonstrates some intermediate properties. All material
properties usually arise on the molecular level. To outline the
structures and properties of all these phases, let us consider
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FIG. 1. Optical textures of the DIO film in 5-μm-thick planar cell during the temperature decrease (a) and increase (b). The upper lines
in both (a) and (b) were obtained in the presence of a Berek compensator (the lower right corner of each picture corresponds to the complete
phase shift compensation). Double arrows show the positions of polarizer (P) and analyzer (A). The arrow n shows the director alignment, and
the white circle indicates the position of the spacer. The white scale bar is 200 μm.

various polar and nonpolar symmetries of the intermolecular
potential.

For this purpose, let us consider a pair of molecules
(Fig. 4) having principal molecular axes a1 and a2 and ap-
proximate the effective pair molecular interaction potential
U e f

12 (a1, a2, r12) [where r12 is the intermolecular vector] by
spherical invariants T� L λ(a1, u12, a2) [where u12 ≡ r12/|r12|
is the unit intermolecular vector] [38,39]:

U e f
12 (a1, a2, r12) = −

∑
�,L,λ

J�Lλ(r12)T�Lλ(a1, u12, a2). (1)

Mathematically, they are the complete orthogonal set of func-
tions of the three unit vectors: the principal axes of two
interacting molecules a1 and a2, and the unit intermolecular
vector u12. The useful property of spherical invariants is that
their average with respect to each of the two molecular axes
a1 and a2 is proportional to the orientational order parameter,

which is the average Legendre polynomial of the same order
as the corresponding index of spherical invariant reflecting
the maximal power of the vector, over which it is averaged.
Normally, only the nonpolar spherical invariants (with the
even indexes) are considered:

T202(a1, u12, a2) = P2(a1 · a2) = 3
2 (a1 · a2)2 − 1

2 ,

T220(a1, u12, a2) = P2(a1 · u12) = 3
2 (a1 · u12)2 − 1

2 ,

T022(a1, u12, a2) = P2(a2 · u12) = 3
2 (a2 · u12)2 − 1

2 . (2)

Here we are going to take into account the polar spherical
invariants (with the odd indexes) in addition:

T101(a1, u12, a2) = (a1 · a2),

T110(a1, u12, a2) = (a1 · u12),

T011(a1, u12, a2) = (a2 · u12). (3)
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FIG. 2. The temperature dependence of the �n optical
anisotropy and �S phase shift between extraordinary and ordinary
waves measured for DIO compound in 5-μm-thick planar cell.

Invariant T101(a1, u12, a2) changes its sign if the axis of one
molecule is reoriented in the opposite direction with re-
spect to the axis of another molecule. In contrast, invariants
T110(a1, u12, a2) and T011(a1, u12, a2) change their signs if the
corresponding molecular axis (a1 or a2) is reoriented in the
opposite direction with respect to the intermolecular vector
u12. The average of invariants (2)–(3) with respect to the all
three vectors a1, a2, and u12 contributes to the free energy. In
Ref. [40] it was shown that the nonpolar spherical invariants
contribute to the nonpolar molecular anisotropy and to the
elastic constants. Here we are going to elucidate the role of the
polar spherical invariants. In the deformed state, director n2 at
point 2 where the second molecule is located is different from
director n1 at point 1 where the first molecule is located (see
Fig. 4), and therefore the gradient expansion of the director
should be used:

n2 ≈ n1 + (r12·∇)n1 + 1
2 (r12·∇)2n1. (4)

As a result, one obtains for the average
J101(r12) T101(a1, u12, a2) term with respect to all three
vectors a1, a2, and u12,

〈J101(r12) T101(a1, u12, a2)〉
≈ J (0)

101 P2 + 1
2 J (2)

101 P2 〈n · (u12 · ∇)2n〉, (5)

where the universal 〈uαuβ〉 = 1
3δαβ and 〈uα〉 = 0 rules for the

averages of projections of vector u12 on the Cartesian axes are

FIG. 3. Schematic representation of the DIO polar molecules [14].

