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Electroviscous drag on squeezing motion in sphere-plane geometry
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Theoretically and experimentally, we study electroviscous phenomena resulting from charge-flow coupling in
a nanoscale capillary. Our theoretical approach relies on Poisson-Boltzmann mean-field theory and on coupled
linear relations for charge and hydrodynamic flows, including electro-osmosis and charge advection. With
respect to the unperturbed Poiseuille flow, we define an electroviscous coupling parameter ξ , which turns out to
be maximum where the film height h0 is comparable to the Debye screening length λ. We also present dynamic
atomic force microscopy data for the viscoelastic response of a confined water film in sphere-plane geometry; our
theory provides a quantitative description for the electroviscous drag coefficient and the electrostatic repulsion
as a function of the film height, with the surface charge density as the only free parameter. Charge regulation sets
in at even smaller distances.
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I. INTRODUCTION

Solid surfaces in contact with water are mostly charged,
resulting in intricate interactions of the diffuse layer of coun-
terions with liquid flow along the solid boundary [1–3].
Charge-flow coupling is at the origin of various electrokinetic
and electric-viscous effects [4]. Besides classical applications
of capillary electrophoresis ranging from microfluidics to
medical analysis, recently ac charge-induced electro-osmosis
has been used for the assembly of active materials. From
micron-size colloidal building blocks [5], surface osmotic ef-
fects have been discussed in view of energy applications and
desalinization of sea water [6].

The underlying physical mechanisms operate on the scale
of the Debye screening length [7], which is of the order
of a few tens of nanometers. Following the derivation of
the electro-osmotic coefficient by Helmholtz [8] and Smolu-
chowski [9], electrokinetic effects have been extensively
studied in the limit of thin double layers, where the screening
length is much smaller than the depth of the liquid phase. Thus
Bikerman and Dukhin [10] derived the surface contribution to
the electric conductivity of a salt solution, and Hückel [11]
and Henry [12] showed the colloidal electrophoretic mobility
to depend on the ratio of particle size and screening length.
Gross and Osterle studied charged membranes separating
two electrolyte solutions at different pressure and electro-
chemical potentials, and numerically calculated the trans-
port coefficients of nanopores comparable to the screening
length [13].
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Prieve and collaborators studied charge effects on the
motion of a colloidal sphere moving close to a solid sur-
face [14–18]. For a particle sliding parallel to the surface at
velocity V , they observed a normal lift force proportional to
V 2. This dependence suggests as an underlying mechanism
the Maxwell stress εE2, with permittivity ε and the parallel
electric field arising from the streaming potential, E ∝ V [15].
Yet the measured lift force [17] by far exceeds the calculated
value [18]; this discrepancy has not been elucidated so far.

Quite a different situation occurs for the squeezing motion
of a colloidal sphere vibrating in normal direction with a si-
nusoidal displacement Z (t ), as shown schematically in Fig. 1.
The velocity V = dZ/dt is by orders of magnitude smaller
than that of sliding motion, resulting in a negligibly weak
electrokinetic lift. For uncharged surfaces, the only force at
work is the hydrodynamic drag −γ0V with coefficient γ0.
The presence of electric double layers gives rise to several
electrokinetic forces,

K − kZ − γV, (1)

where the electrostatic repulsion K is well known from static
atomic force microscopy (AFM) experiments [19]. For a me-
chanically driven system as in Fig. 1, the dynamic response
consists of a restoring force −kZ with an effective spring con-
stant k and an enhanced drag coefficient γ , due to the coupling
of the charged diffuse layers to the radial flow profile [20,21].
Bike and Prieve calculated the charge contribution γ − γ0 for
the case where the sphere-plane distance h0 is much larger
than the Debye screening length λ [15]. Subsequent numerical
studies discussed the enhancement factor for both narrow and
wide channels, and found a maximum to occur at λ/h0 ≈ 1
[22,23]. The first unambiguous experimental observation of
the electroviscous effect was reported very recently by Liu
et al., who performed dynamic AFM experiments in weak
electrolyte solutions [21].

2470-0045/2022/105(6)/064606(11) 064606-1 ©2022 American Physical Society

https://orcid.org/0000-0003-1502-4235
https://orcid.org/0000-0001-7472-1597
https://orcid.org/0000-0002-0411-3948
https://orcid.org/0000-0002-9459-6081
https://orcid.org/0000-0003-1499-1960
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.105.064606&domain=pdf&date_stamp=2022-06-16
https://doi.org/10.1103/PhysRevE.105.064606


MARCELA RODRÍGUEZ MATUS et al. PHYSICAL REVIEW E 105, 064606 (2022)

FIG. 1. Schematic view of charge-flow coupling in sphere-plane
geometry. (a) A colloidal sphere of radius R is placed above a solid
surface. The film height h varies with the radial coordinate r and
takes its minimum value h0 at r = 0; this distance satisfies h0 � R.
(b) The sphere vertically vibrates with velocity V (t ). This squeezing
motion induces a radial Poiseuille flow in the confined water film
containing mobile ions of either sign.

The present work intends to clarify whether charge-flow
coupling accounts quantitatively for the electroviscous drag
on the squeezing motion illustrated in Fig. 1. Section II
provides a brief reminder of Poisson-Boltzmann theory, and
the static repulsive force K and the spring constant k. In
Sec. III we develop the formal apparatus for charge-flow
coupling, relying on Onsager’s phenomenological relations
for generalized fluxes and forces, without resorting to the
linearization approximation in the electroviscous coupling pa-
rameter. We derive the electroviscous drag coefficient γ in
terms of the Onsager transport coefficients Li j . In Sec. IV we
compare analytical approximations for the limiting cases of
narrow and wide channels with the numerical computation.
Section V is devoted to a discussion of the effect of charge
regulation on both electrostatic and electroviscous properties.
In Sec. VI we present dynamic-AFM measurements and com-
pare with our theoretical findings.

