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Coexisting orbits and chaotic dynamics of a confined self-propelled particle
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We investigate theoretically the dynamics of a confined active swimmer with velocity and orientation axis
coupled to each other via a self-alignment torque. For an isotropic harmonic potential, this system is known to
exhibit two distinct dynamical phases: a climbing one, where the particle is oriented radially and undergoes
angular Brownian motion, and a circularly orbiting phase. Here we show that for nonradially symmetric
confinement an assortment of complex phenomena emerge. For an elliptic harmonic potential the orbiting phase
splits into several periodic orbits with a diversity of shapes: ovals, lemniscates, and generalized lemniscates
with multiple lobes. These orbits can coexist in the parameter space and decay into one another induced by
noise. For anharmonic confining potentials, we report transitions from periodic to chaotic dynamics, as one
changes the intensity of the self-alignment torque and noise-induced complex orbits. These results demonstrate
that the combination of the shape of the trapping potential and self-alignment torque can induce a rich variety of
nontrivial dynamical states of a confined active particle.
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I. INTRODUCTION

Self-propelled particles are nonequilibrium systems ca-
pable of converting energy absorbed from the environment
into directed motion. They have been used as model sys-
tems to study complex behavior commonly observed in living
systems, active colloids, vibrating grains, and self-propelled
automated devices [1–9]. Unveiling their dynamical proper-
ties has lead to crucial developments in the understanding of
active matter and the wealth of associated collective phenom-
ena [10–12].

Recently, there has been increasing interest on the proper-
ties of active particles interacting with boundaries or external
potentials. For one thing, the confinement provides a means
of measuring the intrinsic nonthermal pressure induced by
the active matter and the force it produces on macroscopic
objects [13–17]. For another, these systems allow one to probe
statistical properties of active swimmers, such as steady-state
probability distribution functions [18,19] and first passage
times [20–23], that might distinguish them from passive
Brownian particles. Last, the identification of novel dynamical
phases of a confined active particle is of particular interest.
Perrard et al. [24] has detected a variety of stable orbits in the
motion of a harmonically confined magnetic droplet coupled
to a vertically vibrating bath. Similar orbits were also identi-
fied in the problem of a circle swimmer with time-dependent
propulsion in a static harmonic potential [25]. In both these
examples, time dependence, of either the external potential or
the self-propulsion, is a key ingredient for the observation of
orbital motion.

In contrast to the above, the deterministic dynamics of an
active particle confined in a static potential is rather simple:
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The particle climbs uphill until its propulsion balances the
force induced by the potential and it comes to rest. However,
as recently shown by Dauchot and Démery [26], the situation
changes dramatically when one considers the self-alignment
dynamics of the particle axis toward its velocity vector. In
this case, for sufficiently strong self-alignment torque, the
climbing phase becomes unstable giving place to circular
orbits. Another mechanism for orbital motion of active objects
has been recently demonstrated in experiments performed
on strongly confined walkers and surfers [27]. The authors
attributed the observed dynamical phases to the interplay of
active noise, strong confinement, and strong linear and angu-
lar inertial effects present in the investigated systems. These
works suggest that the motion of a walker or swimmer in
static confining potentials can be much more complex than
previously thought. It is unclear, however, what kinds of orbits
are possible when other confining potentials are considered.
In particular, the possibility of chaotic orbits in these systems
remains to be investigated.

In the present work, we investigate the dynamics of an
overdamped active particle with self-alignment torque trapped
in confining potentials of different shapes. By a detailed stabil-
ity analysis of the fixed points of the system in the zero-noise
limit, we show that the orbital motion is accessible in the
parameter space for any shape of the confining potential.
To investigate in detail the possible orbiting phases, we per-
formed a series of numerical simulations, covering a wide
range of the control parameters of different confining poten-
tials. Our numerical results show that, on breaking the circular
symmetry of the confining potential, a whole new world of
dynamical phases and transitions between them emerges. For
the noise-free case, the dynamical phase diagram typically
features a sequence of distinct orbital phases characterized by
different topological properties. In addition, in some regions
of the parameter space, multiple periodic orbits can appear in
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coexistence and decay into one another induced by noise. For
certain types of anharmonic confining potential, we have also
observed transitions from perfectly periodic to chaotic orbits,
either induced deterministically, by a change in one of the
system parameters, or stochastically, by small but sufficiently
strong noise.

The paper is organized as follows. In Sec. II we introduce
the model and discuss the relevant timescales of the prob-
lem. In Sec. III we present some general analytical results
for arbitrary shapes of the confining potentials in the zero-
noise limit and establish the conditions for the observation
of orbital phases of the active particle. In Sec. IV we present
numerical results describing different kinds of orbital motion
in the noiseless regime for both harmonic and anharmonic
confinements. The effects of noise are discussed in Sec. V.
Finally, the conclusions and outlook are given in Sec. VI.

II. MODEL DETAILS

A. Equations of motion

We consider an overdamped self-propelled particle in two
dimensions with position r = (x, y) and orientation vector
n̂ = (cos θ, sin θ ) trapped by a confining potential V (r). The
system dynamics is modeled by the following equations:

ṙ = v0n̂ − μ∇V (r), (1)

θ̇ = β(n̂ × ṙ) · ẑ +
√

2Dξ (t ), (2)

where μ is the translational mobility, v0 is the propulsion
speed (thereby v0/μ is the propelling force intensity), D is
the rotational diffusion constant, and ξ (t ) is a white Gaus-
sian noise with correlation 〈ξ (t )ξ (t ′)〉 = δ(t − t ′). The first
term in the right-hand side of Eq. (2) describes a restoring
torque, which tends to align the particle orientation axis n̂
with the center-of-mass velocity v = ṙ, ẑ being the rotation
axis perpendicular to the xy plane [26,28]. The parameter β

is a measure of how fast n̂ relaxes toward v. For β = 0, one
recovers the standard model describing active Brownian par-
ticles (ABP) [10,11,29]. Notice that the self-alignment term
is innocuous for a freely moving active particle, since in this
case, from Eq. (1), v and n̂ are always parallel to each other.
In the presence of an external force, however, v and n̂ are
in general misaligned and the self-alignment term models, in
a minimalist way, the tendency of these vectors to become
parallel again.

