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Self-organized swimming with odd elasticity
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We theoretically investigate self-oscillating waves of an active material, which were recently introduced as a
nonsymmetric part of the elastic moduli, termed odd elasticity. Using Purcell’s three-link swimmer model, we
reveal that an odd-elastic filament at low Reynolds number can swim in a self-organized manner and that the
time-periodic dynamics are characterized by a stable limit cycle generated by elastohydrodynamic interactions.
Also, we consider a noisy shape gait and derive a swimming formula for a general elastic material in the Stokes
regime with its elasticity modulus being represented by a nonsymmetric matrix, demonstrating that the odd
elasticity produces biased net locomotion from random noise.
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I. INTRODUCTION

Swimming is a physical outcome of fluid-structure interac-
tions driven by the internal activity of a material. In particular,
time-periodic wave-like beating is ubiquitous both in biolog-
ical and artificial swimmers, as seen from elastic filaments
of microorganisms, spermatozoa, and microactuators [1–5] to
undulatory motions of aquatic animals and fish-like robots
with oscillatory fins [6–9]. Recently, Scheibner et al. [10]
proposed a term, odd elasticity, which refers to antisymmet-
ric components of material elastic moduli. This breaks the
Maxwell-Betti reciprocity and can cause self-oscillation. The
odd elasticity may emerge from non-energy-conserving mi-
croscopic interactions in an active material and has gathered
intensive attention in the field of nonequilibrium and active
matter physics [11–16].

To achieve swimming at the microscale, it is well known as
the scallop theorem that one needs to deform in a nonrecipro-
cal manner in the fluid [17]. This nonreciprocal deformation
is theoretically formulated by the gauge field theory and rep-
resented as a closed loop in shape space with nonzero area
[18].

Moreover, microscopic propulsion is often accompanied
by fluctuations from the internal motors or environmental
stochasticity. Recently, Yasuda et al. [19] analyzed a three-
sphere swimmer linked by two odd-elastic arms under thermal
fluctuations and showed that the swimmer can exhibit di-
rected locomotion from random noise as a statistical average.
This result implies that nonreciprocal deformation for mi-
croswimming may be induced by the odd elasticity that can
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cause nonreciprocity of elastic response. Note that these two
reciprocities are conceptually distinct: one is a geometric
property of a path, the other classifies the constitutive proper-
ties of a mechanical system. The sphere model was, however,
restricted to one-dimensional motion and was not able to swim
in a time-periodic beating fashion.

Therefore, the aim of this paper is to extend the previous
swimming theory of odd-elastic material by Yasuda et al.
[19] to planar or higher-dimensional motion as well as to an
arbitrary number of dimensions of shape space, and determine
whether such a material can self-propel. We also seek univer-
sal features for the dynamics of a generalized linear elastic
material at low Reynolds number, assuming the odd-elastic
modulus as a simple coarse-grained representation of material
activity, although this representation is not claimed to model
or explain biological microswimming by odd elasticity. The
shape gait of an active material is, in general, given by the
solution to an elastohydrodynamics coupling problem, which
is nonlocal and nonlinear due to the material geometry even
at low Reynolds number. Thus, as a simple but canonical
model, we will first consider a coarse-grained description of
a swimming filament known as Purcell’s three-link swimmer
[17] [Fig. 1(a)]. As a minimal model of microswimming with
two degrees of freedom, it has been studied to understand
various aspects of biological swimmers and artificial robots,
such as efficiency, stability, and control [20–26].

Many models of elastohydrodynamic swimming require
programed internal forces that drive the material as an in-
put function [27–30], or further modeling on the internal
structure, for example, the flagellar structure and regulation
mechanism of molecular motors [31–34]. These models are,
therefore, problem-specific in general. In contrast, we will
see that the odd-elasticity description leads to autonomous
elastohydrodynamics equations.

In the following, we will use the Purcell swimmer model
to demonstrate that an odd-elastic filament can swim in a
self-organized manner, by which we mean pattern formation
in the system far from thermal equilibrium without any pro-
gramed driving forces. We will then proceed to consider an
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(a)

FIG. 1. (a) Schematic of Purcell’s three-link swimmer. (b) An
example trajectory of each end of the three rods in self-organized
swimming (in the −x direction) for a pusher swimmer with γ > γc.
(c) Rod shape of the same swimmer as (b) superimposed with its
left-most rod end being translated to the origin. The colors indicate
the time increment over one beat period.

odd-elastic material under fluctuations, motivated by bio-
logical and artificial swimmers, including sperm, Chlamy-
domonas, and Janus particles [35–38] whose shape gaits are
characterized by a noisy limit cycle. Finally, we will describe
a general odd-elastic material with an arbitrary number of
degrees of freedom, show that the odd elasticity produces
net locomotion from random noise and derive a swimming
formula that provides ensemble-averaged swimming velocity
as a coupling of the swimmer gauge field and probability
current in the shape space.