II. ELECTROSTATICS

Here we briefly discussed the electrostatic properties in the
absence of external driving. Solid materials in contact with
water in general carry surface charges. Due to electrostatic
screening, the released counterions are confined in a diffuse
layer of charge density ρ, which is related to the electrostatic
potential ψ through Gauss’s law:

∇2ψ = −ρ

ε
. (2)

In the framework of Poisson-Boltzmann mean-field theory,
the concentrations of monovalent ions read n± = n0e∓eψ/kBT ,
where the bulk value n0 corresponds to dissolved salt, to car-
bonic acid absorbed from air, or to the dissociation of water.
The resulting expression for the charge density,

ρ = e(n+ − n−) = 2en0 sinh
eψ

kBT
, (3)

then closes Gauss’s law.

A. 1D Poisson-Boltzmann theory

This work deals with thin films as in Fig. 1, where the
minimum height is much smaller than the radius of the vi-
brating sphere, h0 � R. Then electrostatic and hydrodynamic
properties are relevant in the lubrication area only, which
corresponds to the range where the radial coordinate r takes
values much smaller than R and where the height h(r) of the
aqueous film is a slowly varying function of r. For notational
convenience we define the origin of the vertical coordinate z
such that the solid boundaries are at z = ±h/2.

Throughout this paper we assume a homogeneous surface
charge and use the 1D Poisson-Boltzmann equation where ψ

and ρ depend on the vertical coordinate z only,

e

kBT

d2ψ

dz2
= λ−2 sinh

eψ

kBT
. (4)

Here we introduce two characteristic length scales: the Debye
screening length

λ = 1√
8πn0	B

, (5)

which gives the thickness of the diffuse layer in an electrolyte
solution [24], and the Bjerrum length

	B = e2

4πεkBT
, (6)

which gives the distance where the electrostatic interaction of
two elementary charges is equal to the thermal energy. Typical
values in water are λ = 1...300 nm and 	B = 0.7 nm.

For fixed surface charge density −eσ , the potential satisfies
the boundary condition

eσ

ε
= ∓ dψ

dz

∣∣∣∣
z=±h/2

. (7)

For fixed surface potential one has ψ (±h/2) = ζ . Note that
the potential ψ (z) and its surface value ζ depend on the film
height h and thus on r.

B. Disjoining pressure and repulsive force

For the sake of notational simplicity we assume a sym-
metric system with the same charge density σ on the two
opposite surfaces. Then the disjoining pressure is given by the
excess osmotic pressure of the mobile ions at z = 0, which
reads � = (nm − 2n0)kBT . With the excess number density
nm = 2n0 cosh[ψ (0)/kBT ], one readily finds

� = 2n0kBT

(
cosh

eψ (0)

kBT
− 1

)
. (8)

The dependence of the osmotic pressure on the film height h
arises from the potential ψ (z = 0) [24]. At distances h larger
than the screening length λ, this potential vanishes, and so
does the disjoining pressure.

The repulsive force K between the two surfaces is obtained
as the surface integral the osmotic pressure. The film height
being much smaller than the curvature radius, we use the
Derjaguin approximation [25]. For distances much smaller
than the radius of the oscillating sphere, the height of the water
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film h = h0 + R − √
R2 − r2 is well approximated by

h(r) = h0 + r2

2R
, (r � R). (9)

Writing the surface element as dS = 2πdrr = 2πRdh, one
readily obtains

K (h0) =
∫

dS� = 2πR
∫ ∞

h0

dh�(h). (10)

The disjoining pressure gives rise to a static restoring force
−kZ , with spring constant

k(h0) = − dK

dh0
= 2πR�(h0). (11)

The discussion and numerical evaluation of the force K and
the rigidity k are postponed to Sec. V below.

III. CHARGE-FLOW COUPLING: FORMAL APPARATUS

Here we derive the formal expression for the electroviscous
drag coefficient γ defined in (1). Resorting to lubrication
approximation, we give the coupled hydrodynamic and charge
flows in radial direction, which are imposed by the mechanical
driving, as illustrated in Fig. 1. Then we derive expressions for
the hydrodynamic pressure and the resulting drag force.

We consider charged surfaces in sphere-plane geometry in
contact with an electrolyte solution, as shown schematically
in Fig. 1. The vertical distance varies with time according
to h0 + Z (t ), with a small sinusoidal amplitude |Z| � h0 and
frequency ω, resulting in the velocity V = dZ/dt . Experimen-
tally, this is realized by a vibrating sphere of radius R mounted
on the cantilever of an atomic force microscope.

A. Lubrication approximation

The vertical oscillation modulates the hydrodynamic
pressure P in the film and imposes a flow JV . For an incom-
pressible fluid, there is a simple geometrical relation between
the vertical velocity V of the cantilever and the volume flow
carried by the radial fluid velocity v,

πr2V = 2πrJV = 2πr
∫ h/2

−h/2
dzv(z, r). (12)

Note that the height h(r) varies with the radial position r
according to (9).

