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Even though electrowetting-on-dielectric (EWOD) is a useful strategy in a wide array of biological and engi-
neering processes with numerous droplet-manipulation applications, there is still a lack of complete theoretical
interpretation on the dynamics of electrowetting. In this paper we present an effective theoretical model and
use the Onsager variational principle to successfully derive general dynamic shape equations for electrowetting
droplets in both the overdamped and underdamped regimes. It is found that the spreading and retraction dynamics
of a droplet on EWOD substrates can be fairly well captured by our model, which agrees with previous
experimental results very well in the overdamped regime. We also confirm that the transient dynamics of EW
can be characterized by a timescale independent of liquid viscosity, droplet size, and applied voltage. Our model
provides a complete fundamental explanation of EW-driven spreading dynamics, which is important for a wide
range of applications, from self-cleaning to novel optical and digital microfluidic devices.
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I. INTRODUCTION

Electrowetting-on-dielectric (EWOD), a phenomenon re-
ferring to the effect of electric fields on the wetting of a droplet
on a dielectric-layer-covered electrode surface, is an important
and versatile technique via droplet manipulation [1]. So far it
has attracted considerable attention due to its significance in
fundamental scientific understanding and numerous techno-
logical applications, such as novel digital microfluidic devices
[2–5], fast response displays [6], fast optical imaging [7], op-
tical devices [8,9], inkjet/soft printing [10,11], self-cleaning
[12], anti-icing [13,14], and inducing droplet detachment [15]
and wetting transition [16]. To improve the performance of
such applications, a fundamental understanding of droplet
dynamics driven by electrowetting (EW) is crucial [17]. It has
been found that this spreading motion of a droplet on a solid
substrate is initiated by the electrical force concentrated near
the three-phase contact line (TCL), of which the dynamics
is determined by the balance among the driving electrical
force, capillary force, and resistance forces (i.e., contact line
friction). Earlier studies have revealed that the EW-driven
spreading dynamics can be typically categorized into two
main regimes, namely, the overdamped and the underdamped
regimes [18,19]. In the overdamped regime, dynamic behav-
iors are dominated by viscous effects [18–22], whereas in the
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underdamped regime, the droplet inertia becomes dominant
[18,19,23,24].

During the past decade, numerous efforts of experiments
[18,19,24–26], theoretical modelings [27,28], and numerical
simulations [29,30] have been devoted to getting a better
understanding of the spreading dynamics triggered by the
EW effect. For example, the dynamic EW and dewetting of
ionic liquids have been investigated with high-speed video
microscopy, and the experimental measurements have shown
that the base area of the droplet varies exponentially during
both the EW and retraction processes. The linear depen-
dence of dynamic contact angle on the speed of contact
line expansion was examined using the hydrodynamic and
molecular-kinetic models [26]. Using the domain perturbation
method, Oh et al. [28] analyzed the unsteady motion and the
shape evolution of a sessile drop actuated by EW and reached
a qualitative agreement between their analytical results and
experimental ones, validating their theoretical model. By
studying the dependence of spreading dynamics on drop size
and viscosity under various voltages, it has been found that
there exists a critical viscosity at which the spreading pattern
changes from an underdamped one to an overdamped one.
More recently, Vo et al. systematically investigated the dy-
namics of EW droplets, derived the critical viscosity at which
the transition occurs, and revealed its subtle and often hidden
dependence on the EW dynamics [18]. They also reported
that a transient timescale can be used to characterize both
the spreading and retracting dynamics [19]. In addition, the
volume-of-fluid method [29] and finite element method [30],
in which the fluid dynamics is modeled by the Navier-Stokes
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FIG. 1. Schematic pictures of a droplet on a substrate in equilib-
rium state with contact angle (a) θY in the absence of electric voltage
and (b) θL in the presence of electric voltage. (c) Recoiling stage
and (d) the equilibrium state of the droplet in the absence of electric
voltage.

equations, were also employed to study the static and the
dynamic EW problems.

Despite the fact that the dynamics of droplets induced by
EW has been extensively studied via either experimental or
theoretical approaches, it is still hard to find a model which
can be used to construct the free energy explicitly for a droplet
in terms of droplet shape, especially in the underdamped
regime, so that a systematic analytical understanding of the
underlying subtle mechanism, in particular, the governing ki-
netic equations of the nonequilibrium EW dynamics and the
dependence of transient dynamics in EW on liquid viscosity,
droplet size, and applied voltage, can be obtained.