Self-alignment dynamics similar to that described by
Eq. (2) have been used to successfully model crawling
cells [1,2,30,31], self-propelled hard disks [28,32,33], and a
self-propelled robot in a harmonic trap [26]. As argued in
Ref. [26], this term can also be relevant for other active sys-
tems, including, for example, spherical Janus colloids, where
the left-right symmetry of the moving particle is broken every
time n̂ and v are misaligned. In this case, a self-alignment
torque could act to restore the symmetry.

B. Timescales and nondimensionalization

The possible dynamical states emerging from any stochas-
tic dynamical system is highly influenced by the interplay
between the different timescales of the problem. The system

described by Eqs. (1) and (2) has three relevant timescales,
which we will refer to as the climbing time (τcl), the thermal
reorientation time (τth), and the self-alignment time (τ ). The
climbing time is the typical time the particle would take to
climb the potential the furthest allowed by its propulsion in
the absence of restoring torque and noise, that is, τcl ∼ τ0 ≡
L0/v0, where L0 is the distance between the origin and a point
of the confining potential where |∇V | = v0/μ. The thermal
reorientation time is a measure of how fast the particle ori-
entation decorrelates due to thermal noise, that is, τth ∼ 1/D
[29]. For τth � τ0, the particle undergoes many thermal reori-
entations and thereby decorrelates before effectively climbing
the potential well. In such noisy regime, the system behaves as
a passive Brownian particle [18]. Finally, the self-alignment
dynamics has a characteristic time of its own, given by τ =
(βv0)−1. Its role in the dynamical properties of the system
will be discussed in detail in the coming sections.

In what follows, we express all quantities in dimensionless
form using the following unit system: v0/μ for force, L0 for
length, and τ0 = L0/v0 for time. Numerical integrations of
Eqs. (1) and (2) were performed following a fourth-order
Runge-Kutta integrator, for the D = 0 case, and a second-
order stochastic Runge-Kutta integrator, for D > 0.

III. DYNAMICAL STABILITY OF THE CLIMBING PHASE

For D = 0, the climbing phase corresponds to a static so-
lution of Eqs. (1) and (2), given by ∇V (x, y) = n̂, or

Vx(x f , y f ) = cos θ f , Vy(x f , y f ) = sin θ f , (3)

where Vx and Vy are the first derivatives of V with respect
to x and y, respectively. This defines at least one curve in
phase space where the absolute value of the confining force is
constant and equals unity. We shall refer to such a curve as the
critical isoforce line (CIL). In this work we shall assume that
(i) the projection of the CIL onto the xy plane is a closed curve
and (ii) V (x, y) is locally convex in the neighborhood of the
CIL. These assumptions guarantee that the particle remains
confined to the region enclosed by the CIL. Accordingly, we
shall refer to potentials satisfying conditions (i) and (ii) as
confining potentials.

Although the above conditions guarantee that the noise-
free dynamics is bounded, in general they do not warrant
stability of the climbing phase. From a dynamical systems
perspective, each possible solution given by Eq. (3) is a fixed
point of the system given by Eqs. (1) and (2) with D = 0.
By performing linear stability analysis of the fixed points for
an arbitrary confining potential V (x, y), we have found that
the stability of the climbing phase depends strongly on the
self-alignment time τ = β−1 (see Appendix A for details).
In the absence of self-alignment (β = 0), the climbing phase
is always stable if the external potential satisfy conditions (i)
and (ii) above. This finding generalizes a result previously ob-
tained for an ABP confined in an isotropic harmonic potential
[18,34], extending it to any confining potential V (x, y) with
the properties described by conditions (i) and (ii).

When the self-alignment dynamics is considered (β > 0),
a point at the critical isoforce line becomes unstable when (see
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FIG. 1. Typical trajectories (blue lines) of an active particle (red
dot) in a generic confining potential V (x, y) (contour plot) under
two different situations: (a) For β < β∗ (see text), the trajectory is
attracted toward one of the available stable fixed points at the critical
isoforce (red) line. (b) For β > β∗, all fixed points are unstable and
the particle is captured by one of the available orbital attractors.

Appendix A)

β > min(β1, β2), (4)

where

β1 = Vxx + Vyy,

β2 = VxxVyy − V 2
xy

V 2
x Vxx + V 2

y Vyy + 2VxVyVxy
, (5)

and Vκ and Vκλ are, respectively, first and second derivatives of
V (x, y) evaluated at the fixed point. As a first simple example,
we consider a radially symmetric potential V (r). As it follows
trivially from Eq. (3), the critical isoforce line for any V (r)
is a circle in the xy plane. By taking the radius of this circle
as the unit of length (L0) and substituting in Eq. (5), we get
β1 = 1 + Vrr and β2 = 1 for all fixed points. Since Vrr > 0, all
fixed points become unstable at simultaneously at β > 1 for
any V (r). For potentials lacking radial symmetry, the typical
situation is closer to that depicted in Fig. 1, where parts of the
critical isoforce line become unstable before other ones. In
this case, it is necessary to find the fixed points that maximize
β1 and β2. The critical isoforce becomes fully unstable when
the last fixed points become unstable, that is,

β > β∗ = min[max(β1), max(β2)]. (6)

To illustrate this, we analyze the anisotropic (elliptic) har-
monic potential, expressed in dimensionless form by

V (x, y) = 1
2 [(1 + ε)x2 + y2], (7)

where ε > 0 is a parameter controlling the eccentricity of
the potential. The critical isoforce in this case is an el-
lipse in the xy plane [(1 + ε)2x2 + y2 = 1]. Evaluation of
Eq. (4) gives β1 = 2 + ε and β2 = (1 + ε)/(1 + ε − εy2

f ).
Notice that β2 < β1 for all fixed points. The co-vertices of
the ellipse, (x f , y f ) = (±1/(1 + ε), 0) are the first ones to
become unstable, at β = 1. As β increases further, more
points become unstable up to the last ones, at the vertices
(x f , y f ) = (0,±1), for β = β∗ = 1 + ε. For β > β∗, there
are no stable fixed points left for the system.