The fluid mechanical problem simplifies significantly
when resorting to the lubrication approximation [26]. In the
range of validity of Eq. (9), the vertical component of the
velocity field is negligible, and the radial component v obeys
a simplified Stokes equation,

η∂2
z v = ∂rP − ρE , (13)

with the viscosity η and where only the vertical component of
the Laplace operator ∇2v has been retained. The right-hand
side comprises the radial pressure gradient ∂rP and the force
exerted by a radial electric field E and the charge density ρ of
the diffuse layer.

B. Nonequilibrium fluxes and forces

Using the Derjaguin approximation, the electrostatic prop-
erties can be calculated from the one-dimensional (1D)
Poisson-Boltzmann equation (4) with slowly varying gap
height h(r). Yet this equilibrium state is perturbed by charge-
flow coupling. Indeed, advection of counterions by the radial
velocity v results in a radial charge distribution and an electric
field E . Through the electro-osmotic force ρE in (13), the field
backreacts on the flow properties.

For an axisymmetric geometry, both E and the pressure P
depend on the radial coordinate r only, and the velocity field
v = vP + vE and charge current j = jP + jE point in radial
direction. Integrating over the vertical variable z we obtain the
fluxes of volume and charge,

JV =
∫ h/2

−h/2
dz(vP + vE ) ≡ −Lvv∇P + LvcE , (14)

JC =
∫ h/2

−h/2
dz( jP + jE ) ≡ −Lcv∇P + LccE , (15)

where the second identity defines the linear transport coef-
ficients Li j with respect to the generalized forces −∇P =
−dP/dr and eE .

The first term in Eq. (14) arises from the pressure-driven
flow profile vP(z). Assuming no-slip boundary conditions
vP(±h/2) = 0, the Stokes equation (13) with E = 0 is readily
integrated,

vP = −h2 − 4z2

8η
∇P, (16)

resulting in

Lvv = h3

12η
. (17)

The second term in (14) accounts for the electro-osmotic
velocity profile [27]

vE (z) = −1

η

∫ h/2

z
dz′

∫ z′

0
dz′′ρ(z′′)E

= ε

η
[ψ (z) − ζ ]E , (18)

where the second identity follows from twice integrating
Gauss’ law ε∂2

z ψ = −ρ. This leads to the electro-osmotic
transport coefficient

Lvc = 1

E

∫ h/2

−h/2
dzvE (z). (19)

The electric current (15) consists of advection of counteri-
ons in the Poiseuille flow profile vP,

Lcv = 1

η

∫ h/2

−h/2
dzρ(z)

h2 − 4z2

8
, (20)

and Ohm’s law with the conductivity Lcc. This latter coeffi-
cient reads as

Lcc =
∫ h/2

−h/2
dz

(
ρ

ε

η
(ψ − ζ ) + e2(μ+n+ + μ−n−)

)
, (21)
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where the first term accounts for advection by the electro-
osmotic velocity field vE and the second one for electrophore-
sis of salt ions, with mobilities μ±.

Electrokinetic phenomena in a channel between two
electrolyte reservoirs at different electrochemical potential
are characterized by a constant streaming current JC �= 0
[6,13,14]. Contrary to this open geometry, the periodically
driven squeezing motion of Fig. 1 does not allow for a steady
current but gives rise to the electric field E . Strictly speaking,
there is a small current which develops the space charges
related to the electric field, δρ = ε div E , and which vanishes
when averaged over one cycle. Because of the strong electric
interactions, the space charges develop almost instantaneously
such that the electric field is in phase with the pressure gradi-
ent, and that advection and conduction currents cancel each
other in (15),

JC = 0. (22)

This relation holds true as long as the charge relaxation time
τ is much shorter than the period of the external driven,
ωτ � 1.

C. Drag force

With the above condition of zero charge current, Eq. (15)
implies a relation between the radial electric field and the
pressure gradient,

E = Lcv

Lcc
∇P. (23)

Inserting this in the volume current (14) and solving for the
pressure gradient, we find

∇P = −6ηrV

h3

1

1 − ξ
, (24)

where the coupling of the double layer to the flow is accounted
for by the ratio of off-diagonal and diagonal transport coeffi-
cients Li j ,

ξ = LvcLcv

LvvLcc
. (25)

From (24) it is clear that the dimensionless parameter ξ

describes the effect of charge-flow coupling on the hydro-
dynamic pressure. For ξ = 0 one recovers the well-known
expression for the pressure gradient in capillary. The stability
of the dynamic equations (14) and (15) requires a positive
determinant of the matrix of the transport coefficients Li j , that
is, det L > 0 or ξ < 1.

When integrating the excess hydrodynamic pressure in the
capillary, it turns out to be convenient to use the variable h
instead of r. In the lubrication approximation (9) one has dh =
drr/R and

P(h) = 6ηRV
∫ ∞

h

dh′

h′3
1

1 − ξ (h′)
. (26)

Finally, the viscous force on the cantilever is given by the
surface integral of the pressure. With dS = 2πdrr = 2πRdh
one finds for the drag coefficient

F (h0) = −2πR
∫ ∞

h0

dhP(h). (27)

In Eq. (1) we have defined the electroviscous drag coefficient
through F = −γV ; the above relations give

γ = 12πηR2
∫ ∞

h0

dh
∫ ∞

h

dh′

h′3
1

1 − ξ (h′)
. (28)

In the absence of electroviscous coupling, one readily ob-
tains the pressure

P0(h) = 3ηV R

h2
, (ξ = 0), (29)

which is maximum at the center of the film and vanishes as
P0 ∝ r−4 at large radial distance. The corresponding lubrica-
tion drag coefficient [28],

γ0 = 6πηR2

h0
, (ξ = 0), (30)

is by a factor R/h0 larger than the Stokes drag coefficient
6πηRV on a sphere of radius R in a bulk liquid.