In this paper we establish a theoretical model to explicitly
formulate the free energy of a droplet in terms of droplet
shape parameters, which enables us to study the EW-driven
dynamics of the droplet analytically on a dielectric-layer-
covered electrode substrate. The numerical results predicted
by the present model are compared with experimental ones.
To explore the transient dynamics in both the overdamped and
underdamped regime, we further investigate how the viscos-
ity and the size of a droplet, and applied voltage effect the
EW dynamics. We expect this work can offer some helpful
implications for the design of EWOD-based devices when the
physical properties of droplet (e.g., viscosity and droplet size)
and applied voltage are varied to meet their requirements.

II. THEORETICAL MODELING

We begin our investigation by considering an aqueous
droplet placed on a substrate consisting of an insulating
surface layer (thickness d) on top (yellow) and an elec-
trode underneath, as shown in Fig. 1. Both the droplet
and the electrode are immersed in an oil fluid (e.g., the
surrounding environment is a pool of silicone oil) with vis-
cosity μ0. The apparent contact angle θY [see Fig. 1(a)] at
the equilibrium state satisfies Young’s equation, γsm − γls =
γlmcosθY, where γsm, γls, and γlm are interfacial tensions of
the solid-medium, liquid-solid, and liquid-medium interfaces,
respectively. When an external voltage U is applied between
the droplet and the flat substrate, the accumulation of free

charges near the electrode causes a reduction of the local
liquid-solid surface tension γls and subsequently induces the
spreading of the droplet, yielding another equilibrium state
with an apparent contact angle θL [see Fig. 1(b)], described
by the well-known Young-Lippmann equation [1,31] cosθL =
cosθY + η, with η = ε0εU 2/(2dγlm ), where η, ε0, and ε are
the dimensionless EW number, the dielectric permittivity in
vacuum, and the relative dielectric constant, respectively. Here
the reduced liquid-solid surface tension can be replaced by an
effective one γ eff

ls = γls − ηγlm. Once the electric voltage is
switched off, the droplet will keep its current shape as shown
in Fig. 1(c) as its transient state. However, due to a sudden
increase in the local liquid-solid surface tension owing to the
short discharge timescale of the droplet-electrode capacitor
being much faster than the relaxation time of the droplet
[32,33], the restoration of liquid-solid interfacial tension leads
to a recovery effect. Subsequently, the droplet will undergo a
recoiling stage and reach the final equilibrium configuration
[see Fig. 1(d)], during which a flow will be induced, caus-
ing a viscous dissipation typically comprising contributions
in the bulk droplet, near the substrate, and at the vicinity
of the contact line [18,19,34]. In the next two sections, a
theoretic model based on the Onsager variational principle is
established to derive the shape (mode) equations that govern
the nonequilibrium EW dynamics in the overdamped and the
underdamped regimes, respectively. Here it should be noted
that the effects of evaporation and gravity are neglected, and
the volume of the droplet is assumed to be constant in this
paper. Such an assumption is reasonable if the droplet size is
smaller than the capillary length lc = √

γlm/(ρg), where ρ and
g denote the droplet density and the gravitational acceleration,
respectively.

A. Overdamped regime

In the presence of an electric field, the free energy is written
as a sum of interfacial energies,

F = γlmAlm + γ eff
ls Als + γsmAsm, (1)

where Alm, Als, and Asm are the areas of the liquid-medium,
solid-medium, and liquid-solid interfaces, respectively. Let
At = Asm + Als, and with a consideration of the Young-
Lippmann equation, Eq. (1), can be converted to [16]

F = γlmAlm − γlmAls cos θL + γsmAt. (2)

Similarly, the general form of the free energy in the absence
of an electric field reads

F = γlmAlm − γlmAls cos θY + γsmAt. (3)

In the overdamped regime, the shape of the droplet is treated
as a sphere due to the dynamic behaviors dominated by the
viscous effect and the inertial effect is neglected. Thereby,
for the spreading stage, the free energy of the system can be
calculated as

F o
s = γlmπR2

b

[
2

1 + cos θ
− cos θL

]
, (4)

where Rb, θ , and θL represent the base radius, the dy-
namic contact angle, and the contact angle at equilibrium,
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respectively. A time derivative of such a free energy leads to

