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Electrokinetic and dielectric response of a concentrated salt-free colloid:
Different approaches to counterion finite-size effects
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In the present work, a general model is developed for the electrokinetics and dielectric response of a
concentrated salt-free colloid that takes into account the finite size of the counterions released by the particles
to the solution. The effects associated with the counterion finite size have been addressed using a hard-sphere
model approach elaborated by Carnahan and Starling [N. F. Carnahan and K. E. Starling, Equation of state for
nonattracting rigid spheres, J. Chem. Phys. 51, 635 (1969)]. A more simple description of the finite size of the
counterions based on that by Bikerman has also been considered for comparison. The studies carried out in this
work include predictions on the effect of the finite counterion size on the equilibrium properties of the colloid and
its electrokinetic and dielectric response when it is subjected to constant or alternating electric fields. The results
show how important the counterion finite-size effects are for most of the electrokinetic and dielectric properties
of highly charged and concentrated colloids, mainly for the static and dynamic electrophoretic mobilities.
Furthermore, new insights are provided on the counterion condensation effect when counterions are allowed
to have finite size. Focus is placed on the changes undergone by their concentration in the condensation layer for
low-salt and highly charged colloids.
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I. INTRODUCTION

Strictly, a pure or ideal salt-free colloid is composed of
a system of charged particles dispersed in a solution where
the only ions present stem typically from the dissociation
of particle surface chemical groups. Such ions are usually
called released counterions. This countercharge in solution
plus the charged particles form an electrically neutral system.
Of course, colloids in aqueous solutions under supposedly
salt-free conditions (no external salt added to the system)
deviate from the concept of an ideal salt-free colloid because
of the presence of hydronium and hydroxyl ions from water
dissociation, and possibly others from carbon dioxide contam-
ination, if the colloid is open to the atmosphere. A colloid in
such conditions is usually called a “realistic” salt-free one.
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This is the situation addressed in a recent paper [1], where a
new ac electrokinetic model for concentrated salt-free spheri-
cal colloids with arbitrary conditions for particles and aqueous
solution was presented. This theory incorporates a realistic
chemistry for the solution in order to improve the compari-
son with the experiments in aqueous media. Thus, a realistic
nonequilibrium scenario standing for association-dissociation
processes in the chemical reactions was used, with special
emphasis on incorporating the effect of the finite size of
all ionic and neutral species on the theoretical electrokinetic
response. The results showed that the consideration of finite
ion-size effects, mainly at high frequencies of the electric field
and for highly charged colloids, becomes crucial to give us a
more complete description of the electrokinetic response of
the colloid. Such analysis was carried out by using Bikerman-
like (Bk) equilibrium activity coefficients [2,3] for all ionic
and neutral species (water molecules excluded) instead of
more exact descriptions like for example that by Carnahan and
Starling [4] (C-S). The reason for using Bikerman’s instead
of C-S’s approach was the huge mathematical difficulties in-
volved in the calculation of all frequency dependencies in the
case of concentrated realistic salt-free colloids out of equilib-
rium with the C-S formalism.
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On the other hand, an increasing interest is nowadays being
dedicated to the study of salt-free colloids from both theo-
retical and experimental points of view [5–9]. The salt-free
colloids can form ordered phases with phase transitions at
low particle concentrations with a clear resemblance with
molecular or atomic crystals [10–12]. That is the reason why
they are usually called colloidal crystals or glasses. In salt-
free conditions the long-range repulsive electrical forces are
responsible to a large extent of the formation of such crystals
at moderately low particle concentrations, as the screening
effect on particle charge of the ionic species in solution is
quite low in comparison with the conditions found in colloids
in electrolyte solutions.

In addition, a process of counterion condensation takes
place close to the particle surface, beyond a critical charge
density [5,7,8,13–16]: For highly charged salt-free colloids,
a layer of counterions condenses onto the particle surface
because of a competition between a favorable gain in electro-
static energy as counterions get closer to the particle surface
and an unfavorable loss of entropy as counterions move to-
ward the surface instead of moving to farther regions less
populated by counterions in the solution. This phenomenon
plays a very important role in general electrostatic soft matter,
not only controlling the stability of colloids but also the self-
assembly of different (bio)molecules [17,18]. The counterion
condensation leads to the concept of effective or renormalized
particle charge as the condensation layer partly neutralizes the
bare structural particle charge [16,19]. Hence, the enormous
interest of theoreticians in understanding the phenomenon
of the counterion condensation that only takes place in the
limit of salt-free or very low salt conditions. Also, there is
an increasing effort dedicated to perform simulations and to
develop theoretical studies with charged nonpolar colloids
as model systems for the prediction of the equilibrium and
nonequilibrium dynamics of counterions, as nonpolar colloids
allow the design of experiments in electrostatic regimes that
are inaccessible to typical colloids in electrolyte solutions
[8,20,21]. But there are also a large number of experimental
phenomena where the salt-free colloids are gaining relevance,
particularly in biomedical applications. It has been referred
for example that the electrohydrodynamic separation of DNA
from BSA is highly improved in salt-free environments [22].
Also, that the salt-free extraction of some biosurfactants may
avoid phytotoxic conditions [23], or that a better determina-
tion of the protein content and biomass of stabilized bacterial
cells can be obtained in salt-free environments [24], as well as
improvements in the dyeing of cotton that can be achieved if
it is made in salt-free media [25,26], etc.

In the last few years and due to its importance, different
authors have explored the use of more elaborate models (like
the above-mentioned C-S approach [4]) to manage the finite
ionic size effects in the study of the electrokinetics of dilute
colloids in electrolyte solutions [27–30]. Quite recent studies
concerning the equilibrium of concentrated salt-free colloids
(no external electric field applied) and an analytical approxi-
mation for the electrophoretic mobility of a spherical particle
in constant electric fields in such systems were addressed by
Ohshima according to the C-S model [7].

In the present work we face the problem of the finite size
of the released counterions and its effect on the equilibrium

properties and electrokinetic and dielectric responses under
constant or alternating electric fields of an ideal concentrated
salt-free colloid according to the mentioned C-S approach,
which is physically more consistent than others [31], and
mainly for a couple of reasons. First, solving the mathematical
problems for an ideal salt-free case with the C-S approach
might help to address the realistic one. Second, up to date
there is no general model for the electrokinetics of an ideal
and concentrated salt-free colloid with the C-S approach, un-
like the case of dilute colloids in electrolyte solutions where
continuous advances even beyond the C-S approach are being
published [3]. But a realistic concentrated salt-free colloid has
two singular characteristics that differentiate it from the dilute
case when the C-S approach is concerned. One is linked to the
coupling between the released countercharge and the particle
charge in salt-free colloids, as the electrical neutrality in the
system has to be fulfilled. However, the simultaneous consid-
eration of both ionic couplings [1] and finite ion size effects
according to the C-S formalism, would lead to almost unaf-
fordable mathematical problems in the numerical resolution
of the electrokinetic equations. The other characteristic refers
to the higher complexity of the concentrated case, either ideal
or realistic, in comparison with the dilute one, as it is nec-
essary to manage the electrohydrodynamic particle-particle
interactions as particle concentration increases, at least in an
average way. In the concentrated regime there is no clear
information about bulk properties (a priori known for the
dilute problem) and we can even ask whether the definition
of a bulk property makes sense or not in highly concentrated
colloids due to the close presence of neighbor particles around
a given one.

In summary, in the present work and as a first approach,
a complete electrokinetic model valid for ideal and con-
centrated salt-free colloids under the presence of constant
(dc) or alternating (ac) electric fields will be developed.
Particular attention will be paid to the role that the finite
size of the released counterions plays on electrokinetic and
dielectric properties as the dc or ac electrophoretic mobili-
ties, dc and ac conductivities and relative permittivity of the
colloid. Two parallel studies will be performed to achieve
this goal according, respectively, to Bikerman’s-related [2]
and Carnahan-Starling [4] models, and a global comparison
between their predictions will be made. Previously, the equi-
librium case will be analyzed in terms of the local electric
potential and the local concentration of counterions around a
given particle. In order to manage the particle-particle electro-
hydrodynamic interactions in the concentrated regime, a cell
model will be used [32,33].