IV. ELECTROVISCOUS DRAG COEFFICIENT

As a main formal result of this paper, Eq. (28) expresses
the electroviscous drag enhancement in terms of the coupling
coefficient ξ which quantifies the charge-flow coupling. Here,
we evaluate Eq. (28) both analytically and numerically.

A. Wide-channel approximation h � λ

If the height of the water film is much larger than the Debye
length, the electrostatic potential is given by [24]

ψ = −4kBT

e
arctanh(βe−z/λ), (31)

where the parameter

β =
√

1 + (2π	Bλσ )2 − 1

2π	Bλσ
(32)

depends on the Debye length λ and the surface charge
density −eσ , with σ > 0.

In this case there are analytical expressions for the trans-
port coefficients Li j . The off-diagonal terms are given by the
Helmholtz-Smoluchowski electrophoretic mobility,

Lvc = −hεζ

eη
= − hζ̂

4πηlB
, (33)

where in the second identity we define the dimensionless ζ

potential in units of the thermal energy ζ̂ = eζ/kBT . The
electrical conductivity reads

Lcc = sinh(ζ̂ /4)2

π2ηλ	2
B

+
∑
±

μ±n0

(
h − 4βλ

β ∓ 1

)
, (34)

where the first term accounts for electro-osmotic advection
and the second for ion electrophoresis, with surface contribu-
tions parameterized by β.

For wide channels, h � λ, the conductivity is dominated
by bulk-ion electrophoresis. Discarding the electro-osmotic
and surface terms, and using the definition of the screening
length (5), results in the coupling parameter

ξ = λ2
∗

2h2
, (35)
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FIG. 2. Electroviscous enhancement of the drag coefficient
γ (h0), in units of the purely viscous coefficient γ0 at h0 = λ∗. In
the absence of charge-flow coupling as in (30), the dotted line gives
γ0(h0)/γ0(λ∗) = λ∗/h0. Dashed lines are calculated from the pertur-
bation series (38) for γ , truncated at (λ∗/h0 )2n with n = 1, 2, 3, 100.
The full line represents the complete series (37), which is defined for
h > λ∗ only.

with the length scale

λ∗ = 6ζ̂

√
a

	B
λ. (36)

Here and in the following, the mobilities are expressed
through ion radii, μ± = 1/6πηa±, with the mean value 1/a =
2/a+ + 2/a−.

Then the pressure (26) and the drag coefficient (28) can be
integrated in closed form,

γ

γ0
= h0

λ∗
ln

h0 + λ∗
h0 − λ∗

+ h2
0

λ2∗
ln

h2
0 − λ2

∗
h2

0

. (37)

In Fig. 2 we plot γ as a (red) solid line. At the distance h0 = λ∗
the electroviscous coupling parameter ξ is equal to unity and,
as a consequence, a logarithmic branch point appears in the
pressure integral (26), resulting in γ /γ0 = 2 ln 2 ≈ 1.39. At
smaller distances the wide-channel approximation for pres-
sure and force integrals is not defined.

It turns out instructive to rewrite (37) as a series in powers
of λ∗/h0,

γ

γ0
= 1 + 1

6

λ2
∗

h2
0

+ 1

15

λ4
∗

h4
0

+ 1

28

λ6
∗

h6
0

+ · · · . (38)

In Fig. 2 we plot this series truncated at (λ∗/h0)2n with n =
1, 2, 3, 100 and compare both with (37) and with the uncou-
pled lubrication drag coefficient (30). Retaining a few terms
only suggests a smooth behavior, whereas Eq. (37) is defined
for h0 � λ∗ only. The first correction term, proportional to
λ2

∗/h2
0, corresponds to the electroviscous coefficient of Bike

and Prieve [15].
Noting that the ion radius is usually smaller than the Bjer-

rum length 	B = 0.7 nm and ζ̂ of the order of unity, one finds
that λ∗/λ takes values between 1 and 10.

B. Narrow-channel approximation

In the case of a narrow channel, h � λ, the overlapping
double layers of the surfaces result in a constant charge
density

ρ = −ε∂2
z ψ = 2σ/h, (39)

in other words, the counterions form a homogeneous gas [24].
The electrostatic potential is readily integrated,

ψ (z) = kBT

e

(
ln m − 4π	Bσ

h
z2

)
, (40)

where the parameter m describes the finite value of the poten-
tial ψ (0) = (kBT/e) ln m at z = 0.

With these expressions for ρ and ψ the transport co-
efficients are readily calculated. Retaining contributions of
leading order in h only, we find

Lvc = eσh2

6η
, Lcc = e2σ

3ηa+
, (41)

resulting in the coupling parameter

ξ = σa+h. (42)

Note that for narrow channels the conductivity is independent
of salinity and gap height [29], whereas the parameter ξ is
linear in h.

C. Numerical evaluation of ξ and γ

In the general case, the electrostatic potential is obtained in
terms of the Jacobi elliptic function cd(u|m2) [30],

ψ (z) = kBT

e

[
ln m + 2 ln cd

(
z

2λ
√

m

∣∣∣∣m2

)]
. (43)

Because of cd(0|m2) = 1, the second term vanishes at z = 0,
and the potential at z = 0 is determined by ln m. The pa-
rameter m depends on the ratio of the channel height and
the Debye length: For h � λ one has m = 1 and recovers
the analytic expression (31) for a charged surface limiting an
infinite half-space. In the narrow-channel limit one finds

m = hn0

2xσ
, (hn0 � σ ), (44)

and expanding the Jacobi function to second order in z, one
recovers the potential defined in Eq. (40) above.

