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Anomalous elasticity of a cellular tissue vertex model
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Vertex models, such as those used to describe cellular tissue, have an energy controlled by deviations of each
cell area and perimeter from target values. The constrained nonlinear relation between area and perimeter leads
to new mechanical response. Here we provide a mean-field treatment of a highly simplified model: a uniform
network of regular polygons with no topological rearrangements. Since all polygons deform in the same way, we
only need to analyze the ground states and the response to deformations of a single polygon (cell). The model
exhibits the known transition between a fluid/compatible state, where the cell can accommodate both target area
and perimeter, and a rigid/incompatible state. We calculate and measure the mechanical resistance to various
deformation protocols and discover that at the onset of rigidity, where a single zero-energy ground state exists,
linear elasticity fails to describe the mechanical response to even infinitesimal deformations. In particular, we
identify a breakdown of reciprocity expressed via different moduli for compressive and tensile loads, implying
nonanalyticity of the energy functional. We give a pictorial representation in configuration space that reveals that
the complex elastic response of the vertex model arises from the presence of two distinct sets of reference states
(associated with target area and target perimeter). Our results on the critically compatible tissue provide a new
route for the design of mechanical metamaterials that violate or extend classical elasticity.
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I. INTRODUCTION

Biological tissues are active materials capable of gen-
erating mechanical stresses and transmitting such stresses
at the organ and organism scale [1]. Their ability to tune
rigidity and adapt the mechanical response to external per-
turbations engender significant challenges for the formulation
of a continuum mechanics. Of special interest are epithe-
lial tissues—two-dimensional layers of tightly packed cells
that can spontaneously undergo transitions between liquidlike
states where cells freely exchange neighbors, and solidlike
states where cells are jammed [2–6]. Unlike solid-liquid tran-
sitions in inert matter or jamming transitions in granular
materials, the rigidity transition of confluent tissue occurs
at constant density and is driven by two classes of mecha-
nisms: active processes and geometrical constraints. Active
processes, such as cell motility or fluctuations in the tension of
the cell-edge network, maintain the tissue out of equilibrium,
facilitating or impeding cellular rearrangements and strongly
altering the fluidity/rigidity of the cell collective [7–10]. Geo-
metrical frustration of the cellular network provides a different
path to rigidity associated with geometric incompatibility and
akin to the one found in metamaterials and biopolymer net-
works [11,12]. This geometry-driven transition between rigid
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and floppy states has been identified before in vertex and
Voronoi models of confluent tissue [13–16], but the charac-
terization of the elastic and rheological response of the VM to
external deformations is only beginning to be addressed [17].

The formulation of continuum elastic theories of solids
crucially relies on the existence of a potential energy and
of a unique reference state. Both are absent in living matter,
where out-of-equilibrium active processes cannot be captured
by a conservative potential energy, and the underconstrained
structure of the cellular network results in degenerate ground
states. As a result, the formulation of a continuum elasticity
of living matter remains a formidable challenge.

In this paper, we examine how geometric constraints affect
the continuum elasticity of cellular networks in the context
of a regular two-dimensional vertex model (VM). The VM
describes a confluent tissue as a network of polygons tilting
the plane. Each polygon represents a cell and is characterized
by target values of area and perimeter encoding a variety of
biomechanical mechanisms [7,18–25]. The observed cell area
and perimeter are controlled by a tissue energy that penal-
izes deviations from target values. Many recent studies of
the VM have focused on disordered and active realizations,
consisting of a disordered network of irregular polygons with
active processes driving cell rearrangements and neighbor
exchanges [26–29]. Here, in contrast, we consider an or-
dered realization where the network is composed of regular
polygons, and we neglect active processes responsible, for
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instance, for T 1 transitions. This allows us to isolate the struc-
tural and energetic origin of the rigidity transition associated
with geometric incompatibility.

By combining analytical methods and numerical simu-
lations, we show that at the onset of rigidity, i.e., at the
transition between the compatible and incompatible regimes,
the response of the VM to infinitesimal deformations cannot
be described by linear Hookean elasticity. Specifically, at the
critical point mechanical reciprocity is violated, an anomalous
coupling between bulk and shear deformations emerges, and
quartic rigidity is observed in response to shear deformations.
Additionally, the fluid state exhibits vanishing stiffness up to
a critical strain as it can accommodate external strains with
zero stress by spontaneous shear. In contrast, the rigid state
has finite linear response that is captured by linear elasticity.

Very recent work that involves one of us [30] has exam-
ined numerically the response of a disordered Voronoi model
that naturally incorporates topological rearrangements to qua-
sistatic shear. This work also finds that the compatible/fluid
state exhibits zero stress below a critical applied strain, con-
firming the results of our minimal mean-field approach. It
additionally shows that both the liquid and the solid exhibit
shear stiffening above a critical strain, and that a mean-field
theory that incorporates the ground-state degeneracy of the
compatible regime inspired by the one shown in the present
paper captures the nonlinear behavior of the shear response.

