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Pattern formation and phase transition in the collective dynamics
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The collective behavior of a binary mixture of polar self-propelled particles (SPPs) with different motile
properties is studied. The binary mixture consists of slow-moving SPPs (sSPPs) of fixed velocity vs and fast-
moving SPPs (fSPPs) of fixed velocity v f . These SPPs interact via a short-range interaction irrespective of their
types. They move following certain position and velocity update rules similar to the Vicsek model (VM) under
the influence of an external noise η. The system is studied at different values of v f keeping vs = 0.01 constant
for a fixed density ρ = 0.5. Different phase-separated collective patterns that appear in the system over a wide
range of noise η are characterized. The fSPPs and the sSPPs are found to be orientationally phase synchronized
at the steady state. We studied an orientational order-disorder transition varying the angular noise η and identified
the critical noise ηc for different v f . Interestingly, both the species exhibit continuous transition for v f < 100vs

and discontinuous transition for v f > 100vs. A new set of critical exponents is determined for the continuous
transitions. However, the binary model is found to be nonuniversal as the values of the critical exponents depend
on the velocity. The effect of interaction radius on the system behavior is also studied.
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I. INTRODUCTION

Collective pattern formation and self-organization of active
or self-propelled particles (SPPs) spontaneously occur in na-
ture at different length scales. For example, actin filaments
can form different structures as microclusters, stripes, and
traveling waves [1,2], bacterial swarms growing in the lab-
oratory can self-organize into high-density coherent patterns
[3–7]; other examples include army ants [8], insect swarms
[9,10], spiny lobsters [11,12], fish schools [13], flocking birds
[14,15], pedestrian flow [16,17], and artificial systems of SPPs
[18,19]. The collective behavior of polar SPPs is extensively
studied following the seminal Vicsek model (VM) [20]. In this
model, a large number of polar SPPs move together with equal
speed v0, and they align their direction of motion with their
neighbors through a short-range (R) alignment interaction.
However, the average direction is subject to an angular noise
(η). For a given density (ρ0), an orientational order-disorder
transition occurs at a critical noise (ηc). Initially, the nature of
this phase transition in the VM was found to be continuous for
low velocity and small system sizes [21,22]. However, later
it was established through extensive simulations that there
exists a crossover system size L∗(ρ0, v0) [23,24] below which
the nature of the transition is continuous, and above which
it is discontinuous where dense traveling bands appear in the
system. It needs to be noted that L∗(ρ0, v0) diverges both for
low velocities (v0 < 0.05) and low densities (ρ0 < 0.01) [23].
The formation of the dense traveling band near the transition
region is fluctuation driven and occurs due to the feedback
mechanism between local order and local density [25].

One of the major limitations of the VM is that all the
polar SPPs have the same motile property. For example, all

the SPPs have the same velocity. However, in natural systems,
the velocities of particles need not be the same during collec-
tive motion. For example, there are fast-moving (active) and
slow-moving (dormant) bacteria in a bacterial population or
slow-moving and speedy vehicles in daily traffic. Phase sep-
aration and static clusters were mainly observed in the study
of collective dynamics of SPPs with variable speed (depend-
ing on the neighborhood’s polarization) [26,27]. Apart from
velocity, other properties of active particles are also varied to
study the phase separation in different systems [28,29]. Ex-
amples of such systems include a mixture of active Brownian
particles with different diffusion constant [30,31], a mixture
of active and passive particles [32–35], binary active parti-
cles with different alignment interactions [36], an oppositely
driven binary mixture of particles [37–39], chiral active matter
[40,41], a mixture of polar and apolar SPPs [42], and many
others.

However, the study of collective dynamics in a binary
mixture of polar SPPs with different motile properties is a new
area of research. This paper studies the collective dynamics of
a mixture of two types of SPPs with widely different fixed
velocities. The SPPs interact with local short-range interac-
tion, and the dynamics evolve under an external noise. It is
intriguing to observe whether self-organized pattern forma-
tion and phase separation occur in this binary model (BM)
with a short-range interaction only. Furthermore, will there
be any criticality in the system? Will the system undergo any
order-disorder transition at a critical point? What would be
the nature of such a transition? In this study, we explore an-
swers to all these questions. The collective dynamics and the
underlying mechanism could also explain the similar pattern
formation and dynamical behavior observed in other systems.
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FIG. 1. The distribution of binary SPPs is shown on a system
of size L = 10, where N = ρL2 = 50, Nf = Ns = 25. Orange and
maroon colors represent fSPPs and sSPPs, respectively. The arrow
associated with an SPP indicates the direction of velocity. A fSPP
at the center of the circle-1 interacts with both the fSPP and sSPP
present within the radius of R. Similarly, an sSPP at the center of
the circle-2 interacts with both types of SPPs present within the
radius R.

In the next section, we present the model and discuss the
results obtained. Herein, polar SPPs will be referred to simply
as SPPs.

II. MODEL

The collective motion of a mixture of SPPs with two dif-
ferent motilities is modeled over a two-dimensional square
box of linear size L. The different motilities of SPPs are
modeled, assigning widely different fixed velocities to them.
The fast-moving SPPs (fSPPs) move with a velocity v f and
the slow-moving SPPs (sSPPs) move with a velocity vs where
v f � vs. The two types of SPPs are taken in equal proportion.
If Nf is the number of fSPPs, and Ns is the number of sSPPs,
then Nf = Ns = N/2 where N is the total number of SPPs
in the system. Initially, the position �rp,i, i = 1, 2, 3, . . . , N/2
of all the SPPs are randomly distributed over the space (off
lattice) where p ∈ {s, f }. The initial orientation θi of an SPP
is randomly selected in the range −π to π , irrespective of its
type. The SPPs of both types interact within a local neighbor-
hood R = 1 and determine their average orientation. There is
no external force or interparticle repulsion. Both interparticle
and intraparticle interactions are considered in estimating the
average orientation. The distribution of 25 randomly oriented
fSPPs (in orange) and 25 randomly oriented sSPPs (in ma-
roon) is shown in Fig. 1. Longer and shorter arrows show the
velocities v f and vs, respectively.