The electric potential is calculated numerically from (43)
with the boundary condition (7). Then the electroviscous
coupling parameter ξ defined in (25) is obtained by perform-
ing the integrals (20) and (21) for a given film distance h.
The numerical results are given in terms of the gap height
h0, the surface charge density σ , and the Debye screening
length λ. We use the viscosity of water at room temper-
ature, η = 0.9 × 10−3 Pa s, and the ion mobilities μ± =
1/6πηa± with the radii of sodium a+ = 1.9 Å and of chlorine
a− = 1.3 Å [31].

Figure 3 shows the variation of ξ as a function of h for
different values of surface charge concentration σ in compar-
ison with narrow-channel and wide-channel approximations.
As a surprising feature, ξ is roughly linear in σ . The log-log
plot shows the power laws ξ ∝ h and ξ ∝ h−2 in the limits of
narrow and wide channels, respectively. The maximum occurs
at hmax ≈ 3λ. The narrow-channel result (42) provides a good
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FIG. 3. Numerical calculation of the electroviscous coupling pa-
rameter ξ as a function of h, for surface charge density σ = 0.003
and 0.03 nm−2, and Debye length λ = 50 nm. Dotted and dashed
lines correspond to the approximations of narrow and wide channels,
respectively, whereas the solid lines give the numerical solution.

description for h � λ, whereas the wide-channel expression
(VII A) converges for h � λ∗ only. In the intermediate range,
which covers at least one decade in h, neither of them is valid.

In Fig. 4 we plot the enhancement factor γ /γ0 − 1 of the
viscous force (27), with parameters as in Fig. 3. As expected
for the electroviscous coupling parameter ξ , there is a max-
imum at h0 ≈ λ. The enhancement factor depends equally
strongly on the surface charge and the Debye length.

V. CHARGE REGULATION

So far we have assumed that the surface charge density σ

remains constant upon varying the film height h0. This is not
the case, however, for weakly dissociating acidic groups HA
which release and recover protons according to [32]

HA � H+ + A−. (45)

For narrow channels the potential (43) takes a finite value
ψ (0) = (kBT/e) ln m at z = 0, which favors recombination of
the surface groups, thus reducing the effective charge density
σ and surface potential ζ .

FIG. 4. Electroviscous drag enhancement γ /γ0 − 1 as a function
of h0 for different values of the surface charge density σ .

A simple and widely studied model relies on the dissocia-
tion constant

Z = [H+][A−]

[HA]
= ns

α

1 − α
, (46)

where we have defined the dissociated fraction α and the
hydronium concentration at the surface ns = e−eζ/kBT [H+]∞.
Solving for α, one finds the fraction of dissociated sites

α = 1

1 + ns/Z
, (47)

and the number density of surface charges

σ = α

S
. (48)

The electrostatic potential is obtained by closing the above
relations with the boundary condition (7). The area per site S is
chosen such that at large distance (where ζ = ζ∞), σ takes the
value indicated for the case of constant charge. An alternate
approach, which is often used for systems with more complex
charging procedure but essentially leads to the same results,
is via a proper minimization of the relevant thermodynamic
potential [33].

In the following we compare the electrostatic and elec-
troviscous properties calculated at constant charge (cc) with
the charge-regulated case (cr), and also with that of constant
potential (cp), where the boundary condition (7) is replaced
with

ψ (±h/2) = ζ∞. (49)

Here ζ∞ is the surface potential at large distance, calculated
with the surface charge σ according to (31). All curves labeled
“cr” are calculated with Z = 10−3 M.

A. Electroviscous coupling

In Fig. 5 we plot the coupling parameter ξ for the cases
of constant charge and constant surface potential, and observe
a behavior similar to what has been reported previously for
the disjoining pressure [34]. At distances smaller than the
screening length, h < λ, the curves of ξ for different boundary

FIG. 5. Electroviscous coupling parameter ξ as a function of
the distance h for constant charge (cc), charge regulation (cr), and
constant potential (cp).
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FIG. 6. Electroviscous enhancement γ /γ0 − 1 as a function of
the distance h0 for different boundary conditions.

conditions diverge significantly. Yet note that the electrovis-
cous coupling is strongest in the range λ < h < 10λ, where
charge regulation is of little importance.

The electroviscous enhancement of the drag force γ with
respect to the uncoupled expression γ0 is shown in Fig. 6. The
maximum occurs at a distance slightly below the screening
length. For the given electrostatic parameters, it reaches a
value of about 35%, which depends little on the electrostatic
boundary condition. The electroviscous drag component dis-
appears at much higher distances of about 10λ.

B. Disjoining pressure and static repulsion

Now we consider the static repulsive force arising from
the overlap of the diffuse layers on the opposite surfaces and
which is independent of the external driving. According to
(43), the potential at z = 0 reads as ψ (0) = (kBT/e) ln m, and
the disjoining pressure (8) is determined by the parameter m,

� = n0kBT

(
m + 1

m
− 2

)
. (50)

In Fig. 7 we plot � calculated for constant charge (cc), con-
stant potential (cp), and charge regulation (cr). For distances
shorter than the screening length, these different boundary
conditions result in significant differences. In agreement with
previous work, we find a constant pressure for cp [24] and
power laws � ∝ hs with s = −1 and − 1

2 for cc and cr, re-
spectively [34].