FIG. 4. Pair of interacting polar molecules in the inhomogeneous
liquid crystal.

used. The polar order parameter P is introduced in the same
manner as the nonpolar order parameter S (both generally
depend on coordinate r),

P(r) ≡
∫

f {(a · n), r}P1(a · n)d2a,

S(r) ≡
∫

f {(a · n), r}P2(a · n)d2a, (6)

where P1(x) ≡ x and P2(x) ≡ 3/2 x2 − 1/2 are the first and
the second Legendre polynomials, f {(a · n), r} is the orien-
tational distribution function for molecules having principal
axes a with respect to director n at point r, and the J (i)

�Lλ

coefficients are generally introduced as follows:

J (i)
�Lλ ≡ 1

V0

∫ ∞

0
dr12ri+2

12 J�Lλ(r12), (7)

where V0 is the bulk occupied by a molecule and its nearest
neighbors (see Ref. [40]). The polar order parameter P is
different from zero if the orientational distribution function is
nonsymmetrical (when the molecular long axes are distributed
in a polar way). Electric polarization (its contribution along
director) is equal to the multiple of the longitudinal molecular
dipole and P. The first term in Eq. (5) contributes to the
prime polar anisotropy, while, after substitution of gradient
expansion (4), the average in the second term in Eq. (5) can
be written as follows:

〈n · (u12 · ∇)2n〉 = − 1
3 {(∇ · n)2 + (n · [∇ × n)])2

+ [n × [∇ × n)]]2 − ∇ · (n(∇ · n)

− (n · ∇)n)}, (8)

and thus does not bring us any new information, be-
cause it simply makes an additional contribution to the
elastic energy in the one-constant approximation. In the
same manner, let us average the J110(r12) T110(a1, u12, a2)
and J011(r12) T011(a1, u12, a2) terms with respect to all three
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vectors a1, a2, and u12:

〈J110(r12) T110(a1, u12, a2)〉
= 〈J011(r12) T011(a1, u12, a2)〉
≈ 1

2 P
[
J (1)

110 + J (1)
011

] 〈u12 · (u12 · ∇)n〉
= 1

6 P
[
J (1)

110 + J (1)
011

]
(∇ · n). (9)

Term (9) is the flexoelectric term having exactly the same
form as in Refs. [31–37] but obtained from intermolecular
interaction of particular symmetry. This term is exclusively
important in our consideration, because it appears to be the
splay generator in the molecular system composed of polar
molecules. It also generates polarization (nonzero polar order
parameter P), which appears to be improper, in contrast to
polarization arising because of the J (0)

101 term [the first term in
the right-hand side of Eq. (5)], which is proper. Indeed, in
the T101(a1, u12, a2) invariant, the polar axis of one molecule
couples to the polar axis of another molecule; no coupling
with other vectors is present; P2 appears in average; a polar
state without splay and bend deformations arises at P differ-
ent from zero; and P is the only transition parameter in the
absence of other terms. In contrast, in the T110(a1, u12, a2)
and T011(a1, u12, a2) invariants, the polar axis couples to the
intermolecular vector; P in the first power appears in average
and couples to the splay; and the splay phase with local po-
larization arises when both P and splay are present and does
not arise when either P or splay are absent. Below it is shown
that the antiferroelectric domains should arise in the improper
phase; no polarization appears in average over the domain in
the absence of other terms, and thus, polarization is not the
transition parameter; and the domain length is the transition
parameter.

If the molecule has transverse dipole, polarization can also
have nonzero contribution in the direction perpendicular to
director. But in this case, the structure should be macroscopi-
cally biaxial [41]. Since the DIO molecules do not possess any
pronounced biaxiality, the molecular short axes are expected
to be distributed randomly. In this case, flexo-polarization
can only appear as a result of the splay deformation. The
statistical approach derived in Sec. VI will allow us to esti-
mate the flexoelectric constant in the DIO material from the
M2–M1 transition temperature measured experimentally in
Refs. [14,15].

IV. DIRECTOR DISTRIBUTION IN A NEMATIC PHASE
COMPOSED OF POLAR MOLECULES

We expect that the molecules of nematic liquid crystal
can be locally organized in the nonpolar nondeformed, polar
deformed, or polar nondeformed ways [Figs. 5(a)–5(c), re-
spectively]. The energies of all three states are expected to
be close to each other. Moreover, the director in the polar
deformed state presented in Fig. 5(b) is expected to form
some waves to fulfill the absence of the global deformation
on the large scale. In this sense, the elastic constants of the
material capable of formation of all three states are expected
to be diminished with respect to those of conventional nematic
material.

(a) (b) (c) 

FIG. 5. The local molecular organization of the nonpolar nonde-
formed (a), polar deformed (b), or polar nondeformed (c) nematic
states.