The time evolution of the orientation θi of the ith SPP is
determined by

θi(t + �t ) = 〈θ (t )〉R + �θ (1)

where �θ is a random orientation chosen with a uniform
probability from the interval [−ηπ,+ηπ ]. The strength of the
angular noise η varies from 0 to 1. The term 〈· · · 〉R is defined

as

〈θ (t )〉R = arctan

[ 〈sin θ〉
〈cos θ〉

]
,

〈sin θ〉 = 1

n

∑
j∈{R}

sin θ j, 〈cos θ〉 = 1

n

∑
j∈{R}

cos θ j,

where n is the number of SPPs in the neighborhood region
R that includes both the sSPPs and fSPPs. It should be noted
that the magnitude of velocity of individual SPPs are ignored
and only the orientations are taken into account in estimating
〈θ (t )〉R. After averaging, an SPP of type p (p ∈ {s, f }) at the
position �rp,i is thus moving with a speed vp in the direction θi.
Knowing the velocity �vp,i(t ) at every time step, the position of
the ith SPP �rp,i is updated following the forward update rule

�rp,i(t + �t ) = �rp,i(t ) + �vp,i(t )�t, (2)

where �t is the time between two successive updates, and
it is chosen as �t = 1. Periodic boundary conditions (PBCs)
in the horizontal and vertical directions are applied in case
the position vector crosses the boundary of the square box.
Equations (1) and (2) are then evolved with time and a steady
state is achieved for a given noise η. The model is studied
varying η over a wide range. The interaction considered in
this model is purely aligning in nature and no steric or hydro-
dynamic interactions are present in the system. In the special
situation where vs = v f = v0, the BM is equivalent to the VM
with velocity v0 for all SPPs [20].

For a given initial random distribution of SPPs over a
square box of size L, Monte Carlo simulations are performed
to study the time evolution of the binary system following
Eqs. (1) and (2). One Monte Carlo time step corresponds to
incrementing the position and orientation of all the SPPs. The
initial 7×105 Monte Carlo steps are neglected to achieve the
steady state. An ensemble of size 48×105 is taken for statisti-
cal averages (2×105 samples at different times for 24 different
initial configurations). Simulations are performed at different
velocities: keeping vs = 0.01 fixed, the value of v f is taken
as v f = 30vs, v f = 50vs, v f = 100vs, and v f = 150vs. The
density of SPPs is kept fixed as ρ = 0.5 for all simulations.
Thus, the total number of SPPs is N = ρL2. The numbers of
sSPPs (Ns) and fSPPs (Nf ) are taken in equal proportions, i.e.,
Nf = Ns = N/2.

III. COLLECTIVE PATTERNS AND THEIR
CHARACTERIZATION

In this section, we will describe the morphological as well
as structural changes of flocks of SPPs with noise. A flock is
a collection of SPPs that are within the range of interaction
R from each other. For this study, we consider the velocity of
sSPPs as vs = 0.01 and that of fSPPs as v f = 30vs. The mor-
phology of the binary mixture at different noises is generated
on a system of size L = 128 (total number of SPPs N = 8192,
Nf = Ns = 4096). The morphology is shown in Fig. 2 where
the orange color represents the fSPPs, and the maroon color
represents the sSPPs. A variety of patterns of the flocks of
sSPPs and fSPPs appear as the angular noise η varies.

For a low angular noise η = 0.01, the flocks of fSPPs
are in the form of clusters and moving in a particular
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FIG. 2. System morphology with v f = 30vs and vs = 0.01 for different angular noise values (a) η = 0.01, (b) η = 0.15, (c) η = 0.24,
(d) η = 0.45, and (e) η = 0.70 for a system of size L = 128, Nf = Ns = 4096. Orange: fSPPs; maroon: sSPPs.

direction (indicated by an orange arrow). On the other hand,
the flocks of sSPPs form narrow lanes in the same direction
(indicated by a maroon arrow) as that of fSPPs. The situation
is shown in Fig. 2(a). It seems that in the binary system
of SPPs, the dynamics of sSPPs is governed by the local
shear between two SPPs. Since the sSPPs are slow movers,
many fSPPs interact with them at a given time. Moreover,
at each time step, the fSPPs travel a much larger distance
than the sSPPs, and consequently they influence the order-
ing of the distant flocks of fSPPs as well as that of sSPPs.
For a given initial configuration, the direction of motion of
directed clusters (DSs) of fSPPs or directed lanes (DLs) of
sSPPs, is spontaneously selected toward an arbitrary direc-
tion. Such lane formation was not observed in the VM with
monodispersed SPPs. However, the formations of lanes and
clumps were also observed in a model of SPPs with density-
dependent motility [43]. Phase-separated bands of big and
small particles oriented along the direction of the flow are
also observed in a bidisperse granular system under shear
flow [44].