The dashed line corresponds to the widely used approxi-
mation [1]

�s(h) = 64β2n0kBTe−h/λ, (h � λ), (51)

which relies on the linear superposition of the double lay-
ers at the opposite surfaces, and where the parameter β =
tanh(eζ∞/4kBT ) is given by the surface potential ζ∞ at h0 →
∞, as defined in Eq. (32).

The repulsive force (10) between the two surfaces is
calculated in Derjaguin approximation, in analogy to (27),
resulting in

K = 2πR
∫ ∞

h0

dh�(h). (52)

FIG. 7. Disjoining pressure between charged surfaces as a func-
tion of the distance h0. The solid curves give the numerical solution
(8) for constant surface charge σ = 0.018 nm−2 (cc), constant po-
tential ζ (cp), and the charge-regulated intermediate case (cr) with
dissociation constant Z = 10−3M. The approximative expression
(51) is plotted as a dashed line. The inset shows the ratio �/�s,
highlighting the deviation of the disjoining pressure � from the
approximate expression �s, which sets in well above 200 nm.

For the pressure in superposition approximation we ob-
tain Ks = 2πRλ�s(h0) and, after expressing the salt content
through the Debye length,

Ks = 16Rβ2kBT

λ	B
e−h0/λ, (h0 � λ). (53)

A comparison of the numerically exact force K with the
exponential approximation Ks is given in Fig. 8. Both expres-
sions agree beyond 200 nm, or h0 > 7λ. The inset shows that
the force calculated for constant potential (cp) remains about
10% below Ks, whereas those for constant or regulated charge
(cc or cr) show a more complex behavior: they first decrease
below Ks yet at even smaller h0 by far exceed the analytic
approximation Ks [1].

VI. AFM FORCE MEASUREMENT

A. Experimental detail

We performed a dynamic AFM measurement with col-
loidal probe following the method described in [35]. A
spherical borosilicate particle (MO-Sci Corporation) with a
radius of R = 47 ± 1 μm was glued at the end of a cantilever
(CSG30, NT-MDT) using epoxy (Araldite, Bostik, Coubert).
The stiffness of the ensemble of cantilever and particle was
calibrated by the drainage method [36], resulting in kc =
0.8 ± 0.1 N/m. The resonance frequency and bulk quality
factor were obtained from the thermal spectrum as ω0/2π =
3340 Hz and Q = 4.7, respectively.

The experiment was performed using an atomic force mi-
croscope (Bioscope, Bruker, USA) equipped with a liquid cell
(DTFML-DD-HE) which allows us to work in liquid environ-
ment. The mica surface was driven by a piezo (Nano T225,
MCL Inc., USA) to approach the particle with a very small
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FIG. 8. Static force between charged surfaces as a function of
the distance h0. The solid curve gives the numerical solution (10)
for constant charge (upper red), constant potential (lower blue), and
charge regulation (middle green). The approximative expression (53)
is plotted as a dashed line. The inset shows the ratio K/Ks; note that
all curves coincide at large distance, which is not visible in the main
figure.

velocity such that the drainage force can be neglected, and
meanwhile the probe was also driven with a base oscillation
amplitude Ab = 3.5 nm and frequency of ω/2π = 100 Hz.
The amplitude A and phase ϕ of the cantilever deflection
were measured by a lock-in amplifier (Signal Recovery, model
7280), and the dc component of the cantilever deflection was
also recorded, from which the separation distance h0 and
electrostatic force K between the sphere and the mica surface
were extracted. The mica surface and cantilever probe are
immersed in low-salinity water. We also performed control
experiments at large salinity. All measurements were done at
room temperature, 21 ◦C.

B. Static force

Figure 9 shows the electrostatic repulsive force between the
mica surface and the colloidal probe. The data roughly show
an exponential behavior, as expected for a screened double-
layer interaction. The upper (red) curve is calculated from
Eq. (52) for constant charge number density σ = 0.028 nm−2

and the lower (blue) one for constant surface potential ζ =
−95 mV. In the range where both curves coincide, h0 > λ,
the best fit is obtained with a screening length λ = 47 nm,
corresponding to an electrolyte strength n0 = 43 μM.

C. Spring constant and drag coefficient

Driving of the probe induces an oscillation of the
tip-surface distance according to h0 + Z (t ). Modeling the can-
tilever as a damped harmonic oscillator [21] and solving its
equation of motion for the force F exerted by the surrounding
liquid, we obtain in complex notation

F = −kcZ

[
1 −

(
ω

ω0

)2

+ i
ω

ω0Q

]
Aeiϕ − A∞eiϕ∞

Aeiϕ + Ab
, (54)

FIG. 9. Static repulsion K between the AFM sphere and the solid
surface as a function of the distance h0. The squares give experimen-
tal data. The blue and red curves are calculated from (52) for constant
potential and constant surface charge, respectively, with the parame-
ter values R = 55 μm, surface charge density σ = 0.028 nm−2, and
screening length λ = 47 nm.

with amplitude A and phase ϕ of the mica surface. The
tip-surface distance reads as Z (t ) = eiωt (Aeiϕ + Ab), and the
values A∞ and ϕ∞ are measured far from the surface,
where the viscoelastic force F is negligible. All measurements
are done in the linear-response regime |Z| � h0.

In view of Eq. (1) we split F/Z in its real and imaginary
components. Writing the velocity as V = iωZ , we readily
obtain the complex response function,

F = −(k + iωγ )Z, (55)

where the “spring constant” k and the drag coefficient γ ac-
count for the elastic and viscous components of the tip-surface
interactions.