For any confining potential, on fulfillment of condition (6),
the active particle has no option but to wander in perpet-
ual orbital motion within the confining potential. Because of
the highly nonlinear nature of the equations of motion, the

FIG. 2. [(a)–(d)] Representative orbits of an active particle in the
elliptic potential. (e) Phase diagram in the plane defined by the self-
alignment coefficient β and the potential eccentricity ε. The color
shades indicate the topological state of the orbit obtained from ran-
dom initial conditions (see text), light peach for rotation (R) and coral
for libration (L). Full (dashed) lines indicate transitions between
orbits when sweeping ε up (down) at fixed β values. The phases are
classified by labels X p according to their topology (X = R,L) and
number of nodes (p = 0, 1, 2 . . . ). Coexisting zones are marked with
multiple labels. The straight dashed lines indicate the upper limit of
the climbing phase (β = 1 + ε) and the lower limit of the orbiting
phases (β = 1, see Appendix D).

moving phase can only be determined accurately numerically,
although some simple symmetry properties of periodic orbits
can be inferred directly from the equations of motion (see
Appendix C). In the coming sections, we discuss in detail
the properties of periodic and chaotic orbits of confined active
particles.

IV. DETERMINISTIC ORBITAL PHASES

A. Elliptical harmonic potentials

In contrast to the radially symmetric potentials, where only
circular orbits are possible, the anisotropic potentials, such as
the elliptic harmonic well, offer a range of rather involved
closed orbits, featuring crossing points in the xy plane and
specific topological properties. Some representative exam-
ples of observed orbits, obtained by numerical integration
of Eqs. (1) and (2) with the potential given by Eq. (7), are
illustrated in Figs. 2(a)–2(d). Notice that each orbital state is
characterized by two orbits that are the exact mirror reflection
of each other and rotate in opposite directions, which follows
from the symmetry properties of the equations of motion and
the confining potential (see Appendix C). By changing the
eccentricity of the elliptic potential at fixed values of β we
observed a sequence of transitions between orbital states of
different shapes. These shapes always present at least one
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of the symmetries discussed in Appendix C. They can be
classified according to the number p of crossings performed
by the projection of the particle trajectory into the xy plane:
p = 0 for oval orbits, as in Fig. 2(a); p = 1 for lemniscates,
as in Fig. 2(b); and p > 1 for higher order generalized lem-
niscates, as in Figs. 2(c) and 2(d). Notice that the particle
orientation θ at a crossing point is different for each of the
crossing branches, as required by the uniqueness theorem.
The transitions between orbits typically satisfy: p → p + 1
for increasing ε and p → p − 1 for decreasing ε. In addition,
to each of these orbits can be associated a topological charge,
defined as

Q = 1

2π

∫ t+T

t
dθ, (8)

where integration is taken along one period T of the
orbit. From Eq. (1), a closed orbit in the xy plane im-
plies n̂(t + T ) = n̂(t ) and thereby θ (t + T ) = θ (T ) + 2π ×
integer. Therefore Q is an integer quantity. Below, we shall use
Q to classify the orbits according to whether the orientation
vector n̂ of the particle performs full rotations (|Q| > 0) or
not (Q = 0). For the case of the elliptic potential considered
here, Q = ±1 for all orbits with even p, meaning that n̂ per-
forms a full 2π rotation within one period, either clockwise or
counterclockwise. In contrast, orbits with odd p have Q = 0,
meaning that n̂ swings back and forth in librational motion,
without ever performing a full rotation.

Another general observation is that the orbits tend to be
more localized as β increases. In Appendix D, we derive the
following analytical expression for the area within a closed
loop described by the particle in the elliptic potential:

Aloop = �θloop

(2 + ε)β
. (9)

This exact formula reveals that the area of the lobes of any
given orbit is a decreasing function of β, irrespective of the
orbit shape. In particular, for full rotations, the total area of
the orbit is Aorbit = 2π/[(2 + ε)β].

A general view of the possible phases and phase transi-
tions is presented in Fig. 2(e). The phases were classified
according to the long-term steady-state dynamics, calculated
numerically for each point of the εβ plane. We considered
two different sets of initial conditions: (i) For a given β value,
we initialize the system at the climbing (for β < 1) or or-
biting phase (for β > 1) of the isotropic harmonic potential
at ε = 0 and slowly vary ε up to ε = 5 and then back to
0, in steps of �β = 0.16 and �ε = ±0.005. Transitions in
the upward (downward) branch are depicted in the diagram
as solid (dashed) lines. (ii) For each (ε, β ) we initialize the
system at 100 different random configurations and, for each
of them, classify the orbit as either rotation (light peach) or
libration (coral), in steps of �β = 0.038 and �ε = 0.01. The
color gradients indicate the percentage of each phase in the
sample of 100 initial conditions.

A salient feature in the phase diagram presented in Fig. 2 is
that some orbits can coexist in the same region of the parame-
ter space. For D = 0, the actual orbit performed by the particle
depends on the initial conditions and on the specific history of
the control parameters. Indeed, all observed orbital transitions
are characterized by hysteretic behavior when sweeping ε up

FIG. 3. (a) Bifurcation diagram (top) and Lyapunov spectrum
(bottom) for the anharmonic potential V (x, y) = 1

2 (x2 + y6). The
diagram is generated by plotting the y position of the particle every
time x reaches a maximum value for increasing (orange) and decreas-
ing (blue) β. The Lyapunov exponents corresponding to increasing
(decreasing) β are depicted in light (corresponding dark) colors. Red,
blue, and green correspond, respectively, to the largest, the second
largest, and the smallest exponent. [(b) and (c)] Same as (a) but
for the potentials V (x, y) = 1

6 (2x2 + y2)3 and V (x, y) = 1
6 (x6 + y6),

respectively.

and down. The hysteresis is more pronounced for larger values
of β. For example, in Fig. 2 we observe that the transitions
p → p + 1 occur at decreasing β as ε increases. However, for
decreasing ε the p → p − 1 transitions have a quite different
dependence on ε. The coexisting regions of different orbits are
delimited by these transition lines. In addition, there also can
be coexistence between orbital and climbing phases (small
regions depicted below the β = 1 + ε line). It is proven in
Appendix D that orbital motion is prohibited for β < 1 for
any ε.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

FIG. 4. Examples of periodic (blue and orange lines) and chaotic (black lines) orbits for an active particle confined to the anharmonic po-
tentials: [(a)–(e)] V (x, y) = 1

2 (x2 + y6), [(f)–(j)] V (x, y) = 1
6 (2x2 + y2)3, and [(k)–(o)] V (x, y) = 1

6 (x6 + y6). The background color gradients
represent the potential, with lighter shades indicating lower energy values. The dashed lines depict the critical isoforce line (CIL), which is
fully unstable for all β values considered (labels at the top). For the periodic orbits, (a)–(d), (f), (h), and (k), we show both trajectories allowed
by symmetry.