Although derived from an energy functional, the elastic-
ity of the critically compatible VM shares similarities with
odd elasticity, including the breakdown of reciprocity and the
emergence of an anomalous coupling between isotropic and
shear deformations. As in odd solids, the linear response of
the VM violates the basic symmetries of the elastic stiffness
tensor of passive solids. Contrary to odd elasticity, these prop-
erties emerge not from a sustained energy input that breaks
the conservative nature of forces, but from pure geometric
constraints that result in the failure of a Taylor expansion to
faithfully describe the elastic potential energy even for small
deformations. The geometric origin of the anomalous elas-
ticity is highlighted through a generalized continuum elastic
theory of the VM and a corresponding pictorial description,
which provides excellent quantitative agreement with the nu-
merical simulations. Our findings provide insights into the
geometrical aspects of tissue mechanics and emergent rigidity,
which underlie in an essential way the rigidity transitions
controlled by active processes. They also lay out a path for
the design of alternative mechanical metamaterials with me-
chanical properties mimicking those of living tissue.

The structure of this paper is as follows: In Sec. II we
review the properties of the passive ordered VM. In Sec. III
we introduce a mean-field approach to VM, implemented in
Sec. IV to measure global response to uniform loads in the
compatible and incompatible states, and we compare with
numeric results. At the heart of our work, in Sec. V we focus
on the critically compatible case and show that the measured
properties violate linear elasticity due to ill-defined elastic
constants. Section VI proposes a visual representation of VM
mechanics, uncovering the source of its peculiar behavior and
the required modifications to classical elasticity. The final sec-
tion, Sec. VII, provides a brief summary and offers directions
for the road ahead.

II. VERTEX MODEL AND GEOMETRIC
INCOMPATIBILITY

In the VM, each cell is described as a convex polygon
with target area and perimeter A0 and P0, respectively. Given
a configuration with actual area A and perimeter P, the cell
stores a mechanical energy

Ecell = κA

2
(A − A0)2 + κP

2
(P − P0)2. (1)

A confluent tissue consists of a network of many such cells,
covering the plane. Cells in epithelial tissue typically resemble
disordered arrangements of mainly five-, six-, and seven-sided
irregular polygons, with an average coordination number of
3 at each vertex. To highlight the mechanics emerging from
purely geometric constraints, here we consider the seemingly
simple quasistatic response of a uniform tissue (i.e., uniform
A0 and P0) to uniform imposed loads that lead to uniform
observed A and P. We assume that all cells respond identically.
Thus the tissue energy is E = N Ecell and it is sufficient to
analyze the behavior of a single cell. This corresponds to a
mean-field theory of the tissue VM, where spatial variations
are either irrelevant or negligible. Additionally, for clarity we
mainly analyze the case of a triangular tissue. This transparent
example is also closer to the familiar discrete model of elastic
materials [31–33]. Our results are not qualitatively affected by
the specific polygonal shape considered when uniform remote
loads resulting in affine deformations are imposed. A naive
degree-of-freedom counting reveals that the VM is undercon-
strained [15,34]. Even the most rigid polygon, a triangular
cell, has three structural degrees of freedom, corresponding
to the lengths of the three edges, but fixing the target area and
perimeter only imposes two constraints, implying that a single
triangular cell is floppy.

Recent work has shown that VMs exhibit a transition tuned
by the target shape parameter s0 = P0/

√
A0 between a fluid-

like state where cells freely intercalate, and a rigid state where
cells are collectively jammed [5,7,8]. The order parameter for
this transition is the observed cell shape defined as s = P/

√
A.

In early work, the loss of rigidity was associated with the
vanishing of energy barriers for neighbor exchanges known
as T 1 transitions, which mediate local changes in network
topology [7]. Studies of VMs with fixed topology (hence
no T 1 transitions) have suggested, however, that a possible
underlying origin of this transition is the geometric incompati-
bility of the target shape parameter with the embedding space:
in a regular version of the VM, rigidification occurs when the
target shape parameter violates the isoperimetric inequality,
which requires s0 � s∗

0(n), with s∗
0(n) = √

4 n tan(π/n) for
a regular n-sided polygon [13,20,21,27]. An ordered vertex
model of n-sided polygons hence undergoes a transition at
s0 = s∗

0(n). For s0 < s∗
0, the cells cannot achieve their target

shape, and the tissue is in a rigid, incompatible state, with
a single finite-energy ground state. For s0 > s∗

0, the tissue is
soft/floppy, or compatible, with multiple zero-energy config-
urations.

In the incompatible and critically compatible state, the
tissue has a well-defined ground-state configuration, hence
one may expect that such a ground state would be a legitimate
reference for measuring deformations and that an expansion
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about such a state to quadratic order in the strain would
provide an accurate description of the linear elastic response
of the system. In the present paper, we show that this is not
the case at the critical point, where the response of ordered
VMs to small deformations deviates qualitatively from linear
elasticity. In the next section, we study the VM ground states
and calculate the elastic moduli that quantify the response to
uniform imposed loads. We then we focus on the critically
compatible state where deviations from linear elasticity are
most pronounced.

III. MEAN FIELD THEORY AND GROUND STATES

The elastic moduli of a tissue encode information about the
mechanical response to uniform external loads. We assume
that in a uniform ordered tissue, the responses of all cells are
identical, and we formulate a mean-field theory by consider-
ing the elastic energy of a single cell, Eq. (1). To begin, we
express the energy in terms of configurational variables by
introducing the symmetric 2 × 2 metric tensor g. Denoting the
unit vectors defining a regular polygon by vi and the polygon’s
area by �S, we can then write the cell perimeter and area as

A(g) =
√

det g �S, (2)

P(g) =
∑
i∈cell

√
vα

i gαβv
β
i , (3)

where Greek indices α, β denote Cartesian components. Note
that for triangles, all configurations can be parametrized ex-
actly as in Eqs. (2) and (3). For higher-order polygons, the
description of edges in terms of a single uniform metric is an
approximation.