In Fig. 10 we plot the measured real and imaginary coef-
ficients as a function of the separation distance h0 at low or
high salinity, at the oscillation frequency of ω/2π = 100 Hz.
At large salinity electrokinetic effects disappear because of

FIG. 10. Real and imaginary parts k and ωγ of the response
function, measured at a vibrational frequency ω/2π = 100 Hz and
at low or high salinity, as a function of the distance h0.
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FIG. 11. Elastic response k measured at ω/2π = 100 Hz (open
symbols) and for the static case (full symbols) as a function of h0.
The solid line gives the static rigidity k, calculated from Eq. (11), for
constant potential. The experimental data are binned such that each
point corresponds to the mean value of 100 measured values.

electrostatic screening, and k vanishes accordingly, whereas
the drag coefficient follows the law γ0 ∝ 1/h0, expected from
Stokes hydrodynamics [26]. Quite a different behavior occurs
at low salinity, where we observe a strong elastic component
k which decays roughly exponentially with h0, and an electro-
viscous enhancement of the drag coefficient.

In Figs. 11 and 12, the experimental findings are compared
with theory. Regarding the elastic response, Fig. 11 shows
both the static stiffness −dK/dh0 (full symbols) and the
dynamic response k(ω) at finite frequency ω/2π = 100 Hz
(open symbols). The theory curve represents the spring con-
stant (11), which is related to the variation of the disjoining
pressure with distance and which is calculated from (8) at
constant potential (cp). The data roughly follow the expo-

FIG. 12. Comparison of the drag coefficient measured at
ω/2π = 100 Hz (circles) with theory (solid curves). At high salin-
ity (λ < 1 nm, red), the data are well fitted by ωγ0 with the drag
coefficient given by (30). At low salinity (λ = 47 nm, green) we
observe a significant electroviscous enhancement, which is qualita-
tively accounted for by ωγ calculated from (28). For narrow gaps the
measured data exceed the theory curve by up to 60%.

nential law expected for double-layer interactions, and they
provide strong evidence that the dynamic elastic response
k(ω) comprises a frequency-dependent contribution which is
most significant at small distances, h0 < λ, and which is not
captured by the electrostatic disjoining pressure �.

In Fig. 12 we plot the viscous response function ωγ . At
high salinity, the electric double layer is thin (λ < 1 nm),
such that charge-flow coupling effects are absent. Indeed,
the drag coefficient is well fitted by the viscous contribution
γ0 = 6πηR2/h0, as expected from (30). At low salinity, the
large screening length λ = 47 nm, comparable to h0, results in
charge-advection and electro-osmotic flow, which increase the
hydrodynamic pressure and thus enhance the drag coefficient.
The theory curve is calculated numerically from Eq. (28), with
the same parameters σ = 0.028 nm2 and λ = 47 nm as in
Figs. 9 and 11. If the overall behavior of the data is rather
well described by the theoretical expression, a significant
discrepancy occurs for small gaps, where the data exceed the
theoretical curve by up to 60%. Comparison with the elastic
coefficient shown in Fig. 11 suggests a frequency dependence
of the dynamic response function k(ω) + iωγ (ω), which is
not captured by the quasistatic coefficients k and γ derived in
the present work.

VII. DISCUSSION

A. Validity of the wide-channel approximation

If the double layers on either side of the water film do not
overlap, their properties are given by the Poisson-Boltzmann
potential (31) calculated for an infinite half-space. As the
surfaces get closer, the diffuse layers start to interact, resulting
in electrostatic repulsion and electroviscous coupling. In the
range where the distance h0 is moderately larger than the
Debye length λ, widely used approximations result in an
exponentially screened electrostatic repulsion [37] and in a
power-law dependence of the electroviscous drag [15].

Its range of validity is obviously related to the Debye
length λ, yet our analysis shows that in reality it is limited
by a significantly larger distance λ∗, defined in (36). With
typical values of the ζ potential ranging from 25 to 100 mV,
the parameter λ∗ may be up to 10 times larger than the actual
screening length λ. This is clearly displayed by the electrovis-
cous coupling parameter plotted in Fig. 3. The wide-channel
approximation converges only at h0 � λ. As a consequence,
at distances of the order of or smaller than λ∗, the force can be
calculated only numerically.

B. The effect of charge regulation

There are two length scales indicating a qualitative change
of the electrostatic properties, as illustrated by the parameter
m of the Jacobi elliptic function cd(u|m2) in Eq. (43), which
is plotted in Fig. 13. For very large channels one has m = 1,
which means that the double layers at opposite surfaces do
not interact. The onset of the electrostatic coupling occurs at a
film height λ∗ which increases with the surface charge density
σ , as shown by the curves of Fig. 13.

On the other hand, the electrostatic boundary conditions
and charge regulation are relevant at smaller distances, and
their onset shows the opposite behavior as a function of the
surface charge density. Indeed, for σ = 0.001 nm−2 the three
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FIG. 13. The parameter m of the electrostatic potential (43) as a
function of reduced channel height h/λ for three values of the surface
charge density σ and for constant charge (cc, red), constant potential
(cp, blue), and charge regulation (cr, green). There are two different
length scales: The onset of electrostatic coupling of the two diffuse
layers, where m starts to decrease below 1, occurs at a distance h∗ =
2πσ	Bλ2 which increases with σ . On the other hand, the electrostatic
boundary condition and charge regulation (cc, cr, cp) are relevant
at shorter distances, and there onset occurs at a distance which is
inversely proportional to the surface charge density.

curves (cc, cp, cr) start diverging at h = λ, whereas for σ =
0.1 nm−2 this occurs at much smaller distances.