Ḟ o
s =γlm2πRb

[
Ṙb(t )

(
2

1 + cos θ
− cos θL

)

+ Rbsin θ

(1 + cos θ )2
θ̇ (t )

]
, (5)

where the dots denote a derivative with respect to time t .
According to conservation of volume dV o(t )/dt = 0, we can
obtain (see the Appendix for the detailed derivations)

θ̇ (t ) = − (2 + cos θ )sin θ

Rb
Ṙb(t ). (6)

Given the equation for θ̇ (t ), one needs one more equation for
Ṙb(t ) to describe the EW-driven droplet spreading dynamics
in the overdamped regime. To get this we use the Onsager
principle [35–37] to determine the evolution of the system by
a minimization of the Rayleighian:

� = Ḟ + �, (7)

where Ḟ is the time derivative of the free energy of the system
given by Eq. (5), and � is the energy dissipation function.
Typically there exist two types of descriptions accounting
for droplet spreading, namely, the hydrodynamic approach
[38,39] and the molecular-kinetic theory [20], depending on
the dominant dissipation channel. The hydrodynamic ap-
proach ascribes the dissipation to the viscous flows generated
in the bulk [38,39]. In contrast, the molecular-kinetic theory
concentrates on the dissipative processes occurring in the
vicinity of the contact line [20]. Strictly speaking, the total vis-
cous dissipation is the sum of bulk dissipation and contact line
dissipation. However, Brochard-Wyart and de Gennes [40]
have pointed out that for large contact angles the dynamics is
most likely to be dominated by the dissipation at the contact
line, whereas for small contact angles, viscous dissipation in
the bulk would be the governing channel. In a recent study
Xu et al. [41] investigated the evolution of liquid film and
liquid droplet moving on a solid substrate by using Onsager’s
variational principle, where viscous dissipation in the bulk
was calculated with the contact line friction contribution ex-
cluded, as the contact angle is small. In this paper, as the
contribution at the vicinity of the contact line dominates the
whole dissipation process [34] in the droplet with a relatively
large contact angle value, we merely consider the contribution
made by the contact line, with its dissipation rate expressed as

�ct,o
vis = πλRbṘ2

b, (8)

where λ is the friction coefficient at the contact line. Here
the friction coefficient, according to Refs. [18,19,34], can be
given by λ = C(μμ0)1/2, where μ is the droplet viscosity, μ0

is the viscosity of the surrounding medium of the droplet,
and C is a constant depending on roughness and chemical
properties of the surface [42]. Substituting Eqs. (5) and (8)
into Eq. (7) and combining Eq. (6) leads to

�o = 2πγlmRbṘb(cos θ − cos θL) + πλRbṘ2
b. (9)

The Onsager principle tells us that Ṙb(t ) is determined by the
condition ∂�o/∂Ṙb=0, which gives the evolution equation

Ṙb = γlm

λ
(cos θL − cos θ ). (10)

Similarly, in the absence of an electric field, the kinetic equa-
tion for the retracting stage can also be expressed as

Ṙb = γlm

λ
(cos θY − cos θ ). (11)

Here the retracting motion is purely driven by capillarity.
It is well known that the driving force f per unit length

pulling the liquid at the three-phase contact line is given by
f = γlm(cosθL − cosθ ) [1,43]. Such a driving force, if com-
bined with Eqs. (10) and (11), gives a linear relation between
f and Ṙb, indicating a balance between driving force and
friction force [15,18,19,44]. The kinetic equations also reveal
the dependence of dynamic contact angle on the contact line
velocity. The linear dependence of cosθ on the speed of the
contact line Ṙb in both EW and retraction processes are consis-
tent with the previous reports as well [26]. The quantitatively
good agreement between theoretical and experimental results
verifies that the droplet spreading and the droplet retraction
dynamic behaviors in the overdamped regime (i.e., droplet
with high viscosity) driven by EW can be described very well
by Eqs. (6), (10), and (11).