As η is increased to 0.15, DSs of fSPPs look a little scat-
tered, whereas the sSPPs form clumps (or compact clusters)
that still move in the same direction as DSs as shown in
Fig. 2(b). The orientation of the clumps of sSPPs remains
synchronized with that of the DSs of fSPPs. We call these
clumps of sSPPs directed clumps (DCs). Further increase of
noise to η = 0.24 induces random motion to the flocks of both
fSPPs and sSPPs, shown in Fig. 2(c). We call the randomly
moving clusters of fSPPs random clusters (RSs) and the ran-
domly moving clumps of the sSPPs random clumps (RCs).
Thus, the orientationally ordered phase with DSs and DCs
goes to an orientationally disordered phase with RSs and RCs
as the noise changes from η = 0.15 to η = 0.24. The critical
behavior of such a transition will be described in Sec. IV. As
η is increased to 0.45, RSs and RCs are found to dissolve into
a larger number of microclusters (MSs) of fSPPs and micro-
clumps (MCs) of sSPPs, respectively, as shown in Fig. 2(d).
For relatively high η, a homogeneous gaslike mixture (HGM)
of both types of SPPs is observed, as shown in Fig. 2(e) for
η = 0.70.

Similar patterns also appear in the cases of higher values
of v f , keeping vs = 0.01. Now we characterize the patterns,
considering a system of size L = 256 with ρ = 0.5. Thus, the
total number of SPPs N = 32 768, and the numbers of fSPPs
and sSPPs are Nf = Ns = 16384.

A. Phase segregation

It is observed that the system remains phase separated over
a wide range of noise η. The system is found to be phase
separated, which means the sSPPs and fSPPs can be identi-
fied separately in space. A segregation coefficient [40,45] is
defined as

S = 1

N

Q∑
j=1

∣∣n( j)
f − n( j)

s

∣∣ (3)

where
∑Q

j=1{n( j)
f + n( j)

s } = N , the total number of SPPs, Q
is the number of small square boxes of size �×� that cover
the whole system of size L×L, and n f and ns are the number
of the fSPPs and sSPPs, respectively, in a small box. We
have estimated S for a wide range of η, taking � = 8. Thus,
Q = L2/�2 = 1024. As per Eq. (3), if every box is filled
with either fSPPs or sSPPs (phase-separated), then S = 1,
and if every box is filled with both fSPPs and sSPPs in
equal proportion (homogeneous phase), then S = 0; whereas
S = 1/2 corresponds to the situation that, on an average,
�n = |n( j)

f − n( j)
s | ≈ 16 in every box. We consider the system

to be phase separated if S � 1/2 and mixed if S < 1/2. The
variation of S with η is shown in Fig. 3. It can be seen that
the system remains phase separated up to a very high noise,
η ≈ 0.36. The value of S is greater than 0.8 for η < 0.04 at
which the phase-separated DL and DS appear. The process

FIG. 3. v f = 30vs, vs = 0.01: Plot of the segregation coefficient
S versus η. System size is L = 256. The square box of area L2 is
divided into Q square subregions of linear size � and area L2/Q each.
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FIG. 4. v f = 30vs, vs = 0.01: (a) Plot of Mp against η. (b) Plot
of ξp against η. (c) Plot of NC,p against η. (d) Plot of σθ,p versus η. In
the inset of (d), P(θ ) is plotted for η = 0.16 with the same symbols
and colors for the fSPPs and sSPPs. System size is L = 256.

of phase separation continues, and the system is found to
be highly phase separated with S ≈ 0.9 in the noise range
0.04 < η < 0.09. Such a phase separation between the two
species is due to the large velocity difference and the presence
of noise in the system. For η > 0.09, S decreases monotoni-
cally with increasing η. This indicates a slow mixing of the
two species of SPPs at high noise. Eventually, at η ≈ 0.70,
the phase separation disappears S ≈ 0.15, and the two species
of SPPs mix uniformly. Phase separation was also reported
in a binary mixture of active Brownian particles with wide
differences in the diffusion constant [30].

B. Characterization of patterns

To monitor the structural change in the patterns of the
flocks, we have estimated the size (MP) and extension (ξp)
of the largest flock, and the number of flocks Nc,p (p ∈ {s, f })
with noise η on a system of size L = 256. The largest flock
size of p-type SPPs is given by the number of pSPPs that
belong to the largest flock of that type, and the extension of
a flock is just the gyration radius. To measure how the flocks
of SPPs are ordered, we have estimated the full widths at half
maxima σp of the orientation distribution P(θ ), where σp can
vary from 0 to 2π . Thus, σp represents the orderliness of the
flocks: σp = 0 means they are highly ordered (moving in a
particular direction) and σp = 2π means they are completely
disordered (moving in all possible directions). The variations
of Mp, ξp, Nc,p, and σp against η are shown in Fig. 4.

For η = 0.01, the sSPPs have the largest flock of size
Ms ≈ 8000, extension ξs ≈ 150 (half of the system size),
and number of flocks Nc,s ≈ 50; whereas the fSPPs have the
largest flock of size M f ≈ 1300 (out of Nf = 16384), exten-
sion ξ f ≈ 15, and number of flocks Nc, f ≈ 500. At this noise,
the flock structure of sSPPs (DL) seems to be more compact
in comparison to the DS of fSPPs. It should be noted that such
a dense packing of slow-moving particles occurred in the ab-

sence of an attractive force. This has happened only due to the
presence of small noise and high-velocity differences between
the two types. The flocks are highly ordered, σs = σ f ≈ π/15.

As η is increased to 0.06, a drastic change happens to the
flock structure of sSPPs. The largest flock size of sSPPs is
Ms ≈ 2500, the extension is ξs ≈ 12, and the number of flocks
is Nc,s ≈ 70. For fSPPs, the largest flock size is M f ≈ 500, the
extension is ξ f ≈ 10, and number of flocks is Nc, f ≈ 1700.
The change in the structure of sSPPs is remarkable in compar-
ison to that of fSPPs. It seems there is a noise-induced melting
transition happening in the system. However, it needs to be
characterized carefully with further studies. The orderliness
of the flocks is σs = σ f ≈ π/6.