It is convenient to introduce dimensionless quantities by
using

√
A0 as the unit of length. The dimensionless form of

Eq. (1) is then

E = Ecell

κAA2
0

= 1

2
[a(g) − 1]2 + r

2
[p(g) − s0]2, (4)

with a = A/A0, p = P/
√

A0, and r = κP/(κAA0) a parameter
that sets the relative cost of perimeter to area variations. This
form of the energy functional has a strong similarity with that
of non-Euclidean shell theory, where stretching and bending
terms may be incompatible due to violation of geometric
compatibility conditions [35]. The absence of a stress-free
configuration when s0 < s∗

0 is transparent in this form, since
the isoperimetric inequality states that for s0 < s∗

0 no g can
satisfy both a = 1 and p = s0 simultaneously.

Before examining the mechanical response to small per-
turbations, we need to find the ground-state energy. This is
determined by minimizing Eq. (4) with respect to all admis-
sible metric tensors g. The ground-state metric g0 is given by

g0 = arg min
g

E (g; s0, r). (5)

The calculation of g0 for a given n-sided regular polygon
as a function of (s0, r) can be carried out analytically and
is shown in Appendix B for n = 3, 4, 6. For s0 � s∗

0, there
is a unique ground state corresponding to a regular polygon
(and a gapped energy if s0 < s∗

0). In this regime, referred to

TABLE I. Elastic moduli for five different deformation proto-
cols. The last column shows the expressions in terms of the Lamé
coefficients λ and μ for the case of a linear elastic solid in 2D, where
μ is the shear modulus and λ + 2μ is the compression modulus.

Tissue Moduli
Deformation Fixed Free Linear elastic solid

G1 Uniaxial u11 u12, u22
4μ(λ+μ)

λ+2μ

G2 Uniaxial u11, u22 = 0 u12 λ + 2μ

G3 Area u11 = u22 u12 4(λ + μ)
G4 Shear u11 = −u22 u12 4μ

G5 Shear u12 u11, u22 4μ

as the incompatible regime, the system is rigid. As s0 → s∗
0

from below, the energy gap vanishes. For s0 > s∗
0, the system

transitions to the compatible regime, where there is a one-
parameter set of zero-energy configurations, making the tissue
floppy. This is shown in Figs. 1(a) and 1(b), where we plot the
ground-state energy of a single cell as a function of its target
shape parameter s0 and the tilt angle between the median and
the cell base, which provides a measure of shear deformation.
This angle parametrizes a family of zero-energy states in the
compatible regime, as shown explicitly in Appendix B. In
Fig. 1(c), we show the observed ground-state shape parameter
s as a function of the target shape parameter s0. The inset dis-
plays ground-state configurations. In the incompatible regime
for s0 < s∗

0, s = s∗
0. In the compatible regime, the system can

achieve both target area and perimeter, with a family of tilted
polygonal shapes satisfying s = s0, corresponding to the flat
region in Figs. 1(a) and 1(b). The smaller scale of the incom-
patible cell in Fig. 1(c) reflects the compromise between area
and perimeter costs resulting from a < 1 and s > s0.

IV. LINEAR RESPONSE TO MECHANICAL
DEFORMATIONS

In this section, we examine the response of the VM to
small mechanical deformations. It is useful to first consider
a conventional elastic solid described by an energy E (g) with
a unique ground state g0μν = δμν that provides the reference
(undeformed) configuration. The mechanical response to a
deformation is quantified in terms of the strain u defined
by writing g = g0 + 2u. Linear elasticity can then be formu-
lated by expanding the energy around the reference state to
quadratic order in the strain as

E (g) = E (g0 + 2u) = 1
2 Aαβγ δ (g0)uαβuγ δ + O(u)3, (6)

with E (g0) = 0. For an isotropic solid, as well as for a tri-
angular lattice, the elastic stiffness tensor Aαβγ δ has the form

Aαβγ δ = λgαβ

0 gγ δ

0 + μ
(
gαγ

0 gβδ

0 + gαδ
0 gβγ

0

)
, (7)

and it is fully specified in terms of two independent quantities,
namely the Lamé coefficients λ and μ. The elastic moduli
characterizing the linear response to any deformation can then
be expressed in terms of λ and μ, according to the expressions
given in the last column of Table I.
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FIG. 1. (a) Ground-state energy E0 as a function of the target shape index s0 and tilt angle θ measured between the median and the cell base.
The blue region corresponds to zero energy, reflecting the degeneracy of the ground state in the compatible regime. The colored lines describe
E0 as a function of θ for s0 = 3.5 (blue), 4.559 01 (orange), and 5.3 (green), corresponding to the incompatible, critical, and compatible
regimes, respectively. The three curves are plotted together in (b) as a function of θ , with the inset showing three different zero-energy
configurations corresponding to the compatible green curve. (c) Observed (s) vs target perimeter (s0) with the critical value s∗

0 marked by the
vertical dashed line. In the incompatible regime s0 < s∗

0 the ground-state configuration is isotropic, whereas in the compatible regime s0 > s∗
0

the ground-state configuration is anisotropic and degenerate. The smaller scale of the incompatible (blue edge) cell illustrates the compromise
of the ground-state area and perimeter being smaller/larger relative to their target values a < 1, p > s0.