Several approaches have been devoted to study the relation-
ship between the dynamic contact angle and the contact line
velocity, such as the hydrodynamic approach [38,39] and the
molecular-kinetic theory [20]. Both theories predict evolution
of the dynamic contact angles as a function of the contact line
velocity. When dealing with the case that dynamic contact
angles are small and close to the equilibrium contact angle,
the relationship between the dynamic contact angle and the
contact line velocity can be linearized to a form similar to
Eq. (11). In fact, Eqs. (10) and (11) derived based on the
Onsager’s variational principle are similar to the boundary
condition derived by using molecular dynamics and contin-
uum mechanics [45]. Since the kinetic equations derived by
Onsager’s variational principle in the overdamped regime are
direct and concise, our theoretical model shows some advan-
tages as compared with the approaches mentioned above.

B. Underdamped regime

Experimentally, it has been reported that low droplet vis-
cosity will lead to underdamped dynamic features during
the droplet spreading process [18,24]. As a consequence, the
droplet shape in this regime, though still axis symmetric, is no
longer spherical. To describe the shape profile, we decompose
it into Legendre polynomials with coefficients c2n, i.e.,

r(ϕ, t ) = R0 +
∞∑

n=1

c2n(t )P2n(cosϕ), (12)

where R0, c2n(t ), P2n, and ϕ are the effective radius of the
droplet, the time-dependent amplitude of a shape mode, Leg-
endre polynomials, and the polar angle, respectively, as shown
in Fig. 1(d). It is worth noting that a 90◦ average contact angle
is assumed.

In the situation of low-viscosity flow, the velocity flow is
irrotational with a velocity v = ∇ψ , where the flow poten-
tial ψ satisfies ψ = 0. Here we assume the shape of the
droplet is symmetric around the azimuthal angle, so that the
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general solution of the Laplace equation in spherical coor-
dinates reads ψ (r, ϕ, t ) = ∑∞

l=0[al (t )/rl+1]Pl (cosϕ), where
al (t ) are time-dependent coefficients. The boundary condi-
tion requires that the perpendicular velocity of the droplet
must vanish on the solid substrate (ϕ = π/2), i.e., vϕ =
−∂ψ/r∂ϕ = 0. To satisfy this condition we should have l =
2n, and the general solution can be rewritten as ψ (r, ϕ, t ) =∑∞

l=0[c2n(t )/r2n+1]P2n(cosϕ). At the surface of the droplet
(r = R0), the radial velocity of the droplet satisfies the bound-
ary conditions vr = ∂ψ/∂r = ṙ(ϕ, t ). Then the flow potential
can be expressed as

ψ = (r, ϕ, t ) = −
∞∑

n=0

R2n+2
0

(2n + 1)r2n+1
ċ2n(t )P2n(cosϕ), (13)

where n = 0 corresponds to the contribution made by spheri-
cal symmetry and is treated separately in this paper. Similar to
the previous section, the free energy can be calculated as (see
the Appendix for the detailed derivations)

F u
s =γlm

[
2πR2

0 + 4πR0c0(t ) + 2π

∞∑
n=1

n(2n + 1) + 1

4n + 1
c2

2n(t )

]

− γlm

[
πR2

0 + 2πR0

∞∑
n=1

c2n(t )P2n(0)

]
cos θL. (14)

Constructing the free energy explicitly [Eq. (14)] in terms of
droplet shape c2n(t) in the underdamped regime is significant,
because this allows one to discuss the droplet dynamics sys-
tematically. On the other hand, the kinetic energy due to the
flow of the fluid is given by [46]

T = πρR3
0

∞∑
n=1

ċ2
2n(t )

(2n + 1)(4n + 1)
. (15)

Given these, the free energy change rate Ė = Ḟ u
s + Ṫ then is

written as

Ė =4πγlmR0ċ0(t ) + 4πγlm

∞∑
n=1

n(2n + 1) + 1

4n + 1
c2n(t )ċ2n(t )

− 2πR0γlmcosθL

∞∑
n=1

ċ2n(t )P2n(0)

+ 2πρR3
0

∞∑
n=1

ċ2n(t )c̈2n(t )

(2n + 1)(4n + 1)
, (16)

where only the first order of P2n(0) is considered and the
dots denote a derivative with respect to time t . Under the
volume conservation of the droplet dV u/dt = 0, we get (see
the Appendix for the detailed derivations)

ċ0(t ) = − 2

R0

∞∑
n=1

c2n(t )ċ2n(t )

4n + 1
. (17)

Substituting ċ0(t ) into Eq. (16), one obtains

Ė =4πγlm

∞∑
n=1

(2n − 1)(n + 1)

4n + 1
c2n(t )ċ2n(t )