On further increase of η to 0.12–0.16, both sSPPs and
fSPPs rebuild their largest flocks. For sSPPs at η = 0.12, the
largest flock size is Ms ≈ 3400 and the extension is ξs ≈ 12.
The number of flocks has increased to Nc,s ≈ 160. The orderli-
ness σs ≈ π/3. For fSPPs at η = 0.16, the largest flock size is
M f ≈ 800 and the extension is ξ f ≈ 12. The number of flocks
has increased to Nc, f ≈ 3000. The orderliness σ f ≈ π/2. In
the intermediate range of η, it is observed that σ f > σs. Once
again it should be noted that the aggregation of flocks is hap-
pening in the absence of any attractive force. The orientation
distributions P(θ ) for both the SPPs are given in the inset of
Fig. 4(d) for η = 0.16.

The above properties are found to decrease monotonically
with increasing η beyond 0.16. These parameters remain
ineffective in determining the orientational order-disorder
transition that occur at η ≈ 0.19. However, near the transi-
tion point (η = 0.20) the largest flock sizes are Ms ≈ 2000,
M f ≈ 400 and the extensions are ξs ≈ 9, ξ f ≈ 7. The number
of flocks are Nc,s ≈ 350, Nc, f ≈ 4000. Both the orderliness
values σs and σ f are close to π . In the high noise limit (0.40 �
η � 0.70), both sSPPs and fSPPs have similar properties such
as largest flock sizes are Ms = M f ≈ 60, extensions are ξs =
ξ f ≈ 4. The number of flocks are Nc,s = Nc, f ≈ 10000 when
total numbers sSPPs and fSPPs are Nf = Ns = 16384. The
orderliness of both the species is the lowest, σ f = σs = 2π .

C. Velocity correlations

The spatial correlation is measured by the two-point veloc-
ity correlation function g(r) and the temporal correlation is
measured by the velocity time autocorrelation function C(t ).
Following Ref. [46], they are given by

g(r) =
〈 �vi(0) · �v j (r)

|�vi(0)||�v j (r)|
〉
, C(t ) =

〈 �vi(0) · �vi(t )

|�vi(0)||�vi(t )|
〉
, (4)

where i and j are particle indices, t is the time interval, r
is distance between i and j, and 〈· · · 〉 stands for an ensem-
ble average over 1000×N configurations. The values of g(r)
versus r and C(t ) versus t are estimated for three different
noise values around the critical point as η = 0.15, 0.19(ηc),
and 0.24. The g(r) and C(t ) values are plotted in Figs. 5(a)
and 5(b) against r and t respectively in semilogarithmic scale.
The critical correlations g(r) or C(t ) at ηc = 0.19 curves are in
red, the brown curves represent the g(r) or C(t ) in the ordered
(DS+DC) phase, and the green curves represent the g(r) or
C(t ) in the disordered (RS+RC) phase.
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FIG. 5. v f = 30vs, vs = 0.01: (a) Plot of g(r) against r. (b) Plot
of C(t ) against t . System size is L = 256.

It can be seen from Fig. 5(a) that the correlation g(r) decays
faster for r > 10. In this region, the extension of the flocks
(ξp) is found to be of the order of ξ f , ξs ≈ 10. As a result, the
velocity orientation is correlated among the SPPs present in
the same flock, and the correlation is found to be strong for
r < 10. In the subcritical regime (η < 0.19, shown in brown),
a strong correlation [g(r) > 0.5] is sustained all over the sys-
tem. In the upper critical regime (η > 0.19, shown in green),
the correlation decays very fast and goes to zero at r ≈ 50.
However, the critical correlation g(r) (ηc = 0.19) is sustained
with a smaller value [g(r) ≈ 0.15] up to a distance of the
order of system size. It is expected that, at the criticality, the
correlation length should be of the order of system size. With
a small increase in noise, such correlation could be destroyed,
as seen in the case of η = 0.24, and, on reducing the noise,
g(r) increases as seen in the case of η = 0.15. It is important
to notice that even though the interaction is short ranged, the
correlation extends up to system size.

It can be seen in Fig. 5(b) that the autocorrelation C(t ) is
very high over a long time t , irrespective of η. The critical C(t )
is sustained for a long time t > 104. The C(t ) at ηc is always
less than C(t ) for the DS+DC phase, and it is always greater
than C(t ) for the RS+RC as expected. The C(t ) for η = 0.24
goes to zero at t = 104 whereas for η = 0.15 it is ≈0.56 at
t = 104 and continues to be high beyond this t . It seems that
once dense flocks are formed in the system, they stay for a
long time, and a strong correlation exists in the ordered phase,
whereas the flocks in the disordered phase seem to be less
stable due to the randomness among the SPPs.

IV. PHASE TRANSITION

As the angular noise η varies, the system undergoes a
transition from an orientational ordered state to an orienta-
tional disordered state. In this model, such a transition occurs
when the DS+DC phase [Fig. 2(b)] changes to the RS+RC
phase [Fig. 2(c)] around the critical noise η = ηc. The order
parameter of the transition is defined as

φ(η, L) =
∑
p= f ,s

φp(η, L), φp(η, L) = 1

Np

∣∣∣∣∣
Np∑
i=1

�vp,i

|�vp,i|

∣∣∣∣∣, (5)

where φ represents the total order parameter, φp (p ∈ {s, f })
is the partial order parameter, and Np is the number of p-type
SPPs. The susceptibility χ for the whole system and that of
the partial systems χp can be estimated from the fluctuation in

their respective order parameters φ and φp as

χ = L2[〈φ2〉 − 〈φ〉2], χp = L2
[〈
φ2

p

〉 − 〈φp〉2
]
, (6)

where 〈φn〉 = ∫
φnP(φ)dφ, 〈φn

p〉 = ∫
φn

pP(φp)dφp, and P(φ)
and P(φp) are the distribution functions of φ and φp respec-
tively. Similarly, the fourth-order Binder cumulant for the
whole system and that of the partial systems are defined as