B. Anharmonic potentials and chaos

We have shown above that an active particle confined in
radially symmetric potentials, either harmonic or anharmonic,
can only perform circular orbits and that breaking the radial
symmetry of a harmonic potential induces different kinds of
noncircular orbits with different topological properties. Here
we explore confining potentials which are both asymmetric
and anharmonic and show that this combination can lead the
active particle to perform chaotic orbits for sufficiently large
values of the self-alignment coefficient β.

To illustrate this, we consider three anisotropic and highly
nonlinear potentials, (i) V (x, y) = 1

2 (x2 + y6), (ii) V (x, y) =
1
6 (2x2 + y2)3, and (iii) V (x, y) = 1

6 (x6 + y6), and analyze the
long-term dynamics as a function of β. In all three cases, we
start the particle in the climbing phase at β < 1 and slowly
sweep β up to β = 80 and then down to β = 1 in steps of
0.01. For each new β value, the swimmer is initialized at the
last state calculated in the previous step and the dynamical
state is analyzed after a waiting time �twait = 5 × 103τ0 over
a measuring time window �tmeas = 104τ0.

Figure 3 shows bifurcation diagrams and Lyapunov spectra
for an active particle confined to each of the considered an-
harmonic potentials. The bifurcation diagrams were obtained
by recording for each β the y position of the active particle
every time x reaches a maximum (xmax) during the measuring

time (which typically covers about 500 cycles of x). For some
ranges of β values, specially for small β, all measures of
y(xmax) collapse to a small set of points, thus indicating the
system is under periodic motion. A few examples of periodic
orbits are shown in Figs. 4(a)–4(d), 4(f), 4(h), and 4(k). No-
tice that some of them are rather involved, though perfectly
periodic, and all of them have a twin sister orbit rotating in
the opposite direction. However, for other ranges of β values,
the points y(xmax) are largely dispersed, which is indicative of
aperiodic motion, like those exemplified in Figs. 4(e), 4(g),
4(i), 4(j), and 4(l)–4(o).

To check if the aperiodic phases are indeed chaotic, we
calculated numerically the Lyapunov spectrum for each value
of β following the tangent map method [35]. For any con-
fining potential, the orbital phase corresponds to bounded
trajectories in the three-dimensional phase space spanned by
the variables x, y, and θ . The response of the system to
small perturbations of these trajectories are thereby described
by three Lyapunov exponents. One of them is always zero,
thus reflecting perturbations along the otherwise undisturbed
trajectory. The other two exponents can be used to determine
whether the dynamics is regular (all exponents are nonposi-
tive) or chaotic (at least one exponent is positive). In the latter
case, the positive exponent reflects the exponential sensitivity
to initial conditions. Notice that all aperiodic regions of the
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bifurcation diagrams have a positive Lyapunov exponent and
thereby are chaotic.

Overall, notwithstanding windows of periodic behavior,
the sensitivity to initial conditions revealed by the positive
Lyapunov exponent tends to increase with β for all three
numerical experiments of Fig. 3. That is, a swimmer trapped
by a highly nonlinear potential tends to exhibit more chaotic
behavior if it has a stronger self-alignment torque. As for
the effect of the nonlinearity of the confining potential, we
have also evaluated other potentials of the type V (x, y) =
1

2α
(2x2 + y2)α , for α = 1.5 to 5 in steps of 0.5. Within the

range 1.0 < β < 80, chaotic behavior was only observed for
α = 2.5 and 3. For all other α values only periodic orbits were
observed. We believe the absence of chaos for high values of
the exponent α might be related to the fact that in this case
the confining potential becomes too flat in the middle, so that
the particle can only change direction when it is close to the
CIL. For this reason, the active particle follows closely the
CIL, leaving little room for more complex orbits. But this is
not to be taken as a general rule. For instance, inertial effects,
not considered in this work, might cause the particle to bounce
off the CIL [27], allowing it to make more involved excursions
throughout the potential well.

Finally, looking closely at the bifurcation diagrams of
Fig. 3, one can identify hysteresis in some intervals of β

values. In most of these intervals, different periodic orbits
coexist, similarly to what was observed for the elliptic har-
monic potential. In more rare occasions, coexistence between
a periodic orbit and a chaotic attractor can be identified in very
narrow windows of β values [see insets in Fig. 3(b)].

V. DYNAMICAL PHASES AT FINITE NOISE

Next we turn our attention to some phenomena related to
finite noise intensities (D > 0). The main quantity we used
to identify the effect of noise is the probability distribution
functions (PDF) P (x, y) and P (θ ). For a given confining
potential and noise intensity D the PDFs were calculated by
averaging the steady-state dynamics of 104 particles, over a
measuring time 5 × 103τ0, and after a waiting time of 103τ0,
unless stated otherwise.

A. Noise-induced crossover from active to passive behavior

For conventional active particles trapped in an isotropic
potential, the PDF under small noise intensities D is known
to be highly localized radially at a finite distance from the
center of the potential. In contrast, the angular motion of the
particle is diffusive, resulting in a ring-shaped PDF in the xy
plane. As one increases D, the ring shrinks while the PDF
becomes less and less localized until, for large-enough D (typ-
ically D � v0/L0), the PDF collapses into a Boltzmann-like
distribution with a peak at the trap minimum [17,18]:

P (x, y) ∝ exp[−μV (x, y)/Deff], (10)

where Deff = v2
0/2D is the effective diffusion constant [29].

To check whether this scenario also applies to anisotropic
potentials, we calculated numerically the probability distri-
bution function of the active particle trapped by an elliptic
harmonic potential of eccenctricity ε = 1 for different values

FIG. 5. [(a)–(l)] Density plots of the steady-state probability dis-
tribution function P (x, y) of an active particle in the elliptic harmonic
potential with ε = 1.0 for different values of the self-alignment coef-
ficient β and noise intensity D. The grayscale in the first column [(a),
(e), and (i)] was set to logarithmic for better visualization. In (d), (h),
and (l), the solid (dashed) red lines depict the stable (unstable) seg-
ments of the critical isoforce, while the green lines are equipotentials
of V (x, y). Light solid lines in (e) and (i) depict the possible noise-
free orbits. (m) Scaled standard deviates of the particle coordinates
as a function of β. The dashed line is the β = 0 theoretical limit,√

2Dσy = √
2D(1 + ε)σx = 1, obtained from Eq. (10).