These features can be observed for both the electrostatic
repulsion and electroviscous effects. Regarding the former,
the two length scales for the onset of nonexponential behavior
and charge regulation effects are clearly visible in the inset
of Fig. 8. Similarly, the electroviscous coupling parameter
ξ in Fig. 5 and the enhancement of the drag coefficient in
Fig. 6 show characteristic wide-channel power laws for h �
λ, whereas charge regulation effects occur at distances shorter
than the screening length.

C. Electrokinetic lift force

In this work we have considered the electroviscous force
(27) only. As pointed out by Bike and Prieve [15], there is
an additional electrokinetic force given by the diagonal part
1
2εE2 of the Maxwell stress tensor,

Fel = 2πR
∫ ∞

h0

dh
εE2

2
, (56)

with the electric field (23). Because of E ∝ V , this “lift force”
is quadratic in the driving velocity V ∝ cos ωt . As a conse-
quence, Fel ∝ cos2 ωt is always repulsive and oscillates with
the double frequency, contrary to the electroviscous force
F = −γV , which is opposite to the velocity and oscillates
with ω.

The present experiments on squeezing motion do not show
any indication of the lift force Fel. This does not come as a
surprise: inserting the wide-channel expressions of the trans-
port coefficients Li j and a typical velocity V = 100 nm/s, we
find

Fel ∼ εζ 2

(
λ2

h2
0

aηV R

kBT

)2

∼ 10−17 N, (57)

FIG. 14. Numerical calculation of the electroviscous enhance-
ment of the drag coefficient γ /γ0 − 1 as a function of h0, for
σ = 0.03 nm−2 and λ = 50 nm. The solid line is calculated with
the full pressure (24) and the dashed line that with the linearized
expression (58).

which is much smaller than the electroviscous force F ∼
10−9 N.

For sliding motion along the surface, on the contrary, the
lift force Fel turns out to be important. Due to the symmetry
properties of the unperturbed pressure P0, the corresponding
vertical force vanishes, F = ∫

dSP0 = 0 [15]. Moreover, the
horizontal speed Ẋ of the sliding motion is typically of the
order of 10 mm/s, much larger than the vertical velocity V =
Ż in the present experiment.

D. Comparison with previous work

Electroviscous effects on squeezing motion have been
studied in several previous papers [15,21–23]. All of these
works start, more or less explicitly, from the volume and
charge currents (14) and (15). Yet when calculating the charge
current JC they use the unperturbed pressure gradient ∇P0 =
−6ηrV/h3 instead of ∇P. This perturbative approach cor-
responds to a linearization of the pressure gradient in the
coupling parameter ξ ,

∇P1 = ∇P0(1 + ξ ), (58)

instead of the exact expression (24).
As a consequence, electroviscous effects appear as an ad-

ditive correction to the unperturbed drag force F0. Thus the
wide-channel force of Bike and Prieve [15] is identical to the
first two terms of (38), whereas our expression (37) corre-
sponds to the full series in λ∗/h0. Similarly, the numerical
calculations of Chun and Ladd [22] and Zhao et al. [23] are
done with the linearized pressure gradient P1.

In Fig. 14 we compare the electroviscous enhancement of
the drag force, calculated with the numerically exact pressure
gradient (24) and with the linearized form P1. For the pa-
rameters λ = 50 nm and σ = 0.03 nm−2, the linearized drag
coefficient (dashed line) is by 28% larger than γ0, whereas the
increase of the full expression (solid line) attains 40%. This
difference is not surprising in view of the coupling parameters
shown in Fig. 3; in the intermediate range where ξ reaches
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values of the order of unity, one expects a significant nonlinear
behavior.

VIII. SUMMARY

We have studied the electroviscous and electrostatic forces
exerted on a vibrating AFM tip across a nanoscale water film.
We briefly summarize the main findings.

(i) In the framework of Onsager relations for generalized
fluxes and forces, we derive the drag coefficient (28) in terms
of the electroviscous coupling parameter ξ . With the surface
charge σ and the screening length λ taken from the elec-
trostatic repulsion (Fig. 9), we find an almost quantitative
agreement with experimental data (Fig. 12), with a discrep-
ancy attaining 60% in the narrow-gap limit.

(ii) This analysis relies on a quasistatic approximation (22),
where the radial charge distribution in the water film is as-
sumed to follow instantaneously the external driving. The fits
of the viscous and elastic components of the response function
(55), measured at ω/2π = 100 Hz and shown in Figs. 11 and
12, suggest that this approximation is justified at distances
larger than the screening length yet ceases to be valid for
h0 < λ. Our experimental data strongly suggest that in this
range both the spring constant k and the drag coefficient γ

vary with frequency. The nature of the underlying relaxation
process is not clear at present.

(iii) Previous work relied on the linearization approxi-
mation (58) for the hydrodynamic pressure gradient. This
linearization significantly underestimates the enhancement of
the drag coefficients for the parameters of Fig. 14 by about
40%.

(iv) Charge regulation turns out to be of minor importance
in the experimentally most relevant range. Indeed, the elec-
troviscous coupling sets in at large distances and is maximum
at h0 ∼ 3λ (Fig. 3), whereas the electrostatic boundary con-
ditions and charge regulation effects are significant in narrow
channels only, as shown in Figs. 5–9.
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