II. PURCELL’S SWIMMER WITH ODD ELASTICITY

The three-link model swimmer, known as Purcell’s swim-
mer [17], consists of three slender rods of lengths �1, �2, and
�3 connected by two hinges, as shown in Fig. 1(a), which also
introduces lengthscale L = �1 + �2 + �3. We denote the posi-
tion of the end of the first rod as (x, y) and the angle from the x
axis as θ . The relative angles at the two hinges are denoted as
α1 and α2. We assume the hinges are elastic [25] and linearly
related to the relative angles so that the ez component of the
elastic torque is given by Tα = Kαβαβ , with Greek indices de-
noting the degrees of freedom for the shape, as α, β = {1, 2}.
This linear elastic hinge at the linkage may be regarded as
a coarse-grained representation of the Euler-Bernoulli consti-
tutive relation [39–41]. To ensure that the object relaxes to
an equilibrium configuration in the absence of odd elasticity,
we assume the matrix Kαβ to be positive-definite. Moreover,
following previous studies [10,19], we consider a simple form
of the elasticity matrix as

Kαβ = κeδαβ + κoεαβ, (1)

where κe and κo are the even and odd-elastic moduli, δαβ is
the Kronecker delta, and εαβ is the two-dimensional antisym-
metric tensor. We will henceforth write the ratio of the two
elastic moduli as γ = κo/κe. Note that the κe is assumed to be
positive, but κo may be an arbitrary real number.

To show the equations of swimming dynamics, which obey
the steady Stokes equations of low-Reynolds-number flow,
we introduce the body-fixed coordinates {ex0, ey0, ez0} whose
origin is located at the end of the first rod. Using the resis-
tive force theory and force- and torque-free condition for the
swimmer, its dynamics are given in the body-fixed coordinates

by

−M(α1, α2)ż = Lz, (2)

where z = (x0, y0, θ, α1, α2)T and the dot represents the time
derivative. The 5 × 5 matrix M can be taken as being sym-
metric, positive-definite, and dependent only on the shape
parameters α1 and α2, with a further description of its proper-
ties being provided in Appendix A. We hereafter use Roman
indices for the rigid motion in the physical space such as
i, j = {1, 2, 3} to distinguish them from the Greek indices
for the shape space. The matrix L includes the elasticity
matrix such that L3+α,3+β = Kαβ and the other components
of L are zero. From the matrix structure of the dynamics (2),
the solution is formally obtained by inverting the matrix M.
Letting N = M−1, we can decompose the equations into those
for rigid motion and shape deformation, with z0 = (x0, y0, θ )T

and α = (α1, α2)T, as

ż0 = −PKα and α̇ = −QKα, (3)

where Piα = Ni,3+α and Qαβ = N3+α,3+β . The second equa-
tion of (3) is closed with respect to the shape angles, whereas
the first equation has an alternative form, ż0 = PQ−1α̇ that is
not explicitly dependent on the elastic matrix and identical to
the kinematic problem.

III. SELF-ORGANIZED SWIMMING AS A STABLE
LIMIT CYCLE

Numerical explorations revealed that the Purcell swimmer
can swim in a self-organized manner. Such a periodic loco-
motion only occurs when the swimmer shape has fore-aft
asymmetry, i.e., l1 �= l3. In Fig. 1(b), sample trajectories of
the ends of the rods are shown with stable periodic shape gait
[Fig. 1(c)]. With the rod lengths �1 > �3 ∼ �2 and γ > 0, the
object can swim towards the left end (negative ex axis) as the
beating wave travels down towards the right [Fig. 1(b)]. The
right-most rod vigorously oscillates like a pusher swimmer,
such as sperm cells. With the reversed sign of odd elasticity
(γ < 0), the swimming direction is also reversed with its
oscillatory part being ahead of the longest rod, like a puller
swimmer, such as Leishmania [42]. Of note, the pusher or
puller behavior of the swimmer, as well as the swimming
direction, depends not only on the sign of γ , but also on the
swimmer’s geometry. In the puller case, we did not observe
stable swimming, [see Fig. 2(b)], in the sense that the swim-
mer either exhibits unstable trajectories with the α angles
amplifying until the links overlap, or eventually reaches the
zero equilibrium. Here, the decay to this equilibrium becomes
notably slow, scaling roughly with O(1/

√
t ) as |γ | tends to

infinity.
We now proceed to a bifurcation analysis of the elas-

tohydrodynamic dynamical system. Around the equilibrium
straight configuration, the dynamics in the shape space (3) is
linearized, with Q(α = 0) denoted by Q0 and � = Q0K, to

α̇ = −�α. (4)

Noting that the matrix Q0 is symmetric, we obtain the eigen-
values of � as

λ = κe

2
[TrQ0 ±

√
(TrQ0)2 − 4(1 + γ 2) detQ0]. (5)
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(a) (b)

FIG. 2. Bifurcation diagrams for (a) a pusher swimmer and (b) a
puller swimmer with sample trajectories in the shape space (α1, α2)
shown in insets. The diameter of the cycle orbit, dcycle, is plotted as
a function of |γ |. The equilibrium configuration is always linearly
stable for a finite |γ | for both swimmers. The pusher swimmer
dynamics exhibits stable (blue) and unstable (red) limit cycles above
a critical value of γ , at which a semistable limit cycle bifurcation
occurs. For the puller swimmer, in contrast, the limit cycle is always
unstable. The diameters of the stable cycle in case (a) and of the
unstable cycle in case (b) both converge to the same value d∞ as
|γ | → ∞ due to time-reversal symmetry. Initial configurations are
shown by a green dot in each inset.