of D and β. We start our analysis considering the climbing
phase (β < 1), where the realignment dynamics is expected to
play little role and the system behaves as a conventional ABP.
In Figs. 5(a)–5(d), we present the PDFs for β = 0.8 and a few
representative values of D. This value of β falls in the region
of the phase diagram where the critical isoforce is fully stable.
In this case, the evolution of the PDF with D follows approx-
imately the typical behavior of a conventional ABP described
above. However, in contrast to the isotropic case, here the as-
pect ratio of the PDF changes with D. For small D, the aspect
ratio coincides with that of the critical isoforce line, given by
1 + ε = 2, since in this case the thermal time τth = 1/D is
large compared with the other characteristic timescales and,
thereby, the PDF is dominated by the force balance condition
Eq. (3). For large D, the aspect ratio coincides with that of
the equipotential lines:

√
1 + ε = √

2. This reveals the domi-
nance of diffusion in the high D limit, in which case the PDF
follows the contours of the potential well, as follows from
Eq. (10). Therefore, this geometrical crossover conveniently
reflects the different mechanisms behind the PDF of an active
particle at different noise levels.
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FIG. 6. Density plots of the steady-state probability distribution function P (x, y) of an active particle in the anharmonic potential V (x, y) =
1
6 (x6 + y6) for different noise intensities D and β = 15 (top) and 25 (bottom). The grayscale in the first two columns [(a), (b), (f), and (g)] was
set to logarithmic for better visualization. Red dashes depict the unstable critical isoforce line.

For moderate values of β (1 < β < 1 + ε) the critical iso-
force is no longer fully stable and orbits can coexist with
the climbing phase. This changes dramatically the PDF at
low noise, as seen in Fig. 5(e), where the particles are highly
localized around the deterministic R0 orbits and the stable part
of the critical isoforce. For larger D, however, the climbing
phase seems to dominate the PDF until the Boltzmann-like
behavior is achieved at D ∼ 10 [see Figs. 5(f) and 5(g)].

For large β, the self-alignment dynamics plays a dominant
role in the deterministic limit, inducing the wealth of orbital
phases discussed in the previous section. The effect of noise
in the high-β regime is illustrated in Figs. 5(i)–5(l). For both
low (D � 1) and moderate (D � 1) noise the PDF follows
closely the deterministic orbits, thus revealing the resilience
of the orbits and thereby of the self-alignment dynamics in
these noise regimes. Once again, for D � 1, the distribution
follows the Boltzmann-like behavior. However, the effect of
the self-alignment torque is still noticed at such high noise
intensities. The PDF in this case becomes more localized for
larger values of β, which we believe is reminiscent of the 1/β

dependence of the area enclosed by loops [see Eq. (9)]. This
is evidenced in Fig. 5(m), where the standard deviation of the
particle coordinates is shown to decrease with β. Therefore,
the effective diffusion constant of an active particle with self-
alignment torque is a function not only of D and v0, like in
the conventional ABP model, but also of the self-alignment
coefficient β.

B. Noise-induced complex orbits

For β � 1, the noise-driven dynamics of the active parti-
cle in an anisotropic anharmonic potential follows a scenario
similar to its harmonic counterpart. However, for large β, the
anharmonic potentials still reserve some surprises. In Fig. 6
we present PDFs of the active particle trapped in the potential
V (x, y) = 1

6 (x6 + y6) as a function of noise for two different
self-alignment torque intensities, β = 15 and 25. As shown
in Figs. 4(k) and 4(l) [see also Fig. 3(c)], the deterministic

dynamics is periodic for β = 15 and chaotic for β = 25.
Surprisingly, when noise is turned on, the PDFs for β = 15
reveal that the periodic orbit actually coexists with a complex
set of visited points, which resembles the chaotic attractor
observed for β = 25. Notice that for small D values, the
probability of finding the particle in the complex set is several
orders of magnitude smaller than that of finding it in the
periodic orbit in the β = 15 case. For this reason, we use a
logarithmic gray scale for the low-noise PDFs. Still, the rare
excursions of the particle outside its periodic orbits follow a
beautiful complex pattern. This is in stark contrast with the
periodic orbits observed for the harmonic potentials shown in
Fig. 5, where noise at low D induces only a slight spreading
of the PDF around the deterministic orbits. For D � 10−2,
the similarity between the PDF for β = 15 and β = 25 can
already be appreciated in linear scale, as the periodic orbits
seem to be washed out within this noise range. For strong
noise (D � 1), the PDF in both cases assumes the shape of
a cross pattée [Figs. 5(d) and 5(i)] before finally collapsing to
a Boltzmann-like distribution at D ∼ 10 [Figs. 5(e) and 5(j)].
Although the pattern revealed by the PDFs for both β values
are qualitatively similar, there is an important difference as
concerns their physical origin. The chaotic set for β = 25 is an
attractor in the deterministic limit and dominates the dynamics
also for low and moderate noise intensities. By solving the de-
terministic (D = 0) dynamics of the particle starting from 105

randomly chosen initial conditions, we have verified that for
β = 15 the periodic orbit is the only deterministic attractor,
while the chaotic set is a nonattractive, transient chaotic set
with a lifetime of the order 103τ0 (see Fig. 7). This means that,
in the deterministic limit, the chaotic set, shown in the inset of
Fig. 7, dominates the dynamics only during finite timescales,
as the system evolves from a given initial condition toward
the true long-term state: the periodic orbit. However, for suf-
ficiently large noise, this nonattractive chaotic set re-emerges
and begins to dominate the long-term dynamics, as more and
more often the particle leaves its periodic orbit to explore
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FIG. 7. Probability of finding the particle in the transient chaotic
set, calculated after a waiting time �twait, as a function of �twait for
D = 0 and β = 15. Inset: Probability density function for �twait =
10τ0, featuring the transient chaotic set and the periodic orbits.

the chaotic set. This phenomenon is known as noise-induced
chaos [36] and has been relevant for the phenomenology of,
e.g., driven Josephson junctions [37], neuronal models [38],
and population dynamics [39].

C. Coexisting orbital phases

The large coexistence regions between different periodic
orbits seen in the phase diagram of the elliptical harmonic trap

FIG. 8. [(a)–(c)] Density plots of the stationary probability dis-
tribution functions of finding the particle in phase R0 (left), L1
(middle), and anywhere (right) for different eccentricities ε and fixed
β = 10 and D = 0.05. (d) Total probabilities of finding the particle
either in the R0 (red) and L1 (blue) phases as a function of ε for
different noise intensities and fixed β = 10.