II. FINITE-SIZE EFFECTS AT EQUILIBRIUM

ln this section we will explore the effect at equilibrium of
the excluded volume of ions in an ideal salt-free colloid. To
that aim, use will be made of the Carnahan-Starling activity
coefficient, γ 0

CS, of the counterions released from the particles
to the solution [4] before addressing the study of the electroki-
netic response of our system in the presence of constant or
alternating electric fields. A comparison with a Bikerman-like
activity coefficient γ 0

Bk depending on the packing fraction of
counterions [2,3] will also be made. As it was done in previous
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studies, a spherical cell model will be used to account, in an
average sense, for the particle-particle electrohydrodynamic
interactions in the colloid [32]. According to this model, the
outer radius of the cell b, will be chosen by equating the
particle volume fraction φ of the whole colloid with that
obtained within a single cell. Hence, this will be composed of
one particle of radius a at its center and a surrounding region
of solution of radius b such that φ = (a/b)3.

We assume for the moment that the system consists of
a collection of spherical nanoparticles, with radius a, and
surface charge density σ in a solution with relative permit-
tivity εrs and viscosity ηs. The activity coefficient γ 0

CS of the
only ionic species present in the solution, that is, the released
counterions that counterbalance the particles charge, is given
according to Carnahan-Starling by [3,4]:

γ 0
CS(r) = exp

(
ϕ0(r){8 − 9 ϕ0(r) + 3 [ϕ0(r)]2}

[1 − ϕ0(r)]3

)
, (1)

where ϕ0(r) is the counterion volume fraction at a radial
distance r from the center of the particle, and it can be related
to the counterion concentration n0(r) as:

ϕ0(r) = n0(r)Vc = n0(r) 4
3πR3, (2)

where Vc is the volume of a spherical counterion of radius R.
On the other hand, the activity coefficient γ 0

Bk of the coun-
terions according to a modification of the original Bikerman
expression, may be given by [34]:

γ 0
Bk(r) = 1

1 − [
ϕ0(r)

p

] = 1

1 − [ n0(r)
nmax

] = 1

1 − [ n0(r)Vc

p

] , (3)

where p is the packing factor, and nmax is a maximum counte-
rion concentration that is defined by:

nmax = 1

Ve
(4)

as the inverse of the effective volume Ve occupied per counte-
rion in a unit crystal cell for a given packing. Also it is fulfilled
that:

p = Vc

Ve
(5)

and the counterion volume fraction ϕ0(r) may then be ex-
pressed by:

ϕ0(r) = p

[
n0(r)

nmax

]
. (6)

For instance, for face-centered cubic packing: pfcc =
π

√
2/6 = 0.74 and Vefcc = 4R3

√
2; for simple cubic pack-

ing: psc = π/6 = 0.524 and Vesc = (2R)3; for body-centered
cubic packing: pbcc = π

√
3/8 = 0.68 and Vebcc = 32

√
3R3/9;

and for random close packing: prp = 0.64 and Verp =
(4πR3/(3prp).

In Fig. 1 is displayed the natural logarithm of C-S and
Bk (for p = 0.74) activity coefficients as a function of the
counterion volume fraction ϕ0. Note that the C-S activity
coefficient departs from unity much faster than the Bk one as
we increase the concentration of counterions. In other words,
the population of ions is lowered (with respect to the usual
pointlike approximation) by C-S calculations to a larger extent

FIG. 1. Natural logarithm of the counterion activity coefficient
γ 0 as a function of the counterion volume fraction ϕ0 according to
Bikerman [Bk; see Eq. (3)] for p = 0.74 and Carnahan-Starling [C-
S; Eq. (1)]

than Bk does, at least where the concentration is large, i.e.,
close to highly charged interfaces. Unless otherwise specified,
in the following γ 0(r) will stand for both possible activity
coefficients, C-S or Bk.

The equilibrium electrochemical potential for the counteri-
ons can be expressed as:

μ0(r) = μ∞ + ze	0(r) + kBT ln[γ 0(r) n0(r)], (7)

where μ∞ and z are the electrochemical potential of the
counterions at a standard state and their valence, 	0(r)
is the equilibrium electric potential at a radial distance r
from the center of the particle, e is the elementary electric
charge, kB is the Boltzmann constant, and T is the absolute
temperature.

In the absence of an external electric field, the Nernst-
Planck equation can be solved for the equilibrium concen-
tration of counterions in terms of the equilibrium electric
potential, as the gradient of its electrochemical potential must
be zero in such conditions:

∇μ0(r) = ∇{μ∞ + ze	0(r) + kBT ln[γ 0(r) n0(r)]} = 0.

(8)

Accordingly, at an arbitrary radial distance r and at the
outer radius r = b of the cell where the equilibrium electric
potential 	0(b) is set to zero, the electrochemical potential
must fulfill the equality:

γ 0(r) n0(r) = γ 0(b) n0(b) e− ze
kBT 	0(r) (9)

and the modified Poisson-Boltzmann equation (MPB) ac-
counting for the finite size of the counterions is then (see the
equivalent procedure by Ohshima in Ref. [7]):

∇2	0(r) = d2	0(r)

dr2
+ 2

r

d	0(r)

dr
= − ze

ε0εrs
n0(r)

= − ze

ε0εrs

γ 0(b) n0(b)

γ 0(r)
e− ze

kBT 	0(r)
, (10)

where ε0 is the electric permittivity of a vacuum.
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For the Bikerman case one can write [1]:[
γ 0(b)

γ 0(r)

]
= 1

1 + n0(b)
nmax

[
e− ze

kBT 	0(r) − 1
] (11)

and then

n0(r) = n0(b)e− ze
kBT 	0(r)

1 + n0(b)
nmax

[
e− ze

kBT 	0(r) − 1
] (12)

so the MPB Eq. (10) can also be expressed by:

d2	0(r)

dr2
+ 2

r

d	0(r)

dr
= − ez

ε0εrs

n0(b)e− ze
kBT 	0(r)

1 + n0(b)
nmax

[
e− ze

kBT 	0(r) − 1
] .

(13)

No closed expression in terms of the equilibrium elec-
tric potential as that in Eq. (13) is attainable for the
Carnahan-Starling approach, due to the complex dependence
on counterion volume fraction of the C-S activity coefficient
[see Eq. (1)]. Whatever the case, global charge neutrality in
the cell is obeyed, so that

4πa2σ = −ez
∫ b

a
n0(r)4πr2 dr

= −4πez γ 0(b)n0(b)
∫ b

a

e− ze
kBT 	0(r)

γ 0(r)
r2 dr (14)

is fulfilled. For the Bikerman case, the latter equation can also
be expressed as:

4πa2σ = −4πez

a2

∫ b

a

n0(b)e− ze
kBT 	0(r)

1 + n0(b)
nmax

[
e− ze

kBT 	0(r) − 1
] r2 dr. (15)

The necessary boundary conditions to numerically solve the
general MPB equation [see Eq. (10)] for the equilibrium elec-
tric potential, or that specific for the Bikerman approach in
Eq. (13) are

d	0

dr
(b) = 0,

d	0

dr
(a) = − σ

εrsε0
, (16)

that can be obtained by applying Gauss theorem to the inner
r = a and outer r = b surfaces of the cell, also imposing its
electroneutrality.