A. Incompatible regime

We begin by analyzing the mechanical response in the
incompatible regime where linear elasticity holds. To evaluate
the elastic constant of the VM in the incompatible regime,
we first identify the unique ground-state configuration with
respect to which deformations are measured, g0μν = c2δμν ,
which corresponds to a regular n-sided polygon. The constant
c is determined by energy minimization and is the real solu-
tion of a cubic equation, given in Appendix B for n = 3, 4, 6.
We then expand (4) in powers of u = 1

2 (g − g0) as in (6).
Since g0 is isotropic, the elastic stiffness tensor Aαβγ δ has the
form given in Eq. (7) and is entirely determined by the two
coefficients λ and μ. For a triangular polygon, these are given
by

λ =
√

3

2
+ 9r

4c
(3s0 − 7c),

μ = 9r

4c
(3c − s0).

(8)

The corresponding expressions for the Lamé coefficients
for hexagonal tissue are given in Eq. (B11). The elastic
moduli describing specific deformation protocols can then
be obtained using the relations given in Table I. The elastic
constants calculated analytically agree well with the results of
numerical simulations, as shown in Fig. 2.

B. Compatible regime

In the compatible regime, linear elasticity fails because the
ground state is degenerate, as shown in Fig. 1(a), where the
flat region corresponds to a continuous set of rest configura-
tions [13,36]. This means that when subjected, for instance,
to a small uniaxial deformation, the system can accommo-
date the deformation by changing its shape and finding a
new zero-energy configuration corresponding to the deformed
shape, resulting in vanishing elastic constant G. The elastic
constants corresponding to a specific deformation can still be
calculated using the procedure defined in Eq. (6), and they
vanish whenever the deformed state corresponds to one of the

degenerate ground states. This procedure, however, fails at the
boundary of the manifold of degenerate ground states shown
in blue in Fig. 1(a). On this boundary, the elastic constants
cannot be calculated using Eq. (6) since they are sensitive
to the sign of deformation, with vanishing constants for

FIG. 2. Analytical (solid) and numerical (points) elastic moduli
G1,2 for uniaxial deformation with transverse direction free (a) or
clamped (b), of an n = 3 VM as functions of target shape parameter
s0 on a log-log scale. The compatible/incompatible transition is at
s∗

0 = 2 × 33/4. The inset of (a) shows G1 on a linear scale, highlight-
ing the vanishing of the measured response beyond the critical shape
parameter. The moduli were calculated for various values of rigidity
ratio, ranging from r = 0.01 to 100.
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FIG. 3. Energy landscape and mechanical properties of a critically compatible triangular cell model. (a) Energy as function of imposed
area and shear strains, showing an asymmetric response to area compression and tension. (b) Resistance to area deformation as a function of
the rigidity ratio for tensile (blue) and compressive (yellow) area strain, compared with VM numeric results (dots). The inset shows the log-log
plots of energy-strain curves. (c) The cell-ratio defined in (9) as a function of rigidity ratio. The inset shows the cell ratio as function of imposed
strain for a given rigidity ratio, confirming that it is a well-defined material property. (d) Energy landscape for area-preserving deformations
as a function of the two shear strain modes, presenting a flat landscape with vanishing quadratic rigidity and finite quartic rigidity. (e) Quartic
rigidity as a function of rigidity ratio, with the inset showing log-log plots of the energy-strain curves confirming the quartic dependence of
energy in strains. (f) Quartic order rigidity as a function of rigidity ratio (quadratic rigidity vanishes) compared with VM numeric results (dots).
The inset shows the energy-strain curves on a log-log scale validating the quartic dependence of energy in strain.

deformations that displace the system towards the blue region,
and finite constants for deformations that displace it in the
other direction.

In the next section, we examine the response at the critical
point separating the compatible and incompatible states. We
show that at the onset of rigidity, the VM exhibits anomalous
elasticity, which arises directly from the nonanalyticity of the
energy functional.

V. BREAKDOWN OF LINEAR ELASTICITY AT THE
CRITICAL POINT

We now examine the mechanical response of the VM at
the critical point corresponding to s0 = s∗

0. We focus specif-
ically on the triangular VM, but the same behavior occurs
generically for all polygonal shapes. At the critical point,
there is a single compatible ground-state configuration with
a = 1 and p = s0, corresponding to an equilateral triangle.
The associated ground state has zero energy and is unique.

Since the energy is nonanalytic at the critical point, the
elastic constants cannot be evaluated by expanding the en-
ergy for small deformations. Instead we calculate them by
examining the response to the various deformation protocols
summarized in Table I. The dependence of the elastic constant
on the specific protocol demonstrates the nonanalyticity of the
energy functional and the failure of linear elasticity.

To demonstrate this, we begin by showing that the response
to area deformations as measured by the modulus G3 in Table I
is asymmetric, in the sense that the response to isotropic

compression is different from the response to isotropic exten-
sion. To calculate G3 we impose u11 = u22 = δ and allow u12

to be selected by energy minimization. The plot of the energy
as a function of imposed area strain δ and spontaneous shear
strain u12 shown in Fig. 3(a) reveals the origin of the asymme-
try. The red curve represents the energy minimizer for a fixed
area deformation δ. It is evident that tensile deformations,
corresponding to δ > 0, maintain u12 = 0, hence they induce
no shear, while compression, corresponding to δ < 0, yields
a finite value of u12, hence it induces spontaneous shear. The
bifurcation of the red curve at the global minimum indicates
spontaneous symmetry breaking in the shear response. The
plot of G3 as a function of the rigidity ratio r for compres-
sive (yellow) and tensile (blue) deformations in Fig. 3(b)
clearly shows the asymmetry. The inset shows log-log plots
of energy-strain curves for the tensile case, demonstrating the
quadratic dependence of energy on strain. These findings con-
firm the nonanalyticity of the energy functional at the critical
point ground state.