In the case of a splayed structure (b), the splay deforma-
tion and the orientational order parameters should vary in the
space, since the polar order parameter P [defined in Eq. (6)]
is multiplied by (∇ · n) in Eq. (9). The absolute value of the
polar order parameter |P| should intuitively be higher in the
areas with the higher absolute value of the splay deformation
|(∇ · n)|, while the sign (direction) of both splay deforma-
tion and polarization should alternate periodically in space.
Since |P| is generally different from one at any coordinate,
a part of the molecules [with green arrows in Fig. 5(b)] is
always oriented in the opposite direction to the prime molec-
ular orientation [red arrows in Fig. 5(b)], while the nonpolar
structure presented in Fig. 5(a) should intuitively correspond
(this will be proved in Sec. VI) to the limit case of structure
(b) at infinite periodicity. The polar nondeformed structure
presented in Fig. 5(c) should intuitively correspond (this also
will be proved in Sec. VI) to the situation when the proper
ferroelectric term in the free energy [the first term in the
right-hand side of Eq. (5)], which is independent of the splay,
appears to overcome the entropy term.

The director-dependent free-energy density (in this
section we do not consider the twist deformation, whose con-
tribution is expected to be very weak in the achiral materials)
can be written in the following form, which is a combination
of the conventional elastic free energy and the flexoelectric
term (9):

fn = 1
2 K11 {n (∇ · n) − λP}2 + 1

2 K33[n × [∇ × n]]2

= ±λ |P| K11 (∇ · n) + 1
2 K11 (∇ · n)2

+ 1
2 K33[n × [∇ × n]]2 + const, (10)

where P is the vector having absolute value P [see definition
in Eq. (6)] and (at positive P) parallel to a particular direction
(one of the two opposite directions) of pseudovector n, K11

and K33 are the splay and bend elastic constants, respec-
tively, and K11λ ≡ [J (1)

110 + J (1)
011]/3 is the flexoelectric constant

originating from molecular improper polarity [Eq. (9)]. In par-
ticular, we expect that polarization can completely originate
from the splay deformation. In this case the overall polariza-
tion of the sample is equal to zero. For convenience, let us
fix the particular direction of pseudovector n. In this case (at
positive λ), polarization P is parallel to director n at positive
splay (∇ · n) and is antiparallel to n at negative splay, and
thus +λ or −λ should be chosen appropriately in Eq. (10) for
particular half waves.

Following recent publications, Refs. [17,18], and taking
also into account the general symmetry arguments, let us
consider the cylindrical symmetry of the waves [see tentative
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FIG. 6. Tentative illustration of the director distribution in cylindrical waves (a) and snapshots with central cross-cuts of the calculated
energy-optimal structure at |P| = 1, λ = 20 (b, c). Red color corresponds to the positive splay and polarization, green color corresponds to the
negative splay and polarization. Here θ is the angle between the local director and the cylinder axis x, while r denotes the radial position within
the particular cylinder. See details of computer simulations in Sec. V. The planes of images in (b) and (c) are perpendicular to each other.

illustration in Fig. 6(a) and the results of computer simulations
at |P| = 1 in Figs. 6(b) and 6(c)]. Let us suppose that the
material structure represents the cylindrical waves combined
without director disruption on the borders between them. Each
half wave belongs to a particular cylinder, while the splay and
polarization have opposite signs in the neighboring cylinders.
Let us say the red cylinder has positive splay and polarization
while the green one has negative splay and polarization. From
Figs. 6(b) and 6(c) it also follows (it will be proved analyt-
ically below) that the highest director deformation is in the
center of each cylinder, while the lowest director deformation
is on the periphery of each cylinder. Thus the absolute value
of polarization arising due to director deformation should
also decrease on the periphery of each cylinder, and, in
this case, they can stack to each other with minimal energy
loss.

Within each cylinder we introduce the r coordinate along
its radius, and we expect that the director is (mostly) along
the radial planes (the planes parallel to the cylinder axis x
and radius r). In this case the director has only two nonzero
cylindrical coordinates at each point (the expressions and the
subsequent consideration are similar to the Fredericks transi-
tion, see particular application in Ref. [19]):

nx = cos θ (r), nr = sin θ (r), (11)

where the x axis is along the cylinder symmetry axis. From
Eq. (11) it follows that

(∇ · n) = 1

r

d (r nr )

dr
= 1

r
sin θ + cos θ

dθ

dr
,

(∇ · n)2 = 1

r2
sin2 θ + 1

r
sin(2θ )

dθ

dr

+ cos2 θ

(
dθ

dr

)2

,

[n × [∇ × n]]2 =
(

dnx

dr

)2

= sin2 θ

(
dθ

dr

)2

. (12)