U = 1 − 〈φ4〉
3〈φ2〉2

, Up = 1 −
〈
φ4

p

〉
3
〈
φ2

p

〉2 , (7)

where the higher order averages are obtained following the
definitions of 〈φn〉 and 〈φn

p〉 given above.
If the orientational order-disorder transition is continuous,

the finite size scaling (FSS) relations of the above parameters
can be given following the equilibrium thermal critical phe-
nomena [47,48], as

φ(η, L) = L−β/νφ0[εL1/ν], (8)

where ε = (η − ηc)/ηc the reduced noise, β is the order pa-
rameter exponent, ν is the correlation length exponent, and
φ0 is a scaling function. At the criticality η = ηc, φ(ηc, L) ∼
L−β/ν . The order parameter distribution PL(φ) for a given
system of size L is defined as

PL(φ) = Lβ/ν P̃L[φLβ/ν], (9)

where P̃L is a scaling function. At the criticality, the distribu-
tion PL(φ) is unimodal for a continuous transition. The FSS
form of the susceptibility is given by

χ (η, L) = Lγ /νχ0[εL1/ν], (10)

where χ0 is a scaling function, γ /ν = d − 2β/ν, and d (=
2) is the number of space dimensions. At η = ηc, χ (ηc, L) ∼
Lγ /ν . The FSS form of the fourth-order Binder cumulant is
given by

U (η, L) = U0[εL1/ν], (11)

where U0 is a scaling function. The derivative of U (η, L) with
respect to η follows a scaling relation [49],

U ′(η, L) = L1/ν U ′
0[εL1/ν]

ηc
, (12)

where the primes on U and U0 denote their derivatives with re-
spect to η. For a continuous transition, the cumulant U always
remain positive. At η = ηc, the cumulants of different systems
of size (L) become independent of L and U ′(ηc, L) ∼ L1/ν at
the transition.

In the case where the orientational order-disorder transition
is discontinuous, the order parameter exponent β should go to
zero. As a consequence, the susceptibility should then scale as
χ ∼ Ld , where d is the space dimension. The Binder cumulant
U would exhibit a sharp fall towards a negative value at the
transition point. As the system exhibits the coexistence of
two phases, the order parameter distribution P(φ) would be
a bimodal distribution.

Below we discuss results of three different velocity sce-
narios. Keeping vs = 0.01 fixed, v f = 30vs, v f = 50vs, and
v f = 150vs are taken. In all three scenarios, we study varia-
tions of order parameter φ, Binder cumulant U , susceptibility
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FIG. 6. v f = 30vs, vs = 0.01: (a) Plot of φ and φp vs η. Deriva-
tives of φ and φp with respect to η are shown in the inset. (b) Plot of
χ and χp vs η. (c) Plot of U and Up vs η. (d) Plot of P(φ) and P(φp)
at η = ηc. System size is L = 256.

χ , and order parameter distribution P(φ) as a function of the
angular noise η on systems of different sizes L, and we discuss
the results together in the Discussion section.

A. Velocities: v f = 30vs and vs = 0.01

In Fig. 6, we present data for φ, U , χ , and P(φ) for v f =
30vs on a system of size L = 256. The values of φ and φp

decrease continuously and smoothly from a positive value to

zero as η increases. The derivatives of φ and φp with respect to
η are plotted in the inset of Fig. 6(a). A minimum or dip at η ≈
0.19 is observed in the derivatives. This is the critical noise
ηc = 0.19 at which the systems undergo a phase transition. It
is evident from the configurations given in Figs. 2(b) and 2(c)
that the system is going from an ordered phase DS+DC to a
disordered phase RS+RC around ηc ≈ 0.19. The fluctuations
in order parameters χ and χp are plotted against η in Fig. 6(b)
for L = 256. All the fluctuations diverge at ηc ≈ 0.19. The
order parameter fluctuation of the sSPPs at ηc is much higher
than that of the fSPPs. It is similar to the observations in the
VM with monodispersed SPPs. The Binder cumulants U and
Up are plotted against η in Fig. 6(c) for L = 256. It can be seen
that the values of U , Uf , and Us are all positive over the whole
range of η. The distributions of order parameters P(φ) and
P(φp) obtained at η = ηc are presented in Fig. 6(d). All three
distributions are found to be unimodal. The positive value of
the Binder cumulant and unimodal distribution of φ indicates
a continuous transition.

The critical exponents are extracted for the whole system
with v f = 30vs by performing FSS analysis. Binder cumulant
U , order parameter φ, and susceptibility χ are plotted against
the angular noise η for three different systems of sizes L = 64,
128, and 256 in Figs. 7(a), 7(b), and 7(c) respectively. The
plots of U versus η [Fig. 7(a)] for different L intersect at
ηc ≈ 0.19, the L independent critical point, as expected in a
continuous transition. It is marked by a cross on the η axis.
The corresponding Uc is identified as Uc ≈ 0.61, which is
close to that of a mono-dispersed system [50]. Rough esti-
mates of the exponents 1/ν, β/ν, and γ /ν are obtained from
the scaling relations U ′(ηc, L) ∼ L1/ν , φ(ηc, L) ∼ L−β/ν , and
χ (ηc, L) ∼ Lγ /ν at the criticality. The best possible FSS forms
of the scaled parameters against the scaled noise εL1/ν are ob-
tained, tuning these exponents further. U , φLβ/ν , and χL−γ /ν

FIG. 7. v f = 30vs, vs = 0.01: (a) Plot of U vs η, (b) plot of φ vs η, and (c) plot of χ vs η for L = 64, 128, and 256. The cross on the η

axis indicates ηc. (d) Plot of U vs the scaled noise εL1/ν . (e) Plot of φLβ/ν against εL1/ν . (f) Plot of χL−γ /ν against εL1/ν . The values of the
exponents are taken as β/ν = 0.18, γ /ν = 1.60, and 1/ν = 0.78.