To quantify the magnitude of the spontaneous shear in-
duced in response to compressive area deformations, we
define the cell ratio νcell in analogy to the Poisson ratio as

νcell = u2
12/δ. (9)

This definition is chosen instead of the naive measure u12/δ

because the latter is found to depend on the magnitude δ of
the imposed strain and thus it is not a well-defined material
property. The cell ratio is shown in Fig. 3(c) as a function
of the stiffness ratio r. It clearly captures the asymmetry
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between tensile and compressive deformations, with νcell = 0
for tensile forces and νcell �= 0 for compressive forces. The
inset of Fig. 3(c) shows νcell for fixed r as a function of
δ, confirming that this parameter is indeed a well-defined
material property independent of δ. The cell ratio quantifies
the coupling between bulk and shear deformations, which is
absent in an isotropic linear elastic solid.

Next, we study the response to (area-preserving) pure shear
deformations by imposing u12 = δ and letting u11 = −u22 to
be selected by energy minimization, or vice versa. The plot
of the energy as a function of shear strain shown in Fig. 3(d)
shows that the two shear modes are decoupled as in classi-
cal elasticity. A log-log plot of the energy-strain curve for
the traceless shear mode u11 = −u22 and various values of r
shown in the inset of Fig. 3(e) reveals an inherently nonlinear
quartic dependence on strain, demonstrating the importance of
nonlinear effects for infinitesimally small loads. The quartic
rigidity is plotted in Fig. 3(e) on a linear scale. The disagree-
ment between theory and simulations at low rigidity ratio
reflects a failure of convergence of the energy minimizing
gradient-descent algorithm.

Finally, we evaluate the response to a uniaxial strain and
discover that, similar to the shear response, the quadratic
rigidity vanishes and the response is quartic. The quartic rigid-
ity is plotted as a function of rigidity ratio in Fig. 3(f), and the
inset shows the energy-deformation curves on a log-log scale.

In summary, we have shown in this section that in the
critically compatible state, linear elasticity fails to describe
the linear response of the VM to small deformations. First,
the asymmetric response to tensile and compressive loads vi-
olates reciprocity. Second, the response to shear deformations
reveals quartic rigidity, violating the superposition principle
even for infinitesimal deformations. Finally, we uncovered
an anomalous coupling between area and shear deforma-
tions, with a spontaneous breaking of symmetry in the shear
response to isotropic dilations. This is reminiscent of the re-
cently discovered odd-ratio that quantifies area-shear coupling
in a generalized linear elasticity of active solids [37].

These findings are also related with the recently sug-
gested framework of energetic rigidity [15,16]. Within this
framework, a system is termed (energetically) rigid if a fi-
nite deformation increases energy at any order, not just at
quadratic order. According to this definition, the quartic shear
rigidity is a signature of energetic rigidity. The emergence
of sign-dependent response, a violation of reciprocity, and
bulk-shear coupling indicates the nonanalyticity of the energy
functional, and therefore it shows that one cannot describe
VM elasticity through a Taylor expansion of the energy for
small deformations. Specifically, we have shown that at the
critical point, the VM can introduce different rigidities for
tensile and compressive loads. In the next section, we explore
the origin of the failure of linear elasticity using a visual
representation of the problem.

VI. VISUAL REPRESENTATION OF THE FAILURE OF
LINEAR ELASTICITY

A. Elastic triangle

To introduce a pictorial representation of deformations in
configuration space, we first consider a common microscopic

model for elastic solids, which is a lattice of masses and
springs. In two dimensions, a triangular lattice of identical
masses and springs leads, in the coarse-grained limit, to homo-
geneous and isotropic linear elasticity [31,38]. As discussed
before, the response to uniform loads is equivalent to the
response of a single triangle. Therefore, we consider a single
triangle made of three identical masses and harmonic springs
with rest lengths l0. The rest configuration forms a point in
configuration space, denoted �0 = (l0, l0, l0) and shown as a
gray point and an associated equilateral triangle in Fig. 4(a).
An arbitrary deformed state is denoted by � = (�1, �2, �3)
and is shown as a black point and an associated deformed
triangle in Fig. 4(a). Deformation along the na = 1√

3
(1, 1, 1)

direction corresponds to area deformation, i.e., response to
pressure changes, and deformations along the perpendicu-
lar plane spanned by n1 = 1√

2
(1,−1, 0), n2 = 1√

2
(0, 1,−1)

correspond to shear deformations. Deviations from the rest
configuration cost energy proportional to δ�2, with δ� = � −
�0. When expressed geometrically, the rest and actual config-
urations can be represented by reference and actual metrics g0

and g, respectively, and the energy can be expanded in powers
of u = 1

2 (g − g0) as in Eq. (6), with Aαβγ δ as in Eq. (7).
Importantly, the energetic response to a generic deformation
along a given direction in configuration space is insensitive
to the orientation, as expected from a quadratic expansion. In
addition, there is no coupling between bulk and shear defor-
mations; for example, A1112 = 0.