Substituting Eq. (12) into Eq. (10), neglecting all the terms
proportional to either dθ/dr or to λ (which are expected to
have opposite signs in the cylinders with opposite polarization

sign, and thus the corresponding terms vanish in average), and
minimizing free energy (10) with respect to θ and dθ/dr, as
presented, for example, in Ref. [42], Appendix A, one obtains
the equation of state in the general form

1

2

(
cos2 θ + K33

K11
sin2 θ

) (
dθ

dr

)2

− 1

2

1

r2
sin2 θ = k2, (13)

where k is some constant independent of angle θ , which
should be obtained by independent minimization of the free-
energy density. Introducing a new variable ψ ≡ k r, one
obtains from Eq. (13),

dθ

dψ
=

√√√√ 1 + 1
2ψ2 sin2 θ

1
2

(
cos2 θ + K33

K11
sin2 θ

) . (14)

The equation of state (14) appears to be quite simple. How-
ever, in contrast to the case of planar waves, it contains one
additional term, which is inversely proportional to the radius,
and thus, the splay deformation considerably increases in the
middle of each cylinder, but remains finite, because at the
axis of each cylinder the director distribution escapes into
the axial direction. As a first approximation, let us consider
the one-constant approximation (K11 = K33 ≡ K). It will not
be difficult to generalize the result for the case of different
values of K11 and K33. From the very beginning of Eq. (10)
for the free-energy density one notes that the whole LC struc-
ture can be rescaled by the dimensionless rλP factor without
any change in the global free energy. Therefore for the fol-
lowing consideration let us also introduce the dimensionless
divergence (∇ · n)/(λP). The dependencies of angle θ and
dimensionless divergence (∇ · n)/(λP) on the dimensionless
radial position rλP within a cylinder, obtained as a result of
numerical solution of Eq. (14), are presented in Figs. 7 and
8, respectively. As we predicted, the maximal divergence of
director is obtained at the cylinder axis, while the minimal
divergence of director is obtained at the cylinder periphery.
The dimensionless radius of cylinder, which is the quarter
of the wavelength of periodical structure (only a half wave
belongs to particular cylinder, while another half wave should
belong to the neighboring cylinder) and maximal θ angle

064701-6



EMERGENCE OF PARAELECTRIC, IMPROPER … PHYSICAL REVIEW E 105, 064701 (2022)

FIG. 7. Dependence of angle θ (see definition in Fig. 6) on the
dimensionless radial position within each cylinder at K11 = K33. The
diameter of the cylinder is a half-wave of the periodical structure.

within each wave can be obtained by further minimization of
the free-energy density.

Here we suppose that the waves arising in the molecu-
lar system are symmetrical with respect to the places where
polarization changes its sign. This means that all terms which
are proportional either to dθ/dr or to λ should vanish in aver-
age, while all other terms [including the ones proportional to
multiple λ dθ/dr or to (dθ/dr)2] should remain. Taking this
into account and substituting Eqs. (12) and (14) into Eq. (10),
and integrating the free-energy density along the radius of the
cylinder (with r dr Jacobian), one obtains

fn/(Kλ2P2) = 2 k̃2G1(ψm) ± 2 k̃ G2(ψm), (15)

where k̃ ≡ kλ|P|. We have taken into account that the rλP
rescale of structure retains the same overall free energy, and,
finally, in the framework of perturbation theory we have

FIG. 8. Dependence of dimensionless divergence (∇ · n)/(λ|P|)
on the dimensionless radial position within the cylinder at K11 = K33.
The radius of the cylinder is a quarter of the wave of the periodical
structure.

FIG. 9. Average free-energy density having a minimum for the
structure with particular rmax.

split the director and polarization dependencies on the co-
ordinates, while the G1(ψm) and G2(ψm) are introduced as
follows:

G1(ψm) ≡
∫ ψm

0

(
1 + 1

ψ2
sin2 θ

)
ψ dψ,

G2(ψm) ≡
∫ ψm

0
ψ cos θ

dθ

dψ
dψ. (16)

Minimizing free-energy density (15) with respect to parameter
k̃, one obtains

k̃ = ∓1

2

G2(ψm)

G1(ψm)
, (17)

while elimination of parameter k̃ from Eq. (15) yields

fn/(Kλ2P2) = −1

2

G2
2(ψm)

G1(ψm)
. (18)