064612-6



PATTERN FORMATION AND PHASE TRANSITION IN THE … PHYSICAL REVIEW E 105, 064612 (2022)

TABLE I. Values of the critical exponents obtained for the BM at
different velocities of fSPPs v f = 30vs and 50vs keeping vs = 0.01.
The exponents for the VM with v0 = 0.1 and density ρ = 1/8 to 3/4
(taken from Ref. [50]) are presented for comparison.

VM BM: v f = 30vs, BM: v f = 50vs,
Exponent v0 = 0.1 vs = 0.01 vs = 0.01

1/ν 0.62(12) 0.78(9) 1.01(5)
β/ν 0.275(5) 0.18(1) 0.18(2)
γ /ν 1.45(2) 1.60(4) 1.60(8)
γ /ν + 2β/ν 2.00(3) 1.96(4) 1.96(8)

are plotted against εL1/ν in Figs. 7(d), 7(e), and 7(f) respec-
tively. A reasonable collapse of data in all three cases is
obtained taking 1/ν = 0.78, β/ν = 0.18, and γ /ν = 1.60 at
ηc = 0.19. The critical exponents satisfy the scaling relation
γ /ν + 2β/ν = 2 within error bars. The values of these critical
exponents are reported in Table. I. The FSS forms of Up, φp,
and χp for the partial systems are also verified, and the scaling
relations are satisfied with the same critical exponents within
error bars.

B. Velocities: v f = 50vs and vs = 0.01

The order parameters φ and φp are plotted against η in
Fig. 8(a). The values of φ and φp decrease smoothly to zero as
η increases. The derivatives of φ and φp with respect to η are
plotted in the inset of Fig. 8(a) and minima of the plots at the
transition noise ηc ≈ 0.22 are observed. φ f is also less than
φs as in the v f = 30vs situation. The respective fluctuations in
order parameter, χ , and χp are plotted against η in Fig. 8(b).
They diverge at ηc ≈ 0.22 for all the SPPs. The morphology
of the system around the transition point is presented in Fig. 8.
The phase transition occurs at ηc ≈ 0.22 between the DS+DC
phase and the RS+RC phase. The DS+DC phase at η = 0.18
is shown in Fig. 8(c) and the RS+RC phase at η = 0.26
is shown in Fig. 8(d). The arrows indicate the directions of
motion of the clusters and clumps of different phases. It can be
noticed that all the clusters and clumps in DS+DC are moving
in a similar direction, whereas they are random in RS+RC.

In Fig. 8(e), U and Up are plotted against η. Both U and
Up remain positive over the whole range of η. In Fig. 8(f), the
distributions of order parameters P(φ) and P(φp) are plotted
at η = ηc. The distributions are unimodal. The positive Binder
cumulants and unimodal distributions of order parameters
indicate a continuous transition in the whole system as well
as in the partial systems for the case of v f = 50vs.

Since the transitions are continuous, we perform the FSS
analysis to extract the critical exponents. The values of U ,
φ, and χ are plotted against η in Figs. 9(a), 9(b), and 9(c)
respectively for different system sizes L = 64, 128, and 256.
The plots of U versus η in Fig. 9(a) for different L intersect at
ηc ≈ 0.22, marked by a cross on the η axis. The corresponding
critical value of the cumulant is Uc ≈ 0.61. It seems the value
of Uc is independent of the velocity ratio in this model. As
in the case of v f = 30vs, rough estimates of the exponents
1/ν, β/ν, and γ /ν are obtained from the critical scaling
relations U ′(ηc, L) ∼ L1/ν , φ(ηc, L) ∼ L−β/ν , and χ (ηc, L) ∼
Lγ /ν . The best possible FSS forms of the scaled parameters

FIG. 8. v f = 50vs, vs = 0.01: (a) Plot of φ and φp vs η. Deriva-
tives of φ and φp with respect to η are shown in the inset. (b) Plot of
χ and χp vs η. System size is L = 256. (c) Morphology of the system
for L = 128 and η = 0.18; (d) for η = 0.26. Orange: fSPPS; maroon:
sSPPs. The arrows represent the directions of motion. (e) Plot of U
and Up versvsus η. (f) Plot of P(φ) and P(φp) at ηc. System size is
L = 256.

against the scaled noise εL1/ν are obtained tuning these ex-
ponents further. The values of U , the scaled order parameter
φLβ/ν , and the scaled susceptibility χL−γ /ν are plotted against
εL1/ν in Figs. 9(d), 9(e), and 9(f) respectively. A reasonable
collapse of data in all three cases is obtained tuning the ex-
ponents further to 1/ν = 1.01, β/ν = 0.18, and γ /ν = 1.60.
The exponents satisfy the scaling relation γ /ν + 2β/ν = 2
within error bars. The values of the critical exponents obtained
are also given in Table I and compared with others.