B. VM triangle

We now implement the same visual representation de-
scribed above for an elastic triangle for the case of a triangular
VM cell, that is, a triangle defined by its target area and
perimeter. Contrary to the elastic triangle, the terms in the cell
energy Eq. (1) penalize geometric deformations of area and
perimeter, which do not uniquely determine a configuration
of a triangular polygon. The area term penalizes deviations
from the target area, which identifies a two-dimensional (2D)
manifold of equal area configurations denoted by MA and
shown as an orange surface in Figs. 4(b) and 4(c). The perime-
ter term penalizes deviations from the target perimeter, which
identifies a 2D manifold of equiperimetric configurations MP

shown as a blue surface in Figs. 4(b) and 4(c). The black point
in Fig. 4(b) represents the ground-state configuration that is
achieved in the incompatible regime by balancing area and
perimeter deviations. Contrary to classical elasticity, which
measures the distance of a point in configuration space from
a reference point, the cell energy measures the joint distance
from two target surfaces. This introduces additional hidden
degrees of freedom to the deformations, as shown in Fig. 4(c),
where the energy of the deformed configuration (black point)
is measured by selecting the closest (yellow) points on the
target manifolds MA,MP.

The state of the tissue is determined by the relative location
of the two surfaces in configuration space. In Figs. 4(d)–4(f)
we show three different situations where the two surfaces
cross each other along a curve, at a point, or not at all, corre-
sponding to floppy (p∗

0 < p0), critically rigid (p∗
0 = p0), and

frustrated cell (p0 < p∗
0). The ground state is a point located

along the na direction in between the surfaces, with its exact
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FIG. 4. Visualizing elastic and cell models in configuration space. (a) An elastic triangle made of masses and springs. The rest and
deformed configurations are marked by the gray and black points, correspondingly. The mechanical energy is a measure for the distance
of the configuration � from �0. (b) A triangular cell model with rest area and perimeter. MP is the set of all configurations satisfying the rest
perimeter, and MA is the set of all configurations satisfying the rest area. The black point is the energy ground state with its exact position
depending on the rigidity ratio. (c) A deformed triangular cell model, illustrating the content of the mechanical energy, is measuring the joint
distance from the two surfaces. The yellow points are hidden internal degrees of freedom that are selected to minimize the distance from MP

and MA. (d) Floppy cell with s∗
0 < s0: The intersecting curve represents a continuous set of triangles satisfying both P0 and A0 simultaneously.

(e) Critically rigid cell with s∗
0 = s0 having one configuration that satisfies area and perimeter simultaneously. (f) MA and MP are disjoint,

hence no triangle can satisfy both conditions and it is therefore frustrated.

position depending on the rigidity ratio r: for r � 1 (r � 1)
the cell is dominated by the perimeter (area) term and the
ground state is closer to MP (MA). Zero-energy states exist
only if the two surfaces intersect as in Figs. 4(d) and 4(e).
When the two surfaces are disjoint as in Fig. 4(f), the joint
distance of any point in space from the surfaces, that is, the
energy, is necessarily nonzero, reflecting the energy gap and
the emergent rigidity of the cell.

It is then evident why a critically compatible tissue presents
anomalous elasticity. Assume a critically compatible triangle
with target perimeter P0 = 3 and target area A0 = √

3/4. The
triangle in this case is compatible, and there is only one con-
figuration satisfying A0 and P0 simultaneously: an equilateral
triangle of edge length l = 1, with zero energy. In Figs. 5(a)
and 5(b), the orange and blue surfaces represent the target
area and perimeter surfaces, and they intersect at the single
point corresponding to the ground state. Now consider an
infinitesimal area deformation. Area expansion corresponds to
constraining the cell configuration to lie on the green surface
in Fig. 5(a). In this case, the perimeter necessarily deviates
from its target value, and the closest point on MP remains
isotropic. In contrast, an area compression corresponds to
the situation shown in Fig. 5(b), where the green surface
describing the deformed area and the target perimeter surface
intersect, resulting in zero perimeter energy and finite degen-
erate area energy. Therefore, the system spontaneously breaks

the symmetry by selecting a deformed state corresponding
to finite shear of fixed magnitude and arbitrary orientation.
Also, the resistance to area compression depends only on

FIG. 5. Area deformation in a critically rigid triangular cell. The
target surfaces MA and MP intersect at a point marked by a red dot,
forming the zero-energy ground state. Area deformation is imposed
by constraining the configuration to a different equiareal surface.
(a) Area tension—the equilibrium is positioned along the (1,1,1)
direction, between the constraining green surface and the target
perimeter surface MP, hence isotropic, with both area and perimeter
energy deviations. (b) Area compression—the constraining green
surface intersects with the target perimeter MP. The selected con-
figuration is therefore on the intersecting curve with zero perimeter
energy and induced shear strain.
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area rigidity, whereas area tension depends on both area and
perimeter rigidities. This is in complete agreement with the
analytical and numerical results obtained in Fig. 3.

Finally, the visual representation in Fig. 5 clarifies why the
definition of the cell ratio given in Eq. (9) is independent of the
imposed strain and constitutes a material property. Figure 5(b)
shows that the imposed area strain δ measures the translation
of the green surface, and the induced shear strain is the dis-
tance between the undeformed state, marked by the red point,
and the curve where the green surface and the blue manifold
MP intersect. For small δ, the part of the green surface that
intersects with MP can be approximated as a spherical cup.
The relation between its radius of curvature R and the imposed
and induced strains is

(R − δ)2 + u2
12 = R2 (10)

and for small δ we get

νcell = u2
12

δ
= 2R. (11)

The cell ratio quantifying the coupling between imposed area
strain and induced shear strain is thus a geometric measure of
the curvature of MA. The numeric simulations and analysis
confirm that this definition is well defined and independent of
the imposed strain magnitude, as shown in Fig. 3(c).