The dependence of the dimensionless free-energy density
fn/(Kλ2P2) on the dimensionless radius rλ|P|, obtained nu-
merically from Eq. (18) using solution θ (ψ ) of Eq. (14), is
presented in Fig. 9. Here the radius r = ψ/k is calculated
using Eq. (17). The optimal radius of the cylinder corresponds
to the minimum free energy. It is inversely proportional to the
flexoelectric constant and polarization, while polarization can
depend on the radial position itself. This dependence will be
obtained in Sec. VI. On the borders between the neighbor-
ing cylinders polarization changes sign, while angle θ starts
decreasing, as can also be seen from computer simulation
[Figs. 6(b) and 6(c)]. The structure of the neighboring cylinder
appears to be the same, but polarization and splay appear to
be reversed. One can see from Figs. 7 and 8 that the waves
resembling those obtained in computer simulation can arise in
cylindrical geometry even in the one-constant approximation.
One notes that all dimensionless quantities obtained in this
section are expressed in terms of the polar order parameter P,
which itself can vary in the space. This variation will be found
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out in Sec. VI within the framework of a molecular-statistical
approach.

V. COMPUTER SIMULATIONS

To perform calculations of the bulk structure of polar
nematic material, we have modified the existing extended
Frank elastic continuum approach [43], previously used for
calculations of nematic and cholesteric systems. The original
approach includes the effects of the director field distortion
and the energy of defects. Here we are also going to take into
account the flexoelectric term (see Sec. IV):

F = 1

2

∫
V
{K11(n(∇ · n) − λ p)2

+ K22(n · [∇ × n])2 + K33[n × [∇ × n]]2}dV

+ W

2

∫
�

(1 − cos2 γ )d� + Fdef , (19)

where the second powers in the first and third terms in figure
brackets mean the dot product of the vector, which is squared,
by itself; K11, K22, and K33 are the splay, twist, and bend elastic
constants, respectively; K11λ is the flexoelectric constant; p
is the polarizability direction vector; V is the bulk of the
sample having surface �; W is the surface anchoring energy
density; γ is the angle between the local director and normal
to the surface; and Fdef is the energy of defects calculated by
the summation of the point and linear defect energies (see the
details in Ref. [43]). For simplicity, the polarizability direction
vector p is supposed to be a unit vector parallel or antiparallel
to director n at each point. Thus, the value of (n · p), arising
when the full square in the first term in figure brackets is open,
is equal strictly to 1 or –1. The polarizability direction field is
defined on the same cubic lattice as director field n.

Initially, the distributions of n and (n · p) are randomized.
Then we perform energy optimization using the Metropolis
Monte Carlo simulated annealing algorithm. In the original
method, Monte Carlo steps trialed random changes in director
field n and were accepted or declined via the Metropolis
algorithm. It consequently led to minimization of the total free
energy F . In this work each Monte Carlo trial consisted of the
same change in director field plus the random change in (n · p)
value. (For both 1 and –1 values, the probability of keeping
the same value was 0.5 and the probability of changing to the
opposite sign was also 0.5.) As a result, a simulated annealing
procedure led to minimization of the free energy over both
director n and polarizability direction p distributions in a
self-consistent way.

A one-constant approximation was used for simplicity:
K11 : K22 : K33 = 1 : 1 : 1. The value of λ varied from 0 to
20. To take into account potential formation of the discli-
nation lines with the core, its linear energy density was set
to f line

core = 10K11 (see Ref. [43]). The cubic simulation box
of size 2 × 2 × 2 was rendered into a 64 × 64 × 64 lattice.
For all facets, boundary conditions were set to a strongly
aligned director field along the x axis (μ1 = W d/K11 = 2000,
where d is the cube size). For each value of λ, we produced
a 32.7 × 1011 step (107 parallel multisteps) Monte Carlo an-
nealing optimization with five independent runs to find the
energy-optimal structures.

FIG. 10. Structures obtained in computer simulations at λ = 2,
6, and 20.

The resulting structures are presented in Fig. 10 at several
particular values of parameter λ. At λ = 0 and near zero,
the energy-optimal structure is the perfectly oriented nematic
with fully random distribution of (n · p) across the bulk of the
simulated system. It makes perfect sense, as the (n · p) values
do not affect the energy at λ = 0.