In the recent past, a numerical procedure based on the
generation of an equivalent third-order differential MPB
equation for the equilibrium electric potential, that explic-
itly eliminates the unknown counterion concentration at the
outer surface of the cell n0(b), has been reported [35]. This
procedure avoids tedious iterations of the typical numerical
resolutions of this kind of equations. We previously need to
express the equilibrium counterion concentration and its first
radial derivative in terms of increasing order derivatives of
the equilibrium electric potential. Also, an extra boundary
condition is explicitly needed to solve the third-order MPB
equation, and our choice is that related to the origin for the
equilibrium electric potential, which is set at the outer surface
of the cell:

	0(b) = 0. (17)

The third-order differential equation procedure allows us
to obtain the following MPB equation (see the Appendix for
details):

d3	0(r)

dr3
+ 2

r

d2	0(r)

dr2
− 2

r2

d	0(r)

dr

= − ze

kBT

[
d2	0(r)

dr2
+ 2

r

d	0(r)

dr

]
d	0(r)

dr

(r) (18)

with the 
(r) function for the C-S and Bk approaches being
defined by:


(r)CS = 1 − 4 ϕ0(r) + 6 ϕ0(r)2 − 4 ϕ0(r)3 + ϕ0(r)4

1 + 4 ϕ0(r) + 4 ϕ0(r)2 − 4 ϕ0(r)3 + ϕ0(r)4

(19)


(r)Bk = 1 −
[
ϕ0(r)

p

]
(20)

and the counterion volume fraction in Eqs. (19) and (20) by:

ϕ0(r) = −ε0εrs

ze
Vc

[
d2	0(r)

dr2
+ 2

r

d	0(r)

dr

]
(21)

according to Eqs. (2) and (10). The pointlike case is attained
by making ϕ0(r) → 0 in Eqs. (19) and (20), which yields

(r) → 1. In that limit Eq. (18) becomes the third-order MPB
equation for an ideal salt-free colloid with pointlike counteri-
ons that was already derived in a previous paper [36].

Once the equilibrium electrical potential is obtained, the
equilibrium counterion concentration can be derived from
Poisson equation [see the left side of Eq. (10)] as:

n0(r) = −ε0εrs

ze

[
d2	0(r)

dr2
+ 2

r

d	0(r)

dr

]
. (22)

The predictions concerning equilibrium electrical potential
and counterion concentration will be analyzed in the next
section.

III. SOME NUMERICAL RESULTS FOR THE
EQUILIBRIUM ELECTRIC POTENTIAL
AND COUNTERION CONCENTRATION

We explore below in Fig. 2 some numerical results of the
effect of the counterion size on both (a) the dimensionless
equilibrium electric potential 	0

dim = e	0/(kBT ) and (b) the
molar equilibrium counterion concentration c0 = n0/(103NA)
(NA is Avogadro’s number) in a cell for a salt-free colloid ac-
cording to the pointlike model (PL), Bk (for different packing
factors), and C-S approaches, and Na+ with radius R = 0.358
nm as the released counterion (see Ref. [37] for all ionic data
used in this work). In Fig. 2(a), a less effective screening
effect on the particle surface charge is predicted according to
C-S in comparison with the other approaches, as evidenced
by the enhancement of the equilibrium electric potential at
every distance from the particle surface. Also, the higher the
packing factor in the Bk formalism, the closer its prediction
will be to the PL case. Quite remarkable is the fact that the
C-S prediction doubles that of the PL case in the immediacy of
the particle surface, which will have important consequences
on the electrokinetic properties that will be studied in the next
section.
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FIG. 2. (a) Dimensionless equilibrium electric potential and
(b) molar equilibrium counterion concentration as a function of
the dimensionless radial distance x = r/a from the particle center
according to the PL, Bk [p = 1 (perfect packing), p = 0.74 (face-
centered cubic packing), p = 0.64 (random close packing), p =
0.523 (simple cubic packing)], and C-S approaches with R = 0.358
nm (Na+), a = 25 nm, σ = −40.0 μC/cm2, and φ = 0.2.

It is clearly displayed in Fig. 2(b) that the counterions are
forced to occupy regions farther from the particle because of
their finite size, thus avoiding high ionic concentrations (as
those predicted by the PL case) near the particle surface. A
lower counterion concentration close to the particle surface
is predicted by the C-S analysis than by the other ones. The
larger concentrations of counterions for the C-S case far from
the particle surface, mainly for high particle volume fraction
and high particle surface charges, will have important conse-
quences on the counterion fluxes surrounding the particles and
on the electrophoretic mobility and electrical conductivity.
These effects will also be present with the other finite-size
approaches, but are magnified with the C-S one. Note in
Fig. 2(b) that a counterion concentration plateau is predicted
by the Bk formalism at the shortest distances from the particle

FIG. 3. (a) Dimensionless equilibrium electric potential and
(b) molar equilibrium counterion concentration as a function of the
dimensionless radial distance x = r/a from the particle center ac-
cording to the PL, Bk [p = 0.523 (simple cubic packing)], and C-S
approaches with different counterions: R = 0.282 nm (H+) and R =
0.358 nm (Na+), a = 25 nm, σ = −40.0 μC/cm2, and φ = 0.2.

surface due to the existence of a maximum concentration
allowed for a given packing factor [see Eq. (3)]. Such plateaus
are not predicted by the C-S approach, where the counterion
concentration displays a monotonous decrease with distance
whatever the conditions chosen.

In Fig. 3 we compare the dimensionless equilibrium
electrical potential (a) and the equilibrium counterion concen-
tration (b) for different counterion radii: R = 0.282 nm (H+)
and R = 0.358 nm (Na+) according to PL (pointlike model),
Bk (just for simple cubic packing), and C-S approaches.
Figure 3(a) corresponds to the case of the electric potential.
For brevity, just the simple cubic packing in the Bk study will
be used for the comparison with the C-S predictions. A lower
screening effect on particle surface charge is observed with the
bigger counterion Na+ in comparison with that for the smaller
H+. This effect is shown with both approaches, as evidenced
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by the superior values displayed for the Na+ electric potential
at every distance from the particle surface. In addition, the
effect is larger for the C-S approach than for the Bk one,
as expected. Likewise, note that the trends are closer to the
pointlike predictions for the smaller ions H+.

In Fig. 3(b) we study the equilibrium counterion concentra-
tion as a function of the distance from the particle surface for
the different counterions and conditions used in Fig. 3(a). It
is observed the expected lower Na+ counterion concentration
close to the particle surface in comparison with that for H+
counterions because of the bigger size of the former ones. This
effect is more pronounced according to the C-S approach: A
less compact layer of Na+ counterions is built in the close
region to the particle surface, that extends farther into the
solution than in either the Bk or PL cases, due to the larger
counterion size of Na+ counterions.

IV. ELECTROKINETIC EQUATIONS AND BOUNDARY
CONDITIONS IN DC AND AC ELECTRIC FIELDS

Let us again consider a spherical particle of radius a,
surface charge density σ , mass density ρp and relative per-
mittivity εrp surrounded by a shell of a solution of relative
permittivity εrs with outer radius b = aφ−1/3 (the radius of the
cell), and φ the particle volume fraction of the colloid. An
alternating electric field �E exp(− jωt ) of angular frequency ω

is applied to the system. In the stationary state, the particle
will move with a velocity �Vp exp (− jωt ) where �Vp = ue �E ,
being ue the dynamic electrophoretic mobility (the notation
uedc will refer to the electrophoretic mobility for the dc limit).
A spherical coordinate system (r, θ, ϕ) is fixed at the center of
the particle, and the polar axis (θ = 0) is chosen to be parallel
to the applied electric field.