VII. SUMMARY AND DISCUSSION

In summary, we have shown that while in the incompatible
regime the VM obeys linear elasticity, qualitative deviations
from linear elasticity are found at the onset of mechani-
cal rigidity for s0 = s∗

0, including nonreciprocal response to
isotropic area changes and spontaneous shear upon isotropic
dilation. These deviations are unexpected, given that the crit-
ical state has a single nondegenerate ground state, and they
demonstrate the nonanalytic nature of the energy functional at
the critical point. The compatible fluidlike regime for s0 > s∗

0
also exhibits non-Hookean elasticity, but this is due to the
existence of a continuum of degenerate ground states that
allow the system to accommodate external deformations at no
energetic cost by changing its shape.

To understand the mechanisms that drive the failure of
linear elasticity in the critically compatible case, we have de-
veloped a graphic representation of the mean field of the VM
that illustrates the existence of hidden degrees of freedom.
This geometric representation shows that the elastic solid
holds two distinct sets of reference configurations (associated
with target area and target perimeter) that may be either com-
patible or incompatible with each other. When compatible, the
system is fluid in the sense that it can explore a manifold of
degenerate zero-energy states and accommodate deformations
with no energetic cost, below a critical strain. When the two
reference states are incompatible, the system is rigid and has a
finite ground-state energy determined by the distance between
the two sets of reference states that cannot be simultaneously
accommodated. The existence of this finite energy or prestress
provides a definition of geometric rigidity. The deviations
from linear elasticity occur at the critically compatible state,
where the system has a single nonfrustrated ground state,
yet reciprocity is violated, an anomalous coupling between

bulk and shear deformations emerges, and quartic rigidity is
observed in response to specific deformations.

In the present work, we have restricted ourselves to a
mean-field theory that examines the linear response of the VM
to spatially uniform deformations, where all cells respond in
the same way. The identification of hidden degrees of free-
dom demonstrates that analyzing the response of nonlinear
and nonuniformly deformed tissue, e.g., the response of the
tissue to the localized contraction of a single cell, requires a
generalized elastic framework.

The relevance of our work goes beyond the scope of tissue
mechanics in two main directions. First, our work provides a
route for the design of mechanical metamaterials with extreme
properties. Specifically, the unusual mechanical properties of
the tissue VM stem directly from the geometry of the refer-
ence surfaces in Fig. 4. This suggests that one could design
materials with extreme mechanical behavior by constructing
a cellular network where each cell has a specific local ener-
getic response, controlled by the geometry of the reference
surfaces. Second, the well-established paradigm in physics—
that response to small perturbations can be analyzed via a
Taylor expansion about the ground state—fails at criticality,
as indicated by the asymmetric response to tensile and com-
pressive area deformations. Our work suggests an alternative
framework for formulating the elasticity of underconstrained
system by describing them via analytic-like quadratic energy
functionals where the available (and possibly incompatible)
reference states are incorporated as dynamical fields. The
identification of ground states and elastic response then re-
quires additional minimization with respect to such reference
states. These results and observations provide independent
support for the earlier model proposed in Ref. [13].
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APPENDIX A: VM NUMERICAL SIMULATIONS

To test the analytical results, we have simulated nu-
merically a VM with a regular lattice of triangular cells,
implementing the model in Surface Evolver [39]. Periodic
boundaries are used to avoid boundary effects, with periodic
lengths Lx, Ly, and a shear length Lxy such that (x, y) = (x +
mLx + nLxy, y + nLy), where m and n are integers. For a given
shape index s0 and rigidity ratio r, we first find the ground
state using a gradient descent method to minimize energy over
the vertex positions and the periodic boundary lengths Lx and
Ly, with Lxy = 0.

From this ground state, we calculate the tissue moduli
Gi, i = 1, . . . , 5, using the same procedures for u11, u12, and
u12 (see Table I). The periodic lengths are transformed as
Lx → Lx(1 + u11), Ly → Ly(1 + u22), and Lxy → u12Ly. We
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Lx

Ly

Lxy(a) (b)

FIG. 6. Numerical simulations. (a) Image of numerical simu-
lations with no shear. The periodic boundaries are defined by a
parallelogram with horizontal length Lx and vertical length Ly.
(b) Image of a sheared tissue, with shear length Lxy.

then minimize energy under this strain by updating vertex
positions and free strain parameters. The modulus G is then
calculated as E = E0 + 1

2 Gδ2, where E is the mean energy per
cell, E0 is the ground-state energy per cell, and δ is the strain
magnitude. Unless otherwise stated, a value of δ = 0.001 is
used. In Fig. 6 we show the energy minimizing configuration
of a unit cell before and after shear deformation.

APPENDIX B: ANALYTICAL CALCULATION
OF GROUND STATES

It is instructive to display the calculation of the ground
states for a quadrilateral (n = 4), where the isoperimetric ratio
is s∗

0 = 4. In this case, the derivation is transparent and can be
carried out analytically.