In the higher range of parameter λ, the quasiperiodic struc-
tures were formed resembling the cylinders with positive and
negative (n · p) placed in a square lattice in a checkerboard
pattern. The cross sections of these cylinders are shown in
Figs. 6(b) and 6(c) [red and green colors represent the lattice
points with negative and positive values of (n · p), respec-
tively]. The structure of the cylinders is very similar to those
obtained in the theoretical part of the paper. In the center of
each cylinder, the director is parallel to the principal direction
of the cylinder. Near the border between the adjacent cylin-
ders, the director tilts, which effectively generates the splay
required for the compensation of a nonzero λ(n · p) term.
There are not any point defects or director disclinations in this
structure.

The structural changes with the increasing parameter λ

demonstrate two important tendencies: (1) the maximum tilt
angle increases with the increasing λ, since it is required
for the compensation of the corresponding term in the free
energy; (2) the cylinder breadth (which is the effective period
of the structure) decreases with the increasing λ (see Fig. 11).
This dependency is similar to that predicted theoretically
in Sec. IV.

FIG. 11. Period of the structure, obtained in computer simula-
tions, as a function of parameter λ.
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VI. ORDER PARAMETERS AND PHASE TRANSITIONS
BETWEEN M1, M2, AND MP PHASES

In the present section, the molecular-statistical approach
will be considered, and it will be shown how the thermal
fluctuations can select between various symmetries discussed
in Sec. III and cause the transitions between the MP, M2,
and M1 phases. The orientational distribution function [see
Eq. (6)] is generally supposed now to have both polar and
nonpolar contributions. By minimizing the global free energy
with respect to the orientational distribution function in the
manner of paper [40], one obtains the following recurrent
equations for the nonpolar and polar order parameters:

S(r) = I2(r)

I0(r)
, P(r) = I1(r)

I0(r)
, (20)

where

Im(r) =
∫

Pm(a · n) exp

{
− UMF [(a · n), r]

kBT

}
d2a, (21)

where Pm is the mth Legendre polynomial (the first or the
second in our particular case). From Eqs. (20) and (21), it
follows that the temperature dependencies of the order param-
eters can be written in the form of Boltzmann distributions in
the mean molecular field UMF [(a · n), r] acting on a molecule
having orientation of its principal axis a and located at point
r, which consists of the three terms:

UMF [(a · n), r] = −σ0

{[
J (0)

101 + 8πV0

σ0
K11λ

2 (∇ · n)

λP(r)

]

× P(r)P1(a · n) + J (0)
202S(r)P2(a · n)

}
, (22)

where σ0 is the average number of the nearest neighbors
of each molecule, and V0 is the elementary bulk occupied
by a molecule and its nearest surrounding. The last term in
the figure brackets in Eq. (22) is the nonpolar anisotropy
term, which is written exactly in the same form as in the
Maier-Saupe theory.

The polar anisotropy term [the first term in the rectangular
brackets in Eq. (22)] can be written in the same manner with
the only difference that the nonpolar order parameter should
be replaced with a polar one and the second Legendre polyno-
mial should be replaced with the first one. The coefficients J (0)

101

and J (0)
202 originate from the expansion of the intermolecular

potential in spherical invariants [Eqs. (1) and (7)]. The dimen-
sionless divergence of director (∇ · n)/(λP) is determined as
a function of the dimensionless radial position of a molecule
within the cylindrical wave in Sec. IV (see Fig. 8). Thus
the whole molecular field (22) and the order parameters (20)
are determined at any point within the wave if the waves are
present. If they are absent, the divergence term in the mean
field is equal to zero. The temperature dependencies of the
S and P order parameters obtained from Eqs. (20)–(22) are
presented in Figs. 12(a) and 12(b), respectively. One notices
a good correlation with the experimental results obtained in
Refs. [14,15] for the DIO material. The transitions between
the M1, M2, and MP phases happen when the temperature
decreases. The M1 phase is the conventional nonpolar nematic
phase with S > 0 and P = 0, whose local structure corre-
sponds to the one presented in Fig. 5(a). The MP phase is

FIG. 12. Temperature dependencies of the nonpolar (a) and po-
lar (b) order parameters at σ0J (0)

202/kB = 2032 K, σ0J (0)
101/kB = 412 K,

K11 = K33 = 6 pN, λ = 5 μm−1, JA/kB = 130 K μm, and V0 = 1.1 ×
10−24 m3 [40].