The fundamental equations connecting the electrical poten-
tial 	(�r, t ), the concentration of counterions n(�r, t ) and their
drift velocity �v(�r, t ), the fluid velocity �u(�r, t ) and the pressure
P(�r, t ) at every point �r in the system and time t are [38–40]:

∇2	(�r, t ) = −ρel(�r, t )

εrsε0
, (23)

ρel(�r, t ) = zen(�r, t ), (24)

ηs∇2�u(�r, t ) − ∇P(�r, t ) − ρel(�r, t ) ∇	(�r, t )

= ρs
∂

∂t
[�u(�r, t ) + �Vp exp (−iωt )], (25)

∇ · �u(�r, t ) = 0, (26)

�v(�r, t ) = �u(�r, t ) − 1

λ
∇μ(�r, t ), (27)

μ(�r, t ) = μ∞ + ze	(�r, t ) + kBT ln[γ (�r, t ) n(�r, t )], (28)

∇ · [n(�r, t ) �v(�r, t )] = −∂n(�r, t )

∂t
. (29)

Equation (23) is Poisson’s equation, where ρel(�r, t ) is the
electric charge density [Eq. (24)]. Equations (25) and (26) are
the Navier-Stokes equations for an incompressible fluid flow
of viscosity ηs and mass density ρs at low Reynolds number in
the presence of an electrical body force. Equation (27) derives

from the Nernst-Planck equation for the flow of the counterion
species, including the gradient of its electrochemical potential
μ(�r, t ) defined in Eq. (28), and λ = kBT/D its drag coeffi-
cient (D is the counterion diffusion coefficient). The γ (�r, t )
in Eq. (28) is the nonequilibrium activity coefficient of the
counterion that will be assumed to explicitly maintain a simi-
lar concentration dependence as either the Carnahan-Starling
activity coefficient [see Eq. (1)] or the Bikerman activity
coefficient [see Eq. (3)]. Finally, Eq. (29) is the continuity
equation for the conservation of the counterion species.

The appropriate boundary conditions are [41]

	p(�r, t ) = 	(�r, t ) at r = a, (30)

εrs∇	(�r, t ) · r̂ − εrp∇	p(�r, t ) · r̂ = −σ/ε0 at r = a, (31)

�u(�r, t ) = 0 at r = a, (32)

�v(�r, t ) · r̂ = 0 at r = a, (33)

�ω(�r, t ) = ∇ × �u(�r, t ) = 0 at r = b, (34)

n(�r, t ) − n0(r) = 0 at r = b, (35)

	(�r, t ) − 	0(r) = − �E · �r exp(− jωt ) at r = b. (36)

We will also make use of an integral condition that will be
determinant for deriving the electrophoretic mobility:

〈ρm�u ′(�r, t )〉 = 1

Vcell

∫
Vcell

ρm�u ′(�r, t ) dV = 0 (37)

with �u ′ being the local velocity with respect to a laboratory
reference system, ρm is the local mass density and Vcell the
volume of the unit cell. In summary, the boundary conditions
imposed at the particle surface are expressed by Eq. (30), that
stands for the continuity of the electric potential, 	p(�r, t ) is
the potential inside the particle; Eq. (31), which represents the
discontinuity of the normal component of the displacement
vector (r̂ is the radial unit vector of the spherical coordinate
system); Eq. (32), that indicates that the fluid is at rest at the
particle surface in the reference system fixed to the particle;
Eq. (33), which stands for the impossibility of counterions to
penetrate the solid particle. In addition, at the outer surface of
the cell the chosen boundary conditions are given by Eq. (34),
which stands for the Kuwabara boundary condition of null
vorticity �ω for the fluid velocity; Eqs. (35) and (36), that are
the Shilov-Zharkikh-Borkovskaya boundary conditions [33]
for the perturbed concentration of counterions and perturbed
electric potential in such surface; and the integral condition
in Eq. (37), that according to O’Brien [42], imposes that
the macroscopic momentum per unit volume of the colloid
is zero, allowing us to obtain the dynamic electrophoretic
mobility. Finally, the equation of motion of the unit cell with
the net force acting on it will permit us to close the problem
[41,43].
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V. LINEAR PERTURBATION SCHEME AND LINEARIZED
ELECTROKINETIC EQUATIONS
AND BOUNDARY CONDITIONS

In this work we are interested in the linear response of
the colloid in the presence of low-strength electric fields, or,
equivalently, low Péclet number, Pe, regime. Recall that low
values of Pe mean that the system remains close to equilibrium
during transport, as it is given by the ratio between advection
and diffusion characteristic times. In the case of particles
undergoing electrophoresis in the presence of an electric field,
the Péclet number can be calculated as [44]:

Pe = a ue E

D
, (38)

where the particle diffussion coefficient D is given by D =
kBT/6πηsa. Using a value of 25 nm for the particle radius, it
is found that Pe ∼ 10−4E . For the typical field strength val-
ues used in electrophoretic determinations (E ∼ 1000–2000
V/m) and the maximum values of the electrophoretic mobility
obtained in this study (∼10 × 10−8 m2 V−1 s−1, see below),
the Péclet number would be in the order of 0.1. Even lower
Péclet numbers are estimated for the low fields used in di-
electric measurements (100 V/m). Regarding the fulfillment
of the low-Péclet condition for increasing electric fields, the
limit would be around 1–2 × 104 V/m, and these fields are
never used in eectrokinetics in aqueous solutions.

In this work we are interested in the linear response of the
colloid in the presence of low-strength electric fields. Thus,
when a low-strength alternating electric field �E exp(− jωt )
is applied to the system, a first-order perturbation scheme
can be applied to the out-of-equilibrium situation. Each
quantity X (�r, t ) is expressed as the summation of its equi-
librium value X 0(r) plus a field-induced linear perturbation
δX (�r) exp (− jωt ). We note that the equilibrium fluid velocity
and ionic drift velocity are taken as zero, so that �u(�r, t ) and
�v(�r, t ) are actually pure field-induced linear perturbations.

The spherical symmetry of the problem permits us to ex-
press [38]:

δ�u(�r) =
[
−2h

r
E cos θ,

1

r

d (rh)

dr
E sin θ, 0

]
,

δμ(�r) = −zeφ(r)E cos θ,

δ	(�r) = −Y (r)E cos θ, (39)

δ	p(�r) = −Yp(r)E cos θ,

δP(�r) = P(r)E cos θ,

in terms of some radial functions h(r), φ(r), Y (r), Yp(r),
and P(r), that contain information about the field-induced
linear perturbations. Also, as it is shown below, it is easy to
demonstrate that

δn(�r) = n0(r) 
(r)

kBT
[δμ(�r) − zeδ	(�r)]

= − zen0(r) 
(r)

kBT
[φ(r) − Y (r)]E cos θ. (40)

The 
(r) function in Eq. (40) is completely known because
it only involves known quantities once the equilibrium MPB
equation is solved [Eqs. (18)–(21), see the Appendix for

details]. For the derivation of Eq. (40), it has been assumed
that out of equilibrium the electrochemical potential of coun-
terions can be expressed in a similar way as in equilibrium [cf.
Eqs. (1), (3), and (28)] except that the argument now becomes
(�r, t ).