(Fig. 2) allows for an in-depth investigation on how the prob-
ability of finding the particle in a particular orbit changes as a
function of a control parameter. To perform this study, we fix
β = 10 and sweep ε in the range 0.8 < ε < 1.3, thus covering
approximately a full width of the coexistence zone between
the oval (R0) and the lemniscate (L1) orbits. To determine
whether a particular configuration of the swimmer belongs to
one orbit or to the other, we previously compute the basins
of attraction of the R0 and L1 orbits in phase space [40].
This allows us to calculate the PDF of finding the swimmer
in a particular orbit. These partial PDFs along with the joint
PDF are plotted in Figs. 8(a)–8(c) for D = 0.05 and a few
different values of the potential eccentricity. The integrated
probabilities of finding the particle in the R0 phase, PR0, or in
the L1 phase, PL1, are shown in Fig. 8(d) for three different
noise intensities. These results reveal that, as ε increases, the
PDF continuously crosses over from a distribution dominated
by the R0 orbits to that typical of a L1 orbit, resembling
the typical behavior of a thermodynamic two-level system,
with the eccentricity ε playing the role of the energy-level
separation and D playing the role of temperature.

VI. CONCLUSIONS

In summary, we have investigated the dynamics of an
active Brownian particle with self-alignment torque in the
presence of diverse confining potentials. We derived analytical
expressions for the stability condition of the climbing phase
for an arbitrary confining potential, which allowed us to con-
clude that this static phase always gives place to orbital motion
at a sufficiently strong self-alignment torque. Then, we set out
to investigate numerically possible orbital phases as a function
of self-alignment torque and confining potential shape.

For the case of elliptical harmonic potentials, we have
shown that breaking the rotational symmetry leads to a com-
plex dynamical phase diagram featuring periodic orbits with
different topological properties that can be assessed by tun-
ing the potential eccentricity and the self-alignment torque
coefficient β. Under moderate noise, coexisting orbits follow
statistics similar to equilibrium two-state systems, while for
strong noise both orbital and climbing phases collapse to a
Boltzmann-like distribution, revealing a passive-Brownian-
particle type of behavior with an effective diffusion constant
that depends on the propulsion speed v0 and on β.

For anharmonic potentials, we reported transitions from
periodic orbital motion to chaos as one increases the intensity
of the self-alignment torque. Our results suggest that chaotic
motion of the confined active particle can be observed for
short self-alignment time and a suitable degree of nonlinearity
of nonradially symmetric confining potentials. Interestingly,
even for β values where periodic orbits are the only possible
long-term state, transient chaotic sets can be activated and
dominate the long-term system dynamics at small but strong-
enough noise. Recently, transient chaos has been investigated
in the context of interacting active particles in a trap [41,42].
Here we showed that it can play a significant role to the orbital
motion of trapped active particles already in the single particle
level.

These results reveal that a single active particle trapped in
anisotropic potentials can exhibit surprisingly rich phenomena
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that could be relevant for real-life active matter, such as living
systems, and robotic metamaterials. They also open up new
venues of research that go beyond the scope of the present
work. For example, the coexisting orbital phases revealed here
raises the question of whether the noise-induced escape rate
from one orbit into another follows some kind of Kramers law,
in a way similar to the escape problem of an active particle
from a trap [20–22]. Another direction is the study of the ef-
fect of inertia, which has recently been shown to induce orbits
in circular confinement even without self-alignment torque
[27]. The anisotropic confinement could be used to distinguish
between the contribution of both effects. Finally, the chaotic
orbits shown here could be used to explore, e.g., synchroniza-
tion phenomena induced by the interaction between two or
more active particles [43].
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APPENDIX A: STABILITY ANALYSIS
OF THE CLIMBING PHASE

In dimensionless form, the noise-free version of Eqs. (1)
and (2) can be expressed as

ẋ = cos θ − Vx(x, y)

ẏ = sin θ − Vy(x, y) (A1)

θ̇ = β[Vx(x, y) sin θ − Vy(x, y) cos θ ].

It is also convenient to express this system in vector form,
Ṙ = A(R), where R = (x, y, θ ) and A is a vector field whose
components are given by the right-hand side of Eq. (A1).
The fixed points of this autonomous dynamical system are
obtained by taking ẋ = 0, ẏ = 0, and θ̇ = 0, leading to Eq. (3).
Their stability can be evaluated straightforwardly by evalu-
ating the linearized version of Eq. (A1): δṘ = JδR, where
J is the Jacobian matrix of A and δR = R − R f are small
displacements from the considered fixed point R f . For an
arbitrary potential V (x, y), the eigenvalues of the problem are

λ0 = 0, λ± =
p1 ±

√
p2

1 + 4p0

2
, (A2)

where p0 = β(V 2
x Vxx + V 2

y Vyy + 2VxVyVxy) − VxxVyy + V 2
xy

and p1 = β − Vxx − Vyy. The eigenvector associated to the
null eigenvalue corresponds to displacements along the line of
fixed points in the three-dimensional phase space. The other
two eigenvalues can be either positive or negative, depending
on the value of β, and are associated to directions orthogonal
to the line of fixed points. We say a fixed point is stable if
the real part of both these eigenvalues is negative. One has to
keep in mind, however, that such stability is related only to
fluctuations that drive the system away from the line of fixed

points. Fluctuations along the fixed point line can make the
system wander from fixed point to fixed point.

For β = 0, one has p0 = −� and p1 = −τ , where � =
VxxVyy − V 2

xy and τ = Vxx + Vyy are, respectively, the determi-
nant and the trace of the Hessian matrix of V (x, y) evaluated at
the fixed points. Since V (x, y) is a confining potential, it must
be convex at the critical isoforce, that is, Vxx > 0, Vyy > 0, and
� > 0. In this case, p0 < 0 and p1 < 0, which guarantees that
λ+ and λ− are both negative. Therefore, the fixed points are al-
ways stable in the absence of the self-alignment term (β = 0).

In the general case (β � 0), λ+ is positive for all p1 > 0 or,
in case p1 < 0, for all p0 > 0. This leads to two upper limit
values of β for the stability of the fixed point:

β1 = Vxx + Vyy,

β2 = VxxVyy − V 2
xy

V 2
x Vxx + V 2

y Vyy + 2VxVyVxy
. (A3)

The fixed point becomes unstable if β > min(β1, β2). Notice
that, due to the required local convexity of V (x, y) at the crit-
ical isoforce, both β1 and β2 are positive for all fixed points.