C. Velocities: v f = 150vs and vs = 0.01

We now present simulation results obtained for v f = 150vs

keeping vs = 0.01. The order parameters φ and φp are plotted
against η in Fig. 10(a). There are jumps in the values of φ

and φp near the transition. The derivatives of φ and φp with
respect to η are plotted in the inset of Fig. 10(a) and sharp
minima are observed at ηc ≈ 0.33 for the whole and the partial
systems. The respective fluctuations in order parameters, χ

and χp, are plotted against η in Fig. 10(b). There is a sharp
peak in the fluctuations at ηc ≈ 0.33 for all the SPPs. In the
inset of Fig. 10(b), the scaled fluctuations χ/L2 are plotted
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FIG. 9. v f = 50vs, vs = 0.01: (a) Plot of U vs η, (b) plot of φ vs η, and (c) plot of χ vs η for L = 64, 128, and 256. The cross on the η

axis indicates ηc. (d) Plot of U vs the scaled noise εL1/ν . (e) Plot of φLβ/ν against εL1/ν . (f) Plot of χL−γ /ν against εL1/ν . The values of the
exponents are taken as β/ν = 0.18, γ /ν = 1.60, and 1/ν = 1.01.

against ε for different systems of sizes L = 64, 128, and 256.
The critical values (peak values) of scaled χ become almost L
independent. Hence, χ ∼ L2, as in the case of a discontinuous
transition.

Plots of the Binder cumulants U and Up versus η are
shown in Fig. 10(c). The cumulant for the fSPPs, Uf , and
that of the whole system, U , have sharp negative dips at
the transition. However, the cumulant of the sSPPs (Us) has

FIG. 10. v f = 150vs, vs = 0.01: (a) Plot of φ and φp vs η.
Derivatives of φ and φp with respect to η are shown in the inset.
(b) Plot of χ and χp vesrsus η. In the inset, χL−2 is plotted against ε

for L = 64, L = 128, and L = 256. (c) Plot of U and Up vs η. (d) Plot
of P(φ) and P(φp) at ηc.

a dip at the transition, but it has yet to achieve a negative
value. The distributions of order parameters P(φ) and P(φp)
at η = ηc are shown in Fig. 10(d). For this high velocity,
all three distributions exhibit bimodal distributions. These
are characteristic features of a discontinuous transition. Since
discontinuous transition is known to occur at high velocities
in the monodispersed SPPs [23], it is expected to occur in
the case of fSPPs, but it is surprising that the sSPPs are
also undergoing discontinuous transition, which is unusual for
sSPPs with such a low velocity vs = 0.01. At the transition,
dense traveling bands of SPPs form and disappear, result-
ing in coexistence of two phases in the system. It is then
important to verify whether or not this is the case for the
fSPPs here. More interestingly, what will the two phases be
for the sSPPs? Below we explain the situation by studying
the time evolution of the system morphology at the transition
region.

The morphologies of a system of size L = 256 at two dif-
ferent time instants 3×105 and 4×105 are shown in Figs. 11(a)
and 11(b) respectively for η = ηc. In Fig. 11(a), a dense travel-
ing band of fSPPs and clumps of sSPPs are seen. Interestingly,
the band and clumps are moving in the same direction, as
indicated by the orange and maroon arrows, respectively.
However, in Fig. 11(b), the dense traveling band of fSPPs
disappears, and the clumps of sSPPs move randomly in the
system. The orientation distributions P(θ ) corresponding to
phases (a) and (b) are shown in Fig. 11(c)-I and -II respec-
tively. In Fig. 11(c)-I, P(θ ) of both the SPPs are peaked at a
particular θ . Thus, the sSPPs follow the direction of motion
of the dense band of the fSPPs. As a band forms, the majority
of the fSPPs travel in a particular direction. These highly
oriented fSPPs interact with the sSPPs and influence them
to orient in the same direction, whereas in Fig. 11(c)-II the
distributions P(θ ) for both the SPPs are flat. Hence, as the
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FIG. 11. v f = 150vs, vs = 0.01: Morphology at (a) t = 3×105

and (b) t = 4×105 for ηc = 0.33 on a system of size L = 256.
Orange: fSPPs; maroon: sSPPs. (c) P(θ ) of the morphology (a) and
(b) are plotted in I and II. (d) Order-parameter dynamics at ηc.

band disappears, the fSPPs get oriented randomly, making the
orientation of sSPPs random.

The steady-state dynamics at η = ηc of φ f and φs are
given in Fig. 11(d) where the values of both φ f (blue) and
φs (maroon) oscillate between two phases in a synchronized
manner. The higher value of φ f corresponds to the presence
of the dense band (an ordered phase), and the lower value of
φ f corresponds to the disappearance of the band (a random
or disordered phase). On the other hand, for the sSPPs, the
higher value of φs corresponds to the ordered phase of directed
clumps (DC) without forming any traveling band, and the
lower value of φs corresponds to a disordered phase of random
clumps (RC).

D. Discussion

In this binary model, an orientational order-disorder phase
transition is found to occur at the respective ηc for different
velocity cases, and the transition nature is also characterized.
For both the v f = 30vs and v f = 50vs cases, a continuous
transition occurs in the system from the DS+DC phase to the
RS+RC phase. However, this is quite surprising for the fSPPs,
with the velocity v f = 50vs = 0.5. For the velocity v0 = 0.5
and density ρ0 = 0.25, it is known that the crossover system
size L∗(ρ0, v0) ≈ 150 [23] to observe discontinuous transition
in the VM. However, in the BM, no density bands of fSPPs
with v f = 50vs occur when mixed with the sSPPs (vs = 0.01)
even at a system size L = 256 much higher than the crossover
size L∗. It seems that sSPPs have a significant influence on the
nonformation of traveling bands by the fSPPs as well as on the
nature of the phase transition. It is interesting to observe that
both types of SPPs maintain the same nature of transition in
the BM. Though the nature of transition with v f = 30vs and
v f = 50vs remains the same as the VM at low velocities, the

FIG. 12. Plot of P(φ) at the respective ηc’s for different values of
v f as 30vs, 50vs, 100vs, and 150vs with fixed vs = 0.01. The system
size is L = 256.

values of the critical exponents, however, are different (shown
in Table I). Not only are the exponents different from those in
VM, but they are also velocity dependent. Hence, the binary
model is nonuniversal.