From this, it can be demonstrated for linear perturbations
that

γ (�r, t ) n(�r, t )

= γ 0(r) n0(r)

{
1 +

[
δn(�r)

n0(r)
+ δγ (�r)

γ 0(r)

]
exp (− jωt )

}

(41)

and

δμ(�r) = zeδ	 + kBT

[
δn(�r)

n0(r)
+ δγ (�r)

γ 0(r)

]
. (42)

On the other hand and according to the first-order perturbation
procedure, we approximately have

ln[γ (�r, t )] = ln[γ 0(r) + δγ (�r) exp (− jωt )]

= ln

{
γ 0(r)

[
1 + δγ (�r)

γ 0(r)
exp (− jωt )

]}

= ln[γ 0(r)] + ln

[
1 + δγ (�r)

γ 0(r)
exp (− jωt )

]

≈ ln[γ 0(r)] + δγ (�r)

γ 0(r)
exp (− jωt ). (43)

By using again the first-order perturbation scheme with the
γ (�r, t ) function, and taking its natural logarithm we finally
obtain, after equating with Eq. (43), the result:

δγ (�r)

γ 0(r)
=

[
1


(r)
− 1

]
δn(�r)

n0(r)
, (44)

where 
(r) stands for either 
(r)CS or 
(r)Bk, that were
previously defined in Eqs. (19) and (20), respectively. Finally,
substituting Eq. (44) in Eq. (42) we find:

δμ(�r) = zeδ	 + kBT


(r)

[
δn(�r)

n0(r)

]
, (45)

from which Eq. (40) is immediately derived.
The linearized electrokinetic equations of the full set ex-

pressed in Eqs. (24)–(29), are as follows. The linearized
continuity equation for the counterions become

Lφ(r) = −
{

jωλ

kBT
[φ(r) − Y (r)] − e

kBT

(
d	0

dr

)

×
[

z
dφ(r)

dr
− 2λ

er
h(r)

]}

(r), (46)

where L means the mathematical linear differential operator:

L ≡ d2

dr2
+ 2

r

d

dr
− 2

r2
. (47)

The out-of-equilibrium Poisson equation after linearizing
becomes

LY (r) = − z2e2n0(r)

εrsε0kBT
[φ(r) − Y (r)] 
(r) (48)
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and the linearized Navier-Stokes equation turns out to be

L
[
Lh(r) + jωρs

ηs
h(r)

]
= − z2e2n0(r)

kBT ηsr

[
d	0(r)

dr

]
φ(r) 
(r).

(49)

As mentioned, 
(r) → 1 stands for the pointlike case, and
Eqs. (46), (48), and (49) become the already-known linearized
electrokinetic equations for a salt-free colloid with pointlike
counterions that were derived in a previous paper [45]. By
using the perturbation scheme and the symmetry conditions,
the linearized version of the boundary conditions described in
Eq. (30) and Eq. (36) can finally be expressed as:

h(a) = 0, (50)

dh

dr
(a) = 0, (51)

d2h

dr2
(b) + 2

b

dh

dr
(b) − 2

b2
h(b) = 0, (52)

dφ

dr
(a) = 0, (53)

φ(b) = b, (54)

dY

dr
(a) − εrp

εrs

Y (a)

a
= 0, (55)

Y (b) = b. (56)

Also the linearized version of the integral condition in Eq. (37)
allows us to calculate the electrophoretic mobility as [1]:

ue = 2h(b)

b

1[
1 +

(
ρp − ρs

ρs

)
φ

] . (57)

In alternating electric fields, the latter “dynamic or ac” elec-
trophoretic mobility is commonly expressed in terms of its
real and imaginary components: ue = u′

e + ju′′
e .

Finally, the linearized version of the net force acting on the
unit cell closes the problem [1,41,43]:

d3h

dr3
(b) + 1

b

d2h

dr2
(b) − 6

b2

dh

dr
(b) + 6

b3
h(b) − jωρs

ηs

×
[

h(b)

b
− ue

(ρp − ρs)

ρs
φ − dh

dr
(b)

]

= ρ0
el(b) Y (b)

bηs
. (58)

Concerning the complex electrical conductivity K∗(ω) of
the colloid, it is usually derived from the linear relation
between macroscopic electric current density 〈�i(�r, t )〉 and
macroscopic electric field 〈−∇	(�r, t )〉. According to the cell
model approach, a given macroscopic property is expressed
by a volume average of its corresponding local

property in the volume of a cell Vcell:

〈�i(�r, t )〉 = 1

Vcell

∫
Vcell

�i(�r, t ) dV

= K∗(ω)〈−∇	(�r, t )〉

= K∗ 1

Vcell

∫
Vcell

[−∇	(�r, t )] dV, (59)

where the local current density �i(�r, t ) is defined as:

�i(�r, t ) = ρel(�r, t )�v(�r, t ) − ∂

∂t
[εrsε0∇	(�r, t )]. (60)

Details for the calculation of the complex electrical conduc-
tivity K∗(ω) can be found in the Supplementary Information
File of Ref. [1]. Thus, K∗(ω) turns out to be

K∗(ω) =
{

z2e2n0(b)

λ

dφ

dr
(b) − zen0(b)

2h(b)

b

− jωε0εrs
dY

dr
(b)

}
b

Y (b)
. (61)

The complex relative permittivity ε∗
r (ω) = ε′

r (ω) + jε′′
r (ω) is

usually defined from the complex electrical conductivity by
the equation:

K∗(ω) = Kdc − jωε0ε
∗
r (ω), (62)

where Kdc = K∗(ω = 0). Separating real and imaginary parts
we finally obtain:

ε′
r (ω) = − Im[K∗(ω)]

ωε0
, (63)

ε′′
r (ω) = Re[K∗(ω)] − Kdc

ωε0
. (64)

VI. SOME NUMERICAL RESULTS IN DC AND AC
ELECTRIC FIELDS

A. dc results

In Fig. 4 we study the effect of the counterion size on the
dimensionless electrophoretic mobility ueDC dim [Fig. 4(a)],
and the electrical conductivity Kdc [Fig. 4(b)], as a function
of the particle surface charge density at fixed particle volume
fraction and Na+ (radius R = 0.358 nm) as the released coun-
terion. The dimensionless mobility is defined as follows:

ueDC dim = 3ηse

2εrsε0kBT
uedc. (65)

In Fig. 4(a), the electrophoretic mobility-charge density plot
evidences the well-known counterion condensation effect. As
it was previously mentioned, for salt-free colloids a layer
of counterions condenses onto the particle surface once the
surface charge density surpasses a characteristic onset for
the condensation [8,15,46]. Beyond it, the mobility hardly
changes on further increasing the particle surface charge. This
effect is clearly shown in Fig. 4(a) whatever the finite-size
formalism chosen, or even when no size at all is considered
for the counterions (PL case). What is more remarkable in our
study is the fact that the mobility in the high-surface-charge
region is larger for the C-S case in comparison with the
other predictions. This can be related to the lower screening
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FIG. 4. (a) Dimensionless dc electrophoretic mobility and (b) dc
electrical conductivity as a function of particle surface charge den-
sity according to the PL, Bk [p = 1 (perfect packing), p = 0.74
(face-centered cubic packing), p = 0.64 (random close packing),
p = 0.523 (simple cubic packing)], and C-S approaches with R =
0.358 nm (Na+), a = 25 nm, and φ = 0.3.

effect on particle charge due to the shift of the main region
of counterion excess to farther distances from the surface,
in comparison with Bk or PL cases. The final result is a
modification of the counterion fluxes in the cell affecting
relaxation and retardation forces on the particle because of the
changes on the electrical body force acting on the fluid. It
has been shown that the overall effect is a diminution of the
braking effect on the particle motion, leading consequently
to an increase of the electrophoretic mobility at high particle
surface charges [36,47].

In Fig. 4(b) it is observed a larger dc conductivity accord-
ing to C-S at high particle charges than those corresponding
to the other finite-size approaches. Two different trends of the
conductivity are clearly distinguished in the figure. At low
particle surface charges, the conductivity linearly increases
with particle charge, until the onset for the condensation
is attained. A further increase of particle charge only feeds

FIG. 5. (a) Dimensionless dc electrophoretic mobility and (b) dc
electrical conductivity as a function of particle surface charge density
according to the PL, Bk [p = 0.523 (simple cubic packing)], and C-S
approaches with different counterions: R = 0.282 nm (H+) and R =
0.358 nm (Na+), a = 25 nm, and φ = 0.3.

the condensate layer, leaving the diffuse layer virtually un-
changed, provoking a diminution of the growth rate of the
PL conductivity. This classical effect is less pronounced when
counterions are allowed to have finite size. As an example,
a comparison between C-S and PL conductivity predictions
at the highest particle charge displayed in Fig. 4(b) reflects a
30% increase of C-S over the PL prediction. The enhancement
(favored by the more gradual decrease with distance of ion
concentration in the CS model, see Fig. 2) of the counterion
fluxes at the farther regions of the cell where the advective
contributions are more important, leads to an increase of the
corresponding volume average of the local electric current
density in the cell at every particle charge, and therefore, of
the electrical conductivity.