APPENDIX B: RADIALLY SYMMETRIC CONFINEMENT

1. Climbing phase

For radially symmetric potentials, V (r), it is convenient to
rewrite Eq. (A1) in terms of the polar coordinates (r, φ) of the
particle position,

ṙ = cos χ − V ′(r)

φ̇ = r−1 sin χ (B1)

θ̇ = βV ′(r) sin χ,

where χ = ∠(n̂, r) = θ − φ. It then becomes clear that the
fixed points satisfying (ṙ, φ̇, θ̇ ) = (0, 0, 0) are given by r f =
R and θ f = φ f . Therefore, for any shape of V (r), the critical
isoforce line is a circle of radius R. By taking R as the unit of
length, Eq. (A3) gives

β1 = 1 + V ′′(1) and β2 = 1 (B2)

for all fixed points. Since V ′′(1) > 0 as required by the con-
vexity of V (r), all fixed points become unstable when β > 1.

2. Orbital phase

To find the possible orbits for circularly symmetric poten-
tials, it is convenient to express Eq. (B1) in terms of r, φ,
and χ = θ − φ. This amounts to replacing the equation of the
orientational dynamics by χ̇ = [βV ′(r) − 1

r ] sin χ . It then be-
comes transparent that the system admits a stationary solution
(ṙ = 0, φ̇ = ω, χ̇ = 0) where the particle performs a circular
orbit with constant radius R◦, angular velocity ω, and tilt angle
χ◦, given respectively by

V ′(R◦) = 1

βR◦
, (B3)

ω = 1

R◦

√
1 − 1

β2R2◦
, (B4)
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and

χ0 = arccos[V ′(R◦)]. (B5)

Since χ̇ = 0, one has θ̇ = φ̇ = ω, that is, both vectors, r and
n̂, rotate at constant speed, keeping a constant angle χ0 be-
tween each other. Notice that Eq. (B4) requires that βR◦ > 1.
Therefore, from (B3), V ′(R◦) < 1, that is, the orbit necessarily
lies in the subcritical region, R◦ < 1, and thereby β > 1 turns
out to be a necessary condition for circular orbits in radially
symmetric potentials. In particular, this condition is satisfied
for all power-law central force potentials V = rn/n for all
n > 1. The special case n = 2 was investigated thoroughly in
Ref. [26].

To check the stability of this solution, we evaluate Eq. (B1)
in the vicinity of a circular orbit within linear approximation,
using the same method described in Appendix A, but this
time the relevant, independent variables are r and χ . The
eigenvalues associated to small displacements of the circular
orbit are

λ± = −V ′′ ± √
V ′′2 − 4βω2R2◦(V ′′ + V ′/R◦)

2
, (B6)

where V ′′ and V ′ are evaluated at the orbit radius. Notice that
Re(λ+) and Re(λ−) are both negative as long as V ′′ and V ′ are
both positive. In this case, circular orbits are stable solutions
(limit cycles) for all β > 1.

The stability of circular orbits is not restricted to mono-
tonically increasing V (r). To illustrate this, we consider the
“Mexican hat” potential V (x, y) = 1

2 (r4 − r2). This potential
allows for stable circular orbits for all β, with maximum
radius R◦ = 1 and orientation χ0 = 0, for β → 1+, and min-
imum radius R◦ = 1/

√
2 and orientation χ◦ = π/2, for β →

∞. In Fig. 9, we present the noise-averaged properties of
the orbital motion of an active particle in the Mexican hat
potential with D = 0.01 as a function of β. The results are
in excellent agreement with the theoretical noise-free result,
indicating that the mean radius of the orbit, 〈R◦〉, as well as
the mean inclination of the particle orientation vector, 〈χ◦〉,
are resilient to fluctuations for moderate noise.

APPENDIX C: TOPOLOGICAL AND SYMMETRY
PROPERTIES OF ORBITS

In this section we demonstrate two results concerning prop-
erties of orbits related to the confinement potential symmetry.

Theorem C.1. To any part of a given orbit in a confin-
ing potential with reflection symmetry there corresponds a
reflected part in which the particle moves with the opposite
handedness.

Proof. For a confinement potential with reflection symme-
try, described by an improper orthogonal transformation, S,
vectors will be transformed as v(S) = Sv, while pseudovectors
as v(S) = (det S)Sv. Eq. (1) is vector equation, while (2) a
psedudovector one, since we have a cross product.

For the sake of simplicity let us take the y axis as the line
of reflection. Thus, S is an improper rotation given by

Sy =
(−1 0

0 1

)
(C1)

FIG. 9. Mean angle χ◦ between n̂ and r (top) and mean orbital
radius (bottom) for an active particle confined in the potential V (r) =
1
2 (r4 − r2) with D = 0.01 (symbols). Full lines represent the noise-
free analytical results. Inset: Surface plot of V (r). Light and dark
dashes indicate respectively the maximum and the minimum values
of the orbit radius.

for which det Sy = −1. In this case, Eq. (1) yields ẋ(S) =
−ẋ, ẏ(S) = ẏ (which means motion in a reversed direction
on the xy plane), while Eq. (2) provides θ̇ (S) = −θ̇ . Ad-
ditionally, for θ we have n(S)

x = cos θ (S) = − cos θ , n(S)
y =

sin θ (S) = sin θ. Together with θ̇ (S) = −θ̇ , we obtain θ (S) =
−θ + (2m + 1)π, m integer. Therefore, the reflection sym-
metry of the confinement potential leads to reflected points
of a given orbit to be also solutions of Eqs. (1) and (2) with
reversed motion, with θ → −θ ± π for reflection on the y
axis. �

Theorem C.2. For confinement potentials with N-fold ro-
tational symmetry any given part of a particle trajectory has
a corresponding multiple of 2π/N rotated part in which the
particle moves with the same handedness.