a proper ferroelectric nematic phase with S > 0 and P 	= 0
without splay and bend director deformations, whose local
structure corresponds to that presented in Fig. 5(c). The M2
phase appears to be the splay phase with antiferroelectric
domains (at a particular half wave the polarization is positive,
and at the neighboring half wave the polarization is negative).
The local structure of the M2 phase corresponds to that pre-
sented in Fig. 5(b), while on the larger scale the structure
represents the cylindrical waves (domains) demonstrated in
Fig. 6. The number of domains with positive splay and po-
larization is equal to the number of domains with negative
splay and polarization. The average P is equal to 0 in the
M2 phase [black curve in Fig. 12(b)], while the average |P|
[red curve in Fig. 12(b)] is different from zero because of the
existence of antiferroelectric domains. It appears to be even
larger than in MP, because both J (0)

101 and K11λ contributions
are different from zero in M2. Because of the same reason,
the nonpolar order parameter S is larger in M2 than in MP.
However, the residual orientational ordering reflecting both
S and P can appear larger in MP than in M2. Both S and P
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FIG. 13. Dependencies of the nonpolar (a) and polar (b) order
parameters on the radial position within each cylindrical wave in the
M2 phase at σ0J (0)

202/kB = 2032 K, σ0J (0)
101/kB = 412 K, K11 = K33 =

6 pN, λ = 5 μm−1, JA/kB = 130 K μm, V0 = 1.1 × 10−24 m3 [40],
and T = 341 K [curves (1)], 349 K [curves (2)], 354 K [curves (3)],
and 356 K [curves (4)]. Dots at the end of each curve correspond to
the domain radius at each particular temperature.

order parameters contribute to the optical anisotropy. Since
parameter P greatly increases at the M2-MP phase transition,
the optical anisotropy also increases that corresponds to the
observations presented in Fig. 2.

To outline the origin of the transitions between the M1, M2,
and MP phases, one should pay attention to Fig. 13, in which
the S and P order parameters are presented at several particu-
lar temperatures as functions of the radial position within the
cylindrical waves (domains) arising in the M2 phase. Both
nonpolar and absolute value of polar order parameters are
larger in the center of each cylinder and smaller on the pe-
riphery of each cylinder. The smallest absolute value of polar
order parameter (which is on the periphery of cylinder) is also
presented as a function of temperature by the blue curve in
Fig. 12(b). Between cylinders the polarization is supposed to
change sign so that unfavorable antiferroelectric decoupling
should exist at each stacking area between cylinders. The
equilibrium free-energy density at radial position r inside of

each cylinder can also be obtained by analogy to that pre-
sented in Ref. [40]:

4πV0 f (r) = −kBT ln I0(r) + 1

2
σ0

{[
J (0)

101

+ 8πV0

σ0
K11λ

2 (∇ · n)

λP(r)

]
P2(r) + J (0)

202S2(r)

}
,

(23)

while the junctions between neighboring cylinders should
correspond to unfavorable antiferroelectric orderings whose
surface energy density is proportional to P2(rmax) with pos-
itive sign, so that the average free-energy density should be
recalculated as

4πV0〈 f (r)〉 = 8πV0

r2
max

∫ rmax

0
f (r)r dr + JA

P2(rmax)

rmax
, (24)

where JA is the strength of antiferroelectric decoupling. The
transition temperatures between M1, M2, and MP are deter-
mined from the comparison of the free energies (23)–(24) in
all phases. The first term in the right-hand side of Eq. (24) is
the average over each cylinder free-energy density, while the
second term is the antiferroelectric decoupling term, which
is inversely proportional to the radius of each cylinder rmax

decreasing with the decreasing temperature, since it is in-
versely proportional to the absolute value of polarization. The
size of each domain decreases with the decreasing tempera-
ture, which is why the borders between domains make larger
and larger contribution to the average free-energy density. At
some sufficiently low temperature, this positive contribution
becomes larger than the difference between the bulk free
energies [corresponding to the first term in Eq. (24)] of the
MP and M2, and the first-order phase transition from M2 to
MP happens. Without the splay deformation, the polar order
parameter would vary with variation of temperature as shown
by green line in Fig. 12(b). Since the range of the green curve
is very narrow in the temperature scale, the polarization in
most of the temperature range of the M2 phase exists solely
due to the splay deformation.