In Fig. 5 we show the surface charge density study of (a)
the dimensionless dc electrophoretic mobility and (b) the dc
electrical conductivity, for two different counterion radii. For
simplicity, just a packing factor in the Bikerman study, the
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simple cubic packing, has been considered in the comparison.
It is first observed the well-known effect of the different coun-
terion diffusion coefficients (a factor of nearly 7 larger in the
case of H+ as compared to Na+) on the electrokinetic behav-
ior of the particles. It must be noted that the electrophoretic
motion is the result of the action of the field on both the
particles and the ions, and the model always considers as
different, ions with different diffusion coefficients even when
they are assumed to be point charges, and consequently no
excluded-volume restrictions are imposed on their concentra-
tion at any point of the system. This manifests in the different
mobility values for H+ and Na+ in the PL case. Further-
more, the predicted mobility is larger for both C-S and Bk
approaches, whichever the ion considered, a consequence of
the fact that the diffuse layer is more populated in counterions.
The difference between PL (H+) and C-S (H+) is, however,
larger than that between PL (Na+) and C-S (Na+).

Concerning Fig. 5(b), a huge difference in electrical con-
ductivity can be observed when changing the species of
counterions regardless of the finite-size approach. The dif-
ference between the diffusion coefficients of both ions is
primarily responsible for the changes shown in conductivity.
The effect on the dc conductivity increase grows in the se-
quence C-S > Bk > PL whatever the counterion species, and
it is obviously more prominent at high particle charges, as it
was previously mentioned concerning Fig. 4(b).

In Fig. 6 we show similar studies as those in Fig. 4 but
as a function of the particle volume fraction at fixed par-
ticle surface charge density. In Fig. 6(a) it is shown that
one of the most outstanding effects of ion size on the elec-
trophoretic mobility is that this quantity may increase with
particle concentration in the high concentration limit. This
effect is classically prohibited (see the PL case) due to both
the expected increase of the hydrodynamic particle-particle
interactions and the diminution of the effective particle charge
due to the reduction of the liquid volume of the cell available
to counterions as the particle volume fraction grows. In this
situation, a greater number of counterions are confined in a
smaller liquid region. Consequently, the mobility decreases,
as clearly shown in Fig. 6(a) for the PL case. But the mobility
behavior changes in the high-volume-fraction region when
counterions are allowed to have finite size. It is observed
an increase of the mobility in spite of the above-mentioned
opposing effects on it, and it is more notorious for the C-S
approach. The region of the cell in which ions are distributed
is wider in the latter model, and this produces an increase of
electro-osmotic fluxes which manifest in larger mobility. This
contribution overcomes the braking due to particle-particle
interactions [36].

As regards the effects of the finite counterion size on the
dc electrical conductivity as a function of particle volume
fraction displayed in Fig. 6(b), one finds a common increas-
ing behavior of the conductivity for all finite-size approaches
including the PL one, the most notable effect being predicted
for C-S conditions. When the counterions are allowed to have
finite size, their concentration decreases at a slower rate as
the separation from particle surface increases in comparison
with the sharp decreasing concentration behavior shown by
the PL case [see Fig. 2(b)]. Thus, local electric conduction in
a less constrained liquid region as we move farther from the

FIG. 6. (a) Dimensionless dc electrophoretic mobility and (b) dc
electrical conductivity as a function of particle volume fraction
according to the PL, Bk [p = 1 (perfect packing), p = 0.74 (face-
centered cubic packing), p = 0.64 (random close packing), p =
0.523 (simple cubic packing)], and C-S approaches with R =
0.358 nm (Na+), a = 25 nm, and σ = −40.0 μC/cm2.

particle surface is favored by the enhancement of the number
of finite-size mobile counterions in it, that leads to the increase
of the overall electric current.

Analogously, in Fig. 7 we show the particle concentration
study of (a) the dimensionless dc electrophoretic mobility and
(b) the dc electrical conductivity for two different counterion
radii for comparison. Again and for simplicity, just the simple
cubic packing factor in the Bikerman study will be considered
in the comparison. As in Fig. 6(a), the effects of the finite
size on increasing the mobility are larger with the C-S ap-
proach, and even more when the more rapid H+ counterions
are chosen, as clearly seen in Fig. 7(a). The mobility increase
with volume fraction predicted by finite ion size models at
high particle concentrations is magnified if we apply C-S
conditions, as also described in Fig. 7(a). Finally, as it was
shown in Fig. 6(b) for the Na+ counterions, a clear increase of
the dc conductivity with volume fraction is also observed with
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FIG. 7. (a) Dimensionless dc electrophoretic mobility and (b) dc
electrical conductivity as a function of particle volume fraction
according to the PL, Bk [p = 0.523 (simple cubic packing)], and
C-S approaches with different counterions: R = 0.282 nm (H+) and
R = 0.358 nm (Na+), a = 25 nm, and σ = −40.0 μC/cm2.

the H+ counterions in Fig. 7(b). Again, the larger diffusion
coefficient of H+ over that of Na+ can justify the results.
As expected, it is the C-S approach which gives the largest
conductivity predictions. It must be pointed out that the effect
of the finite size of counterions leads to huge conductivity
increases whatever the counterion species at high particle
concentrations. In order to understand the differences between
C-S or Bk and PL models, arguments based on the predicted
wider region of ion distribution in the former can again be
used for the present results.

B. ac results

In the following, we will study the effects of the finite
size of the counterions (C-S, Bk, and PL) approaches on
the electrokinetic and dielectric response of a concentrated
salt-free colloid subjected to an alternating electric field, in
terms of the complex electrophoretic mobility (dynamic mo-
bility) of a particle, and the complex relative permittivity of

FIG. 8. (a) Dimensionless real part and (b) dimensionless imag-
inary part of the dynamic electrophoretic mobility as a function
of frequency for salt-free colloids according to the PL, Bk [p =
1 (perfect packing), p = 0.74 (face-centered cubic packing), p =
0.64 (random close packing), p = 0.523 (simple cubic packing)],
and C-S approaches with R = 0.358 nm (Na+), a = 25 nm, σ =
−40.0 μC/cm2, and φ = 0.2.

the colloid. Figures 8 and 9 show the real and imaginary
parts of the dimensionless dynamic electrophoretic mobil-
ity ue,dim = u′

e,dim + ju′′
e,dim [same scaling factor as that in

Eq. (65)], and the real and imaginary parts of the complex rel-
ative permittivity ε∗

r = ε′
r + jε′′

r , respectively, as a function of
frequency assuming p = 1 (perfect packing), p = 0.74 (face-
centered cubic packing), p = 0.64 (random close packing),
and p = 0.523 (simple cubic packing) in the Bk model, and
ionic radius R = 0.358 nm (Na+), particle radius a = 25 nm,
particle surface charge density σ = −40.0 μC/cm2, and par-
ticle volume fraction φ = 0.2. As regards Fig. 8(a), a huge
elevation of the high-frequency mobility is observed whatever
the model used for counterions: Recall that an external electric
field induces an electric dipole because of the rearrange-
ment of the countercharge surrounding the particle (this is
often called Maxwell-Wagner-O’Konski (MWO) polarization
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FIG. 9. (a) Real part and (b) imaginary part of the complex
relative permittivity as a function of frequency for salt-free col-
loids according to the PL, Bk [p = 1 (perfect packing), p = 0.74
(face-centered cubic packing), p = 0.64 (random close packing),
p = 0.523 (simple cubic packing)], and C-S approaches with R =
0.358 nm (Na+), a = 25 nm, σ = −40.0 μC/cm2, and φ = 0.2.

process [39]), reducing the strength of the tangential com-
ponent of the electric field close to the particle and thus
decreasing the mobility. In consequence, if the frequency is
further increased, when the MWO relaxes, then the elec-
trophoretic mobility increases. In the case of interest here,
salt-free colloids, another Maxwell-Wagner process comes
into play for even higher frequencies, and this can be as-
sociated to the polarization of the counterion condensation
layer [13,15,36]. We call this an MWC process, and it can
be linked to a shorter characteristic length (the thickness
of the condensate) than the classical MWO process (its
length is the diffuse layer thickness). In the data shown in
Fig. 8(a) there is no clear distinction between both phe-
nomena (MWO and MWC), but rather a wide relaxation
band extending over more than one decade in frequency.
The mobility increase is predicted to be larger when the
finite size of the counterions is considered. The highest rise is

obtained with the C-S approach (the maximum C-S mobility
doubles the PL one at 1 GHz).