The metric tensor can be parametrized in terms of the
(dimensionless) lengths c1 and c2 of opposite parallel sides
of the quadrilateral and the angle θ between adjacent sides as

gi j =
(

c2
1 c1c2 cos θ

c1c2 cos θ c2
2

)
(B1)

with p = 2(c1 + c2) and a = c1c2 sin θ . We choose 0 � θ �
π/2. Inserting this into the mean-field energy Eq. (4), we
obtain

E = 1

2
(c1c2 sin θ − 1)2 + r

2
[2(c1 + c2) − s0]2. (B2)

The ground states are obtained by finding the metric that
minimizes the energy. This gives three equations in three
unknowns,

∂E

∂c1
= (c1c2 sin θ − 1)c2 sin θ + 2r[2(c1 + c2) − s0] = 0,

∂E

∂c2
= (c1c2 sin θ − 1)c1 sin θ + 2r[2(c1 + c2) − s0] = 0,

∂E

∂θ
= (c1c2 sin θ − 1)c1c2 cos θ = 0. (B3)

Clearly the compatible state a = 1 and p = s0 identically
satisfy all three equations. This solution requires

c1c2 sin θ = 1,

2(c1 + c2) = s0, (B4)

FIG. 7. Mean-field phase diagram for a four-sided VM in the
(s0, r) plane. For s0 > s∗

0 = 4 the ground state is compatible, cor-
responding to a family of zero-energy quadrilaterals parametrized
by the tilt angle θ . At the critical point s0 = s∗

0 there is a unique
ground state corresponding to a square cell with a = 1 and p = 4. For
s0 < s∗

0 the system cannot satisfy both area and perimeter constraints,
and the ground state is a square with a side determined by the real
solution of the cubic equation (B7). The incompatible regime extends
into the region s0 < 0 for r < r∗. The blue region corresponds to a
collapsed cell with a = p = 0.

with solution

c1 = s0

4
+ 1

4

√
p2

0 − s∗2
0

sin θ
,

c2 = s0

4
− 1

4

√
p2

0 − s∗2
0

sin θ
, (B5)

provided

sin θ � (s∗
0/s0)2 (B6)

or s0 > s∗
0/

√
sin θ . In other words, for any value of s0 > s∗

0
the compatible solution is a family of quadrilaterals with a =
1, p = p0, and tilt angle θ varying in the range specified by
Eq. (B6). At s0 = s∗

0, there is a single solution corresponding
to a square with θ = π/2 and c1 = c2 = 1.

When θ = π/2, the last of Eqs. (B3) is identically satisfied.
For s0 < s∗

0, there is then a state with c1 = c2 = c given by the
solution of

c3 + (8r − 1)c − 2s∗
0r = 0. (B7)

This is the incompatible regime. There is a single ground
state corresponding to a regular square, and the energy is
gapped. If r � 1, corresponding to the case in which perime-
ter deformations are much more costly than area deformation,
Eq. (B7) has the solution c 	 s0/4, corresponding to p 	 s0

and a 	 s2
0/16, with p/

√
a 	 4 = s∗

0. In the opposite limit of
r � 1 we find c 	 1, corresponding to a 	 1 and p 	 4, with
p/

√
a 	 4 = s∗

0. In general, the compatible cell has p > s0

and a < 1, with p/
√

a = s∗
0 for all s0 � s∗

0.
The solution c = 0 corresponds to a collapsed cell with

a = p = 0 and minimum energy Em = (1 + rs2
0)/2. Imposing

that E (c) > Em, where c is the solution of Eq. (B7), yields the
constraint c > cm, with cm = 6rs0/(2s∗

0r − 1) > 0. Using this
condition, it can be shown that, as demonstrated in Ref. [21],
the system is unstable, corresponding to a collapsed cell,
for r � 1/8 and s0 < − 2

r ( 1−8r
6 )3/2. The corresponding phase

diagram is shown in Fig. 7.
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FIG. 8. Extension of Fig. 2 to a square and hexagonal tissue
model: Comparison of analytical (solid) and numerical (points) elas-
tic moduli of an (a) n = 4 and (b) n = 6 VM as functions of target
shape parameter s0 on a log-log scale. The compatible/incompatible
transition is at s∗

0 = 4 and s∗
0 = 1921/4 ≈ 3.72, respectively.

In general, we can calculate the incompatible ground state
for any n-sided polygonal cell by noting that in this regime,
the ground-state metric is isotropic and can be written as

g0 = c2

(
1 0
0 1

)
(B8)

with c to be determined by energy minimization. Upon substi-
tuting g = g0 in Eq. (4), the energy En of an n-side cell reads

E3 = 1

2

(√
3

4
c2 − 1

)2

+ 1

2
r(3c − p0)2,

E4 = 1

2

(
c2 − 1

)2 + 1

2
r(4c − p0)2,

E6 = 1

2

(
3
√

3

2
c2 − 1

)2

+ 1

2
r(6c − p0)2. (B9)

The value of c that minimizes the energy is the solution of
a cubic equation given in Eq. (B7) for n = 4 and by the
following equations for n = 3, 6:

c3 + c

(
96r − 4√

3

)
− 32p0r = 0, n = 3,

9c3 + c(24r − 2
√

3) − 4p0r = 0, n = 6. (B10)

The mechanical response to small perturbations relative to
the ground state for a triangular VM is shown in Fig. 2,
where analytical and numerical results are compared and are
in very good agreement. In Fig. 8 we compare numerical and
analytical calculations of the shear modulus for square and
hexagonal tissue VM. The elastic tensor in the hexagonal case
is of the form (7) with

λ = 9r

2c
(3s0 − 14c) + 3

√
3,

μ = 9r

2c
(6c − s0). (B11)

Detailed derivations of this and other results as well as
comparison with numerical simulations can be found in an
attached Mathematica Notebook.
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