The radius of each cylinder as a function of temperature
within the M2 phase is presented in Fig. 14, from where
one concludes that the wavelength of director deformation
diverges at the transition temperature between the M2 and M1
phases, the polar order parameter at each coordinate tends to
zero, and the second-order transition from the M2 phase to
M1 phase happens. A particular elastic constant specific to a
conventional nematic phase in the one-constant approxima-
tion was used in calculation of Figs. 12–14. As a result, the
radius of the cylindrical domain within the M2 phase mostly
varies from several micrometers to several tens of microme-
ters depending on the temperature. The domain size appears to
be of the same order of magnitude as measured experimentally
in Ref. [15]. However, in the polar materials, because of the
existence of the three different structures presented in Fig. 5
with almost equal free energy, which can transform to each
other by means of the splay and bend deformations, we expect
that both the splay and bend elastic constant can be sufficiently
smaller than those in conventional materials. Moreover, since
the transition between (a) and (b) structures is of the second
order, there is no energy barrier between them. This effect was
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FIG. 14. Temperature dependence of the domain radius within
the M2 phase at σ0J (0)

202/kB = 2032 K, σ0J (0)
101/kB = 412 K, K11 =

K33 = 6 pN, λ = 5 μm−1, JA/kB = 130 K μm, and V0 = 1.1 ×
10−24 m3 [40].

previously formulated by Čopič and Mertelj [37] as elastic
constant softening. In this case, the domain size will reduce
as a square root of the elastic constant decrease. The J (0)

202,
J (0)

101, K11λ
2, and JA parameters were chosen to match the three

transition temperatures measured in Refs. [14,15] and in our
own experiment, and also the expected temperature at which
the MP and M1 phases would coexist in the absence of the M2
phase [the place where the green curve in Fig. 12(b) comes
to zero].

VII. CONCLUSION

In the present paper, a comprehensive investigation of the
paraelectric, improper antiferroelectric (“splay”), and proper
ferroelectric nematic phases in the materials composed of
polar molecules was done, including experiment, theory, and
computer simulations. Here we refer to these phases as
M1, M2, and MP, respectively, similar to that suggested in
Ref. [14]. The origin and structures of the M1, M2, and MP
phases were outlined. The higher-temperature M1 phase is the
conventional nonpolar nematic phase with equal proportions
of polar molecules with principal polar axes belonging to both
semispheres perpendicular to director. The lower-temperature
MP phase is the proper ferroelectric phase without splay and
bend director deformations. An intermediate, M2 phase is the
improper antiferroelectric nematic phase with very high local
polar and nonpolar order parameters. The polarization in the
M2 phases arises mostly due to the splay director deformation.
The director exhibits the splay and bend deformations in the
form of cylindrical waves, which are, in fact, the same as the
double splay reported by Rosseto and Selinger [35,36]. On
average, the polarization is equal to zero in the M2 phase,
while it is nonzero within each cylinder forming a half wave.
The absolute values of polarization and splay deformation are
maximal in the middle of each cylinder and are minimal on
the periphery of each cylinder. Between the cylinders, the po-
larization changes its direction. The numbers of the cylinders
with positive and negative polarization are equal. The director

distribution within each cylinder was obtained analytically
and from computer simulations. An excellent correlation be-
tween computer simulations and theory was found.

The intermolecular interactions of specific symmetry re-
sponsible for the proper and improper ferroelectricity were
found. The nonpolar and polar order parameters were es-
timated in the M1, M2, and MP phases as functions of
temperature within the framework of a molecular-statistical
approach. The transitions between the M1, M2, and MP
phases upon the decrease of the temperature were identified,
and their origins were outlined. In the M2 phase, both non-
polar and polar order parameters vary in the space, and their
variation was estimated. The equilibrium domain size (cylin-
der diameter) in the M2 phase was found to increase with the
increasing temperature and to diverge at the M2-M1 transition
temperature. Polarization vanishes at each point in the space at
the same temperature. Although the phenomenological output
of our theory is similar to that presented in Refs. [34–36],
consideration of statistical distributions results in the second-
order M1-M2 phase transition. Here we understand that the
divergence of domain size is always a sort of theoretical ide-
alization, and therefore our results are quite consistent with
the conclusion made in Ref. [33] about the weak first-order
phase transition between these phases.

The M2-MP phase transition is of the first order. It happens
because of the antiferroelectric decoupling at the junction
areas between the domains. The junction areas become denser
at the decreasing domain size (with the decreasing temper-
ature within M2), and their positive contribution to the free
energy becomes more and more valuable. Finally, they de-
stroy the M2 phase at a particular temperature and the proper
ferroelectric MP phase arises instead. The transition temper-
atures between the M1, M2, and MP phases were identified
experimentally for the DIO material (see also Ref. [14]), and
the order of the phase transition was checked. A very good
correlation between theory and experiment is found. However,
experimental determination of the elastic constants in polar
materials appears to be of the prime importance in future
publications, since the domain size in the M2 phase is pro-
portional to the square root of the splay elastic constant.
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