Note, in addition, that the dynamic mobility does not re-
main constant above that point. It so happens that at very large
frequencies the mobility tends to decrease when the so-called
inertia region is reached, as in this frequency region particles
and fluid are unable to follow the rapid oscillations of the
electric field. In summary, what we observe in Fig. 8(a) is a
global increase of the mobility as frequency increases due to
the relaxation of both MW processes (very close in frequency
in this example, as will be confirmed by dielectric dispersion
data, see below), and the final decrease because of the inertia
at the highest frequencies explored.

The imaginary part of the dimensionless electrophoretic
mobility is plotted as a function of frequency in Fig. 8(b) for
the same cases considered in Fig. 8(a). This representation
of the imaginary part of the mobility versus frequency is
very useful in identifying the different relaxation frequencies
[39,45]: A maximum in such property along the frequency
spectrum (a minimum in the figure, because the y axis is
inverted) marks the relaxation frequency of a single MW
relaxation process. The relaxation frequency corresponds also
to the inflection point in the real part of the mobility-frequency
curve in Fig. 8(a). In our case we have two MW relaxation
processes, MWO and MWC, that are very close in frequency,
as mentioned, showing a global minimum. A shift can be
observed in the MW relaxation frequency, which increases
when the finite ion volume is taken into consideration. This
behavior will be more clearly observed in the permittivity, and
it will be discussed below. On the other hand, the frequency
of the maximum observed at higher frequencies (recall that
it is a high-frequency minimum in reality) indicates the fre-
quency of the inertial relaxation of the particle motion. In
Fig. 9(a) the real part of the complex relative permittivity ε′

r
as a function of frequency of the electric field is displayed.
There is an increase of ε′

r above pointlike descriptions along
the whole frequency spectrum when ion-size effects are taken
into account. The effect of increasing ε′

r is larger for the C-S
approach in comparison with that of Bikerman whatever the
packing factor chosen. It has been argued that larger induced
electric dipole moments are formed when counterions have
finite size because they cannot accumulate near the particle
surface at such high concentrations as in the PL case because
of the excluded counterion volume. This leads to larger polar-
izable structures (charge particle + countercharge in solution)
and a higher dielectric response. Note that the two MW pro-
cesses above mentioned are to some extent distinguishable in
the dielectric spectra, in the form of a shoulder in the curves,
confirming that the two frequencies are quite close to each
other. Interestingly, the two processes are not observable as
separate ones in the case of mobility spectra (Fig. 8), demon-
strating the great sensitivity of dielectric dispersion to the
dynamic processes of the double layer.

This is confirmed by the imaginary part of the complex
relative permittivity shown in Fig. 9(b). In this figure the
two MW relaxation processes (peaks of ε′′

r in this frequency
spectrum) can reasonably be appreciated. Also, there is a large
response when counterions are allowed to have finite size,
a bit more relevant for the C-S formalism. As it has been
reported [40], there is also observed a frequency shift to larger
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frequencies of the MWC relaxation frequency when finite-size
predictions are compared to the PL one, clearly visible in
Fig. 9(b). This frequency shift has been related to the increase
of both the electrical conductivity, already pointed out in
previous figures, and the width of the condensate layer for
finite-size ions [40]. In fact, the MWC relaxation frequency
ωMWC is approximately given, in the case of Bk models
by [36]:

ωMWC = 2z2e2nmaxδ(1 − φ)

ε0εrsaλ(2 + φ)
, (66)

which is proportional to the product nmaxδ, being δ the thick-
ness of the condensate. For C-S calculations nmax is not well
defined; we will estimate it as the counterion concentration
close to the particle surface. As it can be deduced from Sec. II,
nmax decreases and the condensate thickness δ increases with
the diminution of the packing factor in the Bk study, although
the product nmaxδ may augment [36]. This could occur if de-
spite the decrease in nmax with the packing factor, the width of
the condensate δ grew at a higher rate [40]. This effect can ex-
plain the frequency shift in Fig. 9(b). Note that the counterion
concentration in the very close region to the particle surface
according to C-S is always smaller than those predicted by
the Bk approach, whereas the width of the condensate is
clearly larger for the C-S case [see Figs. 2(b) and 3(b)]. This
explains the apparent larger shift to higher frequencies of the
C-S imaginary part of the complex permittivity observed in
Fig. 9(b), in accordance with Eq. (66).

Analogously, in Figs. 10 and 11 similar studies as those
shown in Figs. 8 and 9 can be found, but for two different
counterion radii. Again and for brevity, only the Bikerman
study with the simple cubic packing factor has been consid-
ered in the comparison. In Figs. 10(a) and 10(b) we compare
the finite-size effects, according to the different models, on
the dimensionless mobility. It is found that, similarly to our
findings of dc mobility, the real part of the dynamic mobility
is remarkably larger when Na+ is selected as counterion, in
comparison to the H+ case, whatever the finite-size formalism
chosen, although it is always larger with the C-S one. Like-
wise, there is also a clear shift of the mobility peak to larger
frequencies for the H+ counterions, due primarily to their
larger diffusion coefficient (smaller drag coefficient). Note,
however, that no finite counterion-size effects are necessary
for such shift to take place, as it is also observed for the PL
case [40,41]. In addition, and for each ionic species, it is ob-
served another (smaller) frequency shift of the mobility peaks
to larger frequencies when finite-size effects are allowed for.
This can be related to the relaxation frequency shift already
pointed out concerning the imaginary part of the complex
relative permittivity for the Na+ counterion case in Fig. 9(b).
The same arguments can be extended to the H+ case. Once
more, the consideration of finite-size effects leads to very
important changes in the predicted mobility in comparison
with the standard pointlike predictions. The imaginary part of
the mobility displayed in Fig. 10(b) confirms these arguments:
The larger factor nmaxδ for the C-S approach explains the
relaxation frequency differences between PL and finite-size
models [see also the analysis concerning the MW relaxation
processes in Fig. 9(b)]. As regards the dielectric response

FIG. 10. (a) Dimensionless real part and (b) dimensionless imag-
inary part of the dynamic electrophoretic mobility as a function of
frequency for salt-free colloids according to the PL, Bk [p = 0.523
(simple cubic packing)], and C-S approaches with different coun-
terions: R = 0.282 nm (H+) and R = 0.358 nm (Na+), a = 25 nm,
σ = −40.0 μC/cm2, and φ = 0.2.

of the salt-free colloid for Na+ and H+, the real part of the
relative permittivity as a function of frequency is compared in
Fig. 11(a) for these two counterions following the PL, Bk, and
C-S approaches. An increase in the low frequency response is
observed for the Na+ case over that for the H+ one, a con-
sequence of the larger polarizable structures in Na+, already
mentioned. Also, a clear frequency shift of the global MW
relaxation response to larger frequencies is found for the H+
case due to its above mentioned larger diffusion coefficient.