− 2πR0γlmcosθL

∞∑
n=1

ċ2n(t )P2n(0)

+ 2πρR3
0

∞∑
n=1

ċ2n(t )c̈2n(t )

(2n + 1)(4n + 1)
. (18)

The energy dissipation function in the bulk is written as [46]

�b,u
vis = μ

2

∫∫
(∇v2) · ndS

= 2πμR0

∞∑
n=1

2n + 2

4n + 1
ċ2

2n(t ). (19)

The dissipation at the contact line is given by

�ct,u
vis = πλr(ϕ = π/2, t )ṙ2(ϕ = π/2, t )

= πλR0

∞∑
n=1

ċ2
2n(t )P2

2n(0). (20)

Here we only keep to the lowest order of P2n(0). Therefore
the governing equation for the droplet shape modes is deter-
mined by the condition ∂�u/∂ ċ2n(t ) = 0, where �u = Ė +
�b

vis + �ct
vis is the Rayleighian. Substituting Eqs. (18)–(20)

into ∂�/∂ ċ2n(t ) = 0 yields the evolution equation of shape
modes,

c̈2n(t ) +
[

2μ(2n + 2) + λP2
2n(0)(4n + 1)

]
2n + 1

ρR2
0

ċ2n(t )

+ γlm

ρR3
0

(2n − 1)(2n + 1)(2n + 2)c2n(t )

= γlm

ρR2
0

(2n + 1)(4n + 1)P2n(0)cosθL. (21)

The solution to Eq. (21) gives the transient shape mode of EW
droplets (see also Refs. [28] and [47]).

III. RESULTS AND DISCUSSION

Our calculation is carried out by using the values of param-
eters ε = 1.93, d = 2.5 mm, μ0 = 4.6 mPa s, and C = 26.24
[19]. The controlling parameters U , μ, γlm, and V0 are given
in the corresponding figures.

A. Overdamped regime

In the overdamped regime, in order to numerically solve
Eqs. (6), (10), and (11), and compare our theoretical results
with the experimental ones, we use the same values of param-
eters as those in Refs. [18] and [19], i.e., γlm = 26.9 mN m−1

and θY = 165.4◦. In Fig. 2(a), theoretical curves (black and
blue lines) of base radius Rb and contact angle θ based on the
present model are displayed to compare with the experimental
results (olive circle and red diamond dots) in Ref. [19]. It
is shown in the figure that our theoretical prediction agrees
considerably well, both in the spreading and the retraction
stages, with the experimental results reported by Vo et al.
[19], indicating that our theoretical model is a convincing one.
To further capture the dynamic features of the EW and the
retraction process, we plot the TCL velocity u = Ṙb against
time t for these two stages, as illustrated in Fig. 2(b). It is
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FIG. 2. Comparison of theoretical time-dependent (a) base ra-
dius Rb and contact angle θ , and (b) contact line velocity u with those
measured in Ref. [19]. θY = 165.4◦ is used for calculation.

found that the contact line velocity monotonically reduces to
zero, a conclusion again in very good agreement with that ob-
tained by Vo et al. [19] (circle and square symbol), where the
black line and circle symbol refer to the spreading stage, and
the blue line and square symbol correspond to the retraction
process, respectively. The monotonic variation trend of Rb, θ ,
and u demonstrates that the contact line, in both spreading and
retraction stages, evolves in an overdamped way. The reason
lies in that the liquid inertia effect can be neglected and viscos-
ity becomes a dominant factor causing the droplet to spread or
retract gradually to its equilibrium state. In particular, contact
line friction dissipates most excessive interfacial energy in the
overdamped regime.

Here it should be noted that in the overdamped regime, the
viscous dissipation in the bulk is assumed to be negligible due
to the small velocity gradient. In fact, there exist characteristic
timescales τo for the transient dynamics of viscous droplets
actuated by EW. The balance between the maximum driving
force and the contact line friction force yields a characteristic
timescale τo = λ(Re − R0)/(ηγlm ) [19], which represents the
timescale for a droplet to switch between the initial and the
final equilibrium states. To confirm that τo is the characteristic
timescale for the transient dynamics of droplet spreading and
retraction in an ambient environment, we first respectively
exhibit the temporal evolution of the base radius for various