The v f = 150vs case is very different from the previous
two scenarios. In this case, the discontinuous transition was
observed for both fSPPs and sSPPs because of phase synchro-
nization. Such a phase synchronization occurs because of the
local alignment [Eq. (1)]. Though the sSPPs show a discontin-
uous transition, they do not form any traveling density band
in the system. Thus, the two different species are not able
to undergo two different types of transitions, continuous or
discontinuous, simultaneously in the BM because of the local
interparticle interaction.

A crossover from continuous to discontinuous transition is
expected at an intermediate v f . This could be identified by
plotting the order parameter distribution P(φ). The distribu-
tion will be unimodal for continuous transition and bimodal
for discontinuous transition. In Fig. 12, P(φ) is plotted for
different v f ’s. It starts deviating from the unimodal distribu-
tion near v f = 100vs. It is important to note that this crossover
value of v f is determined for the fixed system of size L = 256
and density ρ = 0.5.

V. EFFECT OF INTERACTION RADIUS R

The value of R essentially determines the number of neigh-
bors (n) to interact for an SPP at every move. So n decreases
as R decreases. So far, the interaction radius R for both the
SPPs was set to 1. It is important to know the effect of
interaction radius R on the system with high velocity ratio
v f = 150vs among two SPPs. First, we investigate reducing
the interaction radius to R = 0.25 for both the SPPs. The order
parameters (φ and φp) and the Binder cumulants (U and Up)
are plotted against η in Figs. 13(a) and 13(b) respectively. It
can be seen that all the order parameters continuously go to
zero at a critical noise ηc ≈ 0.11, which is much less than the
ηc = 0.33 with R = 1. Such a behavior is also observed in
the monodispersed case [49]. Moreover, U , Uf , and Us are all
found to be positive. In the inset of Fig. 13(b), P(φ) and P(φp)
are plotted at ηc and all three distributions are unimodal. Thus
the discontinuous transition for R = 1 becomes continuous
for R = 0.25 for both the SPPs with v f = 150vs, vs = 0.01.

064612-9



SAGARIKA ADHIKARY AND S. B. SANTRA PHYSICAL REVIEW E 105, 064612 (2022)

FIG. 13. v f = 150vs, vs = 0.01: Plots of (a) φ and φp and (b) U
and Up vs η for R = 0.25. In the inset of (b), P(φ) and P(φp) at ηc

are plotted. Plots of (c) φ and φp and (d) U and Uf vs η for Rf = 1.0
and Rs = 0.01. In the inset of (d), P(φ) and P(φ f ) at ηc are plotted.
System size is L = 256.

Because of the reduced interaction region, very few SPPs
participate in providing the average orientation to a particular
SPP, so the coupling among the SPPs becomes weak. It has
two effects. First, because of the weak coupling, the transition
occurs at a lower value of η (≈0.11). Second, the fSPPs are
also not able to bind the other fSPPs to form a dense band at
the transition point.

As a second case, we study the same system with different
interaction radii for two types of SPPs. Two different radii
are taken as R f = 1.0 and Rs = 0.01 for the fSPPs and sSPPs
respectively. The order parameter φ and φp are plotted against
η in Fig. 13(c). Note that φs ≈ 0 for the whole range of η,
because the interaction radius is so small that the sSPPs have
almost no other particles to interact with, for this ρ. On the
other hand the fSPPs having R f = 1 undergo a discontinuous
transition at ηc ≈ 0.32, slightly less than the case with R f =
Rs = 1 and v f = 150vs, vs = 0.01. In the present scenario,
the sSPPs are noninteracting particles, and the fSPPs are the
only active and interacting particles in the system. The system

behavior is governed by the fSPPs only. The discontinuous
transition is then expected at ηc ≈ 0.32. The φ of the whole
system is just the simple average of φs and φ f , where φs is
essentially zero. The Binder cumulants and the order param-
eter distributions show the characteristics of discontinuous
transition as expected [shown in Fig. 13(d)].

Density can also be a parameter for studying this system.
The results presented above are for a fixed density ρ = 0.5.
However, at higher densities, the traveling bands may appear
at lower velocities. Thus, one expects discontinuous transi-
tions to occur for lower velocity regimes at higher densities.
Such systems are computationally expensive as they involve a
large number of interacting particles.

VI. CONCLUSION

A binary mixture of SPPs displays a variety of collective
patterns, such as directed lanes, clusters, clumps, microclus-
ters, microclumps, and others at different values of angular
noise. The lane patterns of sSPPs at a very low angular noise
are supposed to be the outcome of shear between the two
species of different velocities. With a small increase in noise,
the lanes formed by the slow-moving species break down into
clumps, resulting in a drastic structural change in the system.
Due to a large difference in velocities between the two species,
finite phase segregation occurs in the system at low noise. In
the steady state, the two species of the system are found to be
orientationally phase synchronized irrespective of their veloc-
ities. The two-point correlation function extends throughout
the system below a critical noise. At the critical noise, the
system undergoes a velocity-dependent orientational order-
disorder transition. The nature of the transition is found to
be continuous for v f < 100vs with vs = 0.01 and discontin-
uous above this limit. However, the continuous transitions
are nonuniversal as their critical exponents depend on the
velocities. The model results depend on the density of species
and the radius of interaction among the species.
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