These results are confirmed by the behavior of the imag-
inary component of the relative permittivity, displayed in
Fig. 11(b). Here the frequencies of the MW relaxation pro-
cesses are more clearly distinguished, specifically the change
of the frequency of the global relaxation peak to larger values
for the H+ case [40,41]. A remarkable finding is that the relax-
ation frequency in presence of Na+ is higher when finite-size
ions are considered. In contrast, in line with our analysis of
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FIG. 11. (a) Real part and (b) imaginary part of the complex
relative permittivity as a function of frequency for salt-free colloids
according to the PL, Bk [p = 0.523 (simple cubic packing)], and C-S
approaches with different counterions: R = 0.282 nm (H+) and R =
0.358 nm (Na+), a = 25 nm, σ = −40.0 μC/cm2, and φ = 0.2.

Fig. 9(b), it can be concluded that the product nmaxδ seems to
be nearly constant for the H+ counterion species, whatever the
finite-size approach chosen [Fig. 11(b)]. In fact, as shown in
Fig. 3, the profile of H+ concentration is closer to the pointlike
predictions, because of the small size of this ion.

VII. CONCLUSIONS

Salt-free colloids have gained increasing interest for both
experimentalists and theoreticians [6,7,38]. One of its main
characteristics is that for highly charged colloids a layer of
counterions condenses onto the surface of the particles, a
phenomenon that has an important influence in the behavior
of these systems [8,13]. As in ordinary colloids, when the
concentration of ions in solution is high (i.e., the surface
charge of the particles and/or their concentration is large)
the simplest model of pointlike ions must be substituted by
approaches considering that the volume of ions is finite. In the

present work, the objective is the analysis of the electrokinetic
behavior in ac fields of salt-free colloidal systems in con-
ditions where ion-size effects are expected to be important.
Two models are used, namely the C-S and Bikerman ones
(the latter for different packing options) [2–4]. The results
have shown that counterion finite-size effects cannot be ne-
glected for a rigorous calculation of most of the electrokinetic
and dielectric properties in highly charged and concentrated
colloids. Thus, the electrophoretic mobility and the electri-
cal conductivity increase very remarkably when finite ions
are considered. The less effective screening of the particle
charge in this case may help in explaining this behavior.
Also, the changes in the counterion fluxes around the particles
as the ions are expelled to farther regions from the particle
surface because of their excluded volume, are decisive for
understanding the observed responses [36]. These features are
confirmed by explicit calculations based on the assumption
of two widely different counterions, H+ and Na+. Results on
ac electrokinetics are particularized for dynamic mobility and
dielectric dispersion spectra. In the former case, we observe
a maximum in its real part, associated to the relaxation of
two Maxwell-Wagner processes related to the diffuse (MWO)
and condensed (MWC) layers, followed by a final decrease
because of the inertia at the highest frequencies explored. The
consideration of finite size of the ions leads to a shift to larger
frequencies of the MWC relaxation frequency. This is justified
by the dependence of that frequency on the product nmax · δ,
with nmax the maximum counterion concentration allowed by
size and δ the thickness of the condensate [36]. The results are
confirmed by dielectric dispersion, where the MW relaxations
are well observable and better separated than in dynamic
mobility data. As a final conclusion, the finite ion size ef-
fect will surely have important effects on the electrokinetic
properties of colloids for many applications with nanofluidic
devices [48]. For such situations, it has been reported that
local changes in the counterion diffusion coefficient, solution
permittivity and solution viscosity near highly charged inter-
faces, will give rise to important changes in the electrokinetic
and dielectric response of the colloid [49]. These aspects will
be addressed in a future work.
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APPENDIX: SOLUTION OF THE EQUILIBRIUM
MODIFIED POISSON-BOLTZMANN EQUATION

By differentiating Eq. (9) we obtain:

dn0(r)

dr
= − ze

kBT
n0(r)

d	0(r)

dr
− n0(r)

d ln γ 0(r)

dr
(A1)

and similarly for the natural logarithm of γ 0(r) in Eq. (1) or
Eq. (3), we obtain:

n0(r)
d ln γ 0(r)

dr
= ϒ(r)

dn0(r)

dr
, (A2)
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the ϒ(r) function for the C-S case being defined as:

ϒ(r)CS = 8 ϕ0(r) − 2 ϕ0(r)2

[1 − ϕ0(r)]4 (A3)

and for the Bikerman case as:

ϒ(r)Bk =
[ n0(r)

nmax

]
1 − [ n0(r)

nmax

] = ϕ0(r)

p
[
1 − ϕ0(r)

p

] . (A4)

By substituting the latter equations in the right part of Eq. (A1)
we get:

dn0(r)

dr
[1 + ϒ(r)] = − ze

kBT
n0(r)

d	0(r)

dr
(A5)

and with the help of Eq. (22) and its first radial derivative:

dn0(r)

dr
= −ε0εrs

ze

[
d3	0(r)

dr3
+ 2

r

d2	0(r)

dr2
− 2

r2

d	0(r)

dr

]
,

(A6)

Eq. (A5) becomes

d3	0(r)

dr3
+ 2

r

d2	0(r)

dr2
− 2

r2

d	0(r)

dr

= − ze

kBT

[
d2	0(r)

dr2
+ 2

r

d	0(r)

dr

]
d	0(r)

dr

(r) (A7)

and the 
(r) function for the C-S and Bk cases are given by:


(r)CS = 1

1 + ϒ(r)CS

= 1 − 4 ϕ0(r) + 6 ϕ0(r)2 − 4 ϕ0(r)3 + ϕ0(r)4

1 + 4 ϕ0(r) + 4 ϕ0(r)2 − 4 ϕ0(r)3 + ϕ0(r)4
,

(A8)


(r)Bk = 1

1 + ϒ(r)Bk

= 1 −
[

n0(r)

nmax

]
= 1 −

[
ϕ0(r)

p

]
= 1

γ 0
Bk(r)

. (A9)

According to Eqs. (2) and (22), the counterion volume
fraction can be expressed as a function of the equilibrium
electrical potential as:

ϕ0(r) = −ε0εrs

ze
Vc

[
d2	0(r)

dr2
+ 2

r

d	0(r)

dr

]
. (A10)

The nonlinear third-order differential equation expressed by
Eq. (A7) with the additional Eqs. (A8)–(A10) and the three
boundary conditions shown in Eqs. (16) and (17) can be
numerically solved in a single step to give the equilibrium
electric potential 	0(r). Then, the equilibrium counterion
concentration n0(r) can be derived by using Eq. (22). Its value
on the outer surface of the cell n0(b), displayed in Eq. (10), is
immediately obtained by particularizing Eq. (22) at r = b:

n0(b) = −ε0εrs

ze

d2	0(r)

dr2

∣∣∣
r=b

. (A11)

The pointlike case is easily recovered by making ϕ0(r) →
0 in Eqs. (A8) and (A9), yielding 
(r) → 1 and leading
Eq. (A7) to become

d3	0(r)

dr3
+ 2

r

d2	0(r)

dr2
− 2

r2

d	0(r)

dr

= − ze

kBT

[
d2	0(r)

dr2
+ 2

r

d	0(r)

dr

]
d	0(r)

dr
. (A12)

a result that was already derived in a previous paper [36] for
an ideal salt-free colloid with pointlike released counterions.
The derivation of the 
(r) function has allowed us to gen-
eralize in a simple way the Poisson-Boltzmann equation for
the equilibrium electrical potential in salt-free colloids with
pointlike counterions [compare Eq. (A7) and Eq. (A12)] to
account for their finite size. Also, the way this 
(r) function
has been defined has helped us to easily generalize the set of
electrokinetic equations for salt-free colloids in constant or
alternating electric fields, as it encompasses the effects of the
counterion finite size. These studies have been addressed in
this work.
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