FIG. 3. Plots of rescaled base radius (Rb − R0)/(Re − R0) vs nor-
malized time t/τo for (a) spreading stage and (b) recoiling stage,
with parameter values U = 80 V and R = 1 mm. Plots of normalized
spreading base radius Rb/Re vs normalized time t/τo for different
(c) EW numbers η and (d) droplet sizes R. The experimental data
in (a) and (b), and (c) and (d) come from Ref. [19] and Ref. [18],
respectively.

droplet viscosities during the EW and retraction processes in
Figs. 3(a) and 3(b), where the insets are the corresponding raw
results of each plot. Here the time of evolution is rescaled as
t/τo, while the base radius is done as (Rb − R0)/(Re − R0).
Notably, the rescaled base radius follows a master curve,
demonstrating that the normalized time-dependent base radius
is independent of liquid viscosities. In contrast, the insets in
Figs. 3(a) and 3(b) illustrate the effects of liquid properties.

Figures 3(c) and 3(d) show the effects of applied voltage
and droplet size on spreading base radius. The base radius
is normalized by the base radius at the final equilibrium
state, and insets demonstrate plots of Rb versus t prior to
normalization. Similarly, the normalized evolutions collapse
to a master curve independent of applied voltage and droplet
size, indicating that timescale τo can be used to characterize
the transient dynamics in the overdamped regime. This can be
ascribed to the fact that the viscous dissipation in the bulk has
been neglected. In addition, experimental data from Refs. [18]
and [19] are also shown in Fig. 3, where the good agreement
between our model and experiments verifies that the present
theoretical model based on the Onsager variational principle
is suitable to interpret the nonequilibrium EW-driven droplet
dynamics.

B. Underdamped regime

Besides the overdamped regime, we also investigate the
spreading dynamics of droplets with low viscosity, namely,
the underdamped regime. Our calculation is performed by
using the values of parameters ε = 1.93, d = 2.5 mm, μ0 =
4.6 mPa s, and C = 32.9 [18]. All the summations in the paper
were carried out over n = 120. In the underdamped regime,
our analysis of EW dynamics is based on the derived shape
equation Eq. (21); thus it is necessary to verify the validity
of the present model. For this reason we examine whether the
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FIG. 4. (a) Comparison of contact angle predicted by the present
model with that calculated by the Young-Lippmann equation. Plots
of normalized spreading base radius Rb/Re vs normalized time t/τu

for different (b) droplet viscosities μ, (c) applied voltages U , and
(d) droplet volumes V0.

apparent contact angle at equilibrium state predicted by our
model is consistent with the well-known Young-Lippmann
equation [1,31] cosθL = cosθY + ε0εU 2/(2dγlm ). We numer-
ically calculate the apparent contact angle by utilizing Eq. (27)
in Ref. [28], and the comparison between the contact angle
predicted by the present model and those of Young-Lippmann
equation is demonstrated in Fig. 4(a). It is observable that the
calculated contact angle based on the present model agrees
very well with that of the Young-Lippmann equation, an evi-
dence once again confirming the validity of the present model.

Subsequently, in order to reveal how droplet viscosity,
droplet size, and applied voltage affect the spreading dynam-
ics driven by EW, we plot the normalized spreading base
radius Rb/Re versus normalized time t/τu for various con-
trolling factors (liquid viscosity, droplet size, and applied
voltage), as demonstrated in Figs. 4(b), 4(c) and 4(d). The in-
sets show the corresponding un-normalized Rb. In the figure it
is found that a smaller droplet with higher viscosity under
lower voltage activation reaches its maximum peak and equi-
librium shape faster than a larger droplet with lower viscosity.
Here τu is the characteristic timescale for the droplet to reach
maximum deformation in the underdamped regime, which
is given by τu = πρ1/2R3/2/(ηγlm )1/2 based on the balance
between the driving force and droplet’s inertia with the vis-
cosity neglected [18,34]. The time evolution of the normalized
spreading base radius in Fig. 4 indicates that Rb monoton-
ically increases to the first peak and reaches the maximum
deformation in the beginning, followed by a damped oscil-
lation, and eventually approaches a stable equilibrium state.
The apparent oscillation at the droplet’s surface stems from
the from the fact that the droplet’s inertia resists the contact
line motion, even though eventually the corresponding energy
is absorbed by the contact line as a result of dissipation.
The conclusion that τu is a characteristic timescale in the
underdamped regime does not change for different controlling
parameters such as droplet viscosity [Fig. 4(b)], droplet size
[Fig. 4(c)], and applied voltage [Fig. 4(d)]. Our theoretical
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FIG. 5. Comparison of theoretical time-dependent base radius Rb

with the experimental data measured by Vo et al. in Ref. [18] for the
underdamped regime.

predictions also agree well with the experimental results re-
ported in Refs. [18,24,28].