Proof. For a confinement potential having N-fold rota-
tional symmetry, let us denote the proper orthogonal trans-
formation as RN , where det RN = 1. Therefore, ṙ(RN ) = RN ṙ
is the velocity vector rotated by 2π/N and Eq. (2) provides
θ̇ (RN ) = θ̇ . This latter result together with n(RN ) = RN n gives
cos θ (RN ) = cos(θ + 2π/N ) and sin θ (RN ) = sin(θ + 2π/N ).
As a consequence, Eqs. (1) and (2) are both satisfied at points
rotated by a multiple of 2π/N of a given orbit, with the same
direction of motion, i.e., ṙ and n rotated by 2kπ/N , as well as
θ translated by 2kπ/N , for k = 1, 2, . . . , N − 1. �

As a consequence of Theorem C.2, either the orbit has
the same symmetry or there are corresponding orbits ro-
tated by multiples of 2π/N with the same rotation direction.
Therefore, RN operations on an orbit with the same N-fold
rotational symmetry of the confining potential maps the orbit
onto itself. Additionally, if the orbit does not have the same
reflection symmetry of the potential, then Theorem C.1 asserts
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FIG. 10. Trajectories on the plane (left) and respective orienta-
tion angle versus y (right) for the elliptical confinement with β = 10,
ε = 1.0. The lighter (darker) colors depict (counter) clockwise ro-
tations in the xy plane, whereas bluish (reddish) colors represent
two(one)-loop orbits. Left: Dark arrows represent the particle ve-
locity, while green arrows designate the gradient of the confinement
potential. Right: Arrows indicate the direction of increasing θ .

there should be an identical mirrored orbit rotating in the
opposite sense, such as the orbits shown in Fig. 4(k), which
have fourfold rotational symmetry but lack the same reflection
symmetry of the potential. Other examples for confinements
having dihedral symmetries are presented in Figs. 2(a)–2(d),
as well as in Figs. 4(a)–4(d), 4(f), and 4(h).

To illustrate the implications of the theorems in more detail
we examine two types of orbits (rotation and libration) in
our elliptic confinement. This confinement has D2 dihedral
symmetry, with two reflection symmetry lines, the horizontal
and vertical axes, as well as twofold rotational symmetry.
Therefore, we expect the particle trajectories to satisfy both
theorems above.

In Fig. 10 we show the orbits projected on the xy plane
(left panel) and y as function of θ (right panel) of an active
particle. Pink and red lines are mirrored orbits with |Q| = 1,
while light and dark blue curves are mirrored orbits with Q =
0. In the left panel, the dark arrows depict the direction of
motion. One can clearly see that they satisfy the requirements
already mentioned for mirrored orbits. In the right panel, we
see the inversion of θ̇ , together with the shift of π for θ of
mirrored orbits, i.e., θ (S) + θ = π stated above.

Interestingly, reflection over the x axis furnishes mirrored
orbits (red and pink curves) for these Q = 1 case but a re-
flected part of the same orbit (blue and light blue curves) for
the Q = 0 case. Also, for each of the orbits in the latter case
the inversion of motion above and below the x axis results in
mirrored loops of opposite topological charges.

Furthermore, the twofold rotational symmetry manifest it-
self in orbits with |Q| = 1, since points along the orbit are

mapped on points rotated by π of the same orbit in the xy
plane. On the other hand, orbits with Q = 0 are mapped to
their mirrored orbits in the xy plane. For Q = 0 the rotational
symmetry connects points along one orbit to points on the
corresponding twin orbit. This mapping is the same as the one
obtained by a reflection over the y axis followed by another
reflection over the x axis.

Regarding the dependence on θ , the reflection over the y
axis and twofold rotation symmetries yield θ (Sy ) + θ = π and
θ (R2 ) = θ + π , respectively. Therefore, θ (Sy ) + θ (R2 ) = 2π . In
the right panel of Fig. 10, we see periodically continuous lines
stretching from 0 to 2π for the Q �= 0 orbits, which satisfy the
above requirements. For the Q = 0 cases these requirements
result in alternate mirrored orbits in the θ -y plane.

Finally, these two types of orbits in the elliptical confine-
ment illustrate the behavior that we observe for all the orbits
obtained in different confinements. The requirements result-
ing from the symmetries, although do not necessarily impose
restrictions on the particle trajectories, implicate in twin orbits
which satisfy these requirements.

APPENDIX D: ANALYTICAL RESULTS FOR THE
ELLIPTIC HARMONIC CONFINEMENT

For the results stated in this Appendix we consider the
dimensionless forms of Eqs. (1) and (2) for the elliptic con-
finement given by Eq. (7).

1. Area of closed loops

Here we demonstrate Eq. (9), which states that the oriented
area of closed loops in a particle trajectory is proportional to
β−1 for any orbit in the elliptic harmonic potential.

This can be seen by calculating the rate at which the
oriented area A swept by the position vector of the particle
changes over time, dA

dt = 1
2 (r × v) · ẑ. By noticing that ∇V

can be conveniently written in terms of the vectors r and
r̄ ≡ (x,−y), we rewrite Eq. (1) as

n =
[
v +

(
1 + ε

2

)
r + ε

2
(xx̂ − yŷ)

]
. (D1)

Substituting in Eq. (2) we find

(2 + ε)
dA

dt
= d

dt

(
θ

β
− ε

2
xy

)
. (D2)

Therefore, (2 + ε)A − θ
β

+ ε
2 xy remains invariant along any

given orbit. By integrating (D2) along a single closed loop of
the orbit, we find

Aloop = �θloop

(2 + ε)β
, (D3)

where |�θloop| < 2π for any given loop of an orbit with nodes.
In particular, for rotation orbits, one has Aorbit = 2π

(2+ε)β .

2. Instability of orbital phase in the elliptic confinement

Theorem D.1. Orbital motion is not allowed in the elliptic
confinement for β < 1.
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Proof. To determine the region where orbital motion in the
elliptic confinement cannot be stable we start rewriting Eq. (2)
as dn̂

dt = β[v − (n̂ · v)n̂], where ṙ = v. Multiplying it by v

we notice that v2 = (n̂ · v)2 + β−1(v · dn̂
dt ). Therefore, using

Eq. (1),

0 �
(

v · dn̂
dt

)
=

[
1

2

dv2

dt
+ (v · ∇ )2V

]
� βv2. (D4)

Since (v · ∇ )2V = v2 + εẋ2, we find

−(v2 + εẋ2) � 1

2

dv2

dt
� (β − 1)v2 − εẋ2. (D5)

As a consequence, for β < 1, dv2

dt < 0 for any t . That means
the particle velocity will eventually go to zero and orbital
motion will not be sustained. Therefore, for β < 1 orbital
motion is not allowed in the elliptic confinement. �
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