In order to examine the oscillating profiles in Figs. 4(b),
4(c), and 4(d), we further make a comparison with the exper-
imental results observed by Vo et al. in Ref. [18], as shown
in Fig. 5. Basically, our model shows the typical oscillating
features detected by experiments in the underdamped regime.
Nevertheless, the theoretical equilibrium base radius is found
to be larger than that measured by experiment. The reason lies
in the different initial contact angle between theoretical cal-
culations (90◦) and experiment (about 164◦) under the same
droplet volume results.

Consequently, the good agreement between theoretical
prediction and experimental results suggests that both the
spreading and the retraction dynamics driven by EW can
be captured by our proposed theoretical model. In the over-
damped regime, the damping effect due to viscous dissipation
and friction dominates the whole spreading or the retraction
process, which makes the droplet to spread or retract gradu-
ally to its equilibrium configuration without oscillation while
keeping its spherical shape profile. In this regime, the tran-
sient dynamics can be characterized by a typical timescale
τo, whereas in the underdamped regime the inertial effect is
comparable with the damping effect, resulting in an apparent
oscillation on the droplet’s surface. Similarly, its transient
dynamics can be characterized by a timescale τu. It is found
that the characteristic timescales τo and τu are independent of
liquid viscosity, droplet size, and applied voltage.

IV. CONCLUSION

In summary, we develop a theoretical model to explicitly
formulate the nonequilibrium free energy in terms of shape
parameters for a viscous droplet immersed in an ambient
environment by using the Onsager principle and obtain a set of
shape equations governing the EW-driven droplet dynamics.
The excellent agreement between our numerical results and
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the corresponding experimental ones shows that our model
captures the essential phenomena of the dynamic behaviors
of both spreading and retraction driven by EW. Our theoret-
ical results also reveal that the transient dynamics of viscous
droplets can be characterized by a typical timescale τo or τu

for the overdamped or the underdamped regime, respectively.
Such characteristic timescales are independent of liquid vis-
cosity, droplet size, and applied voltage.
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APPENDIX: THE DERIVATION OF EQUATIONS (6), (14),
and (17)

For the overdamped regime, during the spreading and re-
coiling processes, the droplet volume can be calculated as

V o(t ) = πR3
b(2 − 3cosθ + cos3θ )

3sin3θ
. (A1)

Due to the conservation of droplet volume dV o/dt =
(∂V o/∂Rb)Ṙb + (∂V o/∂θ )θ̇ = 0, we have

πR2
b

(2 + cosθ )(1 − cosθ )2

sin3θ
Ṙb + πR3

b(1 − cosθ )2

sin4θ
θ̇ = 0.

(A2)

By simplifying the above equation, then we can get Eq. (6) in
the main text.

For the underdamped regime, the change of the volume V
due to the deformation of the droplet is given by [46]

V = 2πR2
0c0(t ) + 2πR0

∞∑
n=1

c2
2n(t )

4n + 1
. (A3)

Thus the total volume of the droplet can be calculated as

V u = V0 + V, (A4)

where V0 = 2πR3
0/3 is the volume of the droplet before de-

formation. The conservation of droplet volume dV u/dt = 0
yields Eq. (17). Let the deformation of the hemispherical
droplet shape be expressed as

δR =
∞∑

n=1

c2n(t )P2n(cosϕ), (A5)

and the surface of the droplet to the origin of the droplet is
r = R0 + δR. Then the area of the liquid-medium interface
can be calculated as [46]

Alm = 2πR2
0 + 4πR0c0(t ) + 2π

∞∑
n=1

n(2n + 1) + 1

4n + 1
c2

2n(t ).

(A6)

The area of the liquid-solid interface is given by (to the first
order of δR)

Als = πR2
0 + 2πR0

∞∑
n=1

c2n(t )P2n(0). (A7)

Substituting Eqs. (A6) and (A7) into Eq. (2) in the main text
yields Eq. (14).
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