By virtue of the positive-definiteness of the matrix Q0, the
real part of the eigenvalues are found to be all positive, which
therefore implies that the dynamics around the straight equi-
librium configuration is always linearly stable [Figs. 2(a) and
2(b)].

We further analyzed the bifurcation structure and found
that the system exhibits semi-stable limit cycle bifurcation at
a certain γ = γc when the swimmer self-propels as a pusher
[Fig. 2(a)]. In the phase space, the outer stable limit cycle
contains an unstable limit cycle inside, while the origin of the
phase space is a stable fixed point [Fig. 3(a)]. Since a pusher-

FIG. 3. (a) Trajectory in the shape space of a self-organized
swimmer with noise. The time evolution is shown as a color gra-
dation. A pusher swimmer with γ < 0 was initially at rest with a
straight configuration, but once the shape exceeds the inner unstable
limit cycle (red broken ellipse), it converges to the outer stable limit
(blue dashed ellipse), yielding self-organized periodic swimming.
(b) Illustration of the steady probability distribution shown by color
contour and the probabilistic current vector in the shape space de-
picted by arrows.

type stroke generates extensional flow along the swimming
direction, the rod receives contractile force from the fluid as its
reaction. When γ exceeds the critical value γc, this contractile
force can balance the elastic relaxation. This morphological
transition generated by the contractile forces is similar to
flagellar buckling dynamics [40,43], but here the bifurcation
occurs in a self-organized manner. We note, as shown later in
this paper [Fig. 3(a)], that the stable limit cycle is reachable
from straight configuration under a finite amount of noise,
even though the straight configuration is linearly stable. For
a puller swimmer, in contrast, the self-induced oscillation acts
as an extensile force on the rod as a reaction to the fluid.
The increase of γ , therefore, accelerates the elastic relaxation
and the stable limit cycle for periodic swimming cannot be
realized [Fig. 2(b)]. These bifurcation structures are robustly
observed in a large range of parameters. Further discussions
are provided in Appendix B. When |γ | → ∞, the time-
reversal symmetry of the Stokes equations implies that the
dynamics in the shape space are invariant under the change of
variables (t, �1, �3, α1, α2) �→ (−t, �3, �1,−α2,−α1). Thus,
at this limit, the stability of a pusher-type rod is opposite
from that of a corresponding puller-type rod [44]. Hence,
the swimmer with fore-aft symmetric geometry, i.e., l1 = l3,
follows a closed trajectory in the shape space at this limit,
while the dynamics only possess a stable fixed point at the
straight configuration at a finite γ .

As discussed above, the stable limit cycle is only enabled
by the broken fore-aft symmetry of the system. Of particular
note, this can also be achieved by an asymmetric boundary
condition such as one end of the rod being fixed [we enforce
(x, y) = (0, 0)], instead of a geometric asymmetry (�1 �= �3).
Because of this fore-aft symmetry break induced by the fixed
left end, the semi-stable limit cycle bifurcation occurs at a
certain level of γ > 0, as in the free-swimming pusher case,
even if �1 = �3, and both in clamped (θ fixed to 0) and hinged
(unconstrained θ ) boundary conditions. In the puller case
(�1 = �3, γ < 0), no stable limit cycle is observed: just like
the free swimmer, the deformation pattern then either relaxes
to straight equilibrium or exhibit unstable behavior.

IV. NOISY SWIMMING AROUND
AN EQUILIBRIUM SHAPE

Motivated by observations of biological and artificial
swimmers [35–38], we consider swimming under an active
Gaussian fluctuation inside the swimmer, and the dynamics
around an equilibrium shape are then given by

α̇ = −�α + ξ(t ), (6)

where � is positive-definite around the equilibrium; the Gaus-
sian noise satisfies 〈ξα〉 = 0; and 〈ξα (t )ξβ (t ′)〉 = 2Dαβδ(t −
t ′), where the brackets indicate ensemble average and the
diffusion matrix D is symmetric and positive-definite.

Now we rewrite the swimming dynamics using the gauge
field formulation [18]. The two-dimensional rotation and lin-
ear transformation form a two-dimensional Euclidean group
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[45], and we represent the rigid motion and its generator as

R =
⎛
⎝ cos θ sin θ x

− sin θ cos θ y
0 0 1

⎞
⎠ and A =

⎛
⎝ 0 θ̇ ẋ0

−θ̇ 0 ẏ0

0 0 0

⎞
⎠,

(7)

which satisfy Ṙ = RA. The shape in the reference frame
S (t ) is obtained from a rotation of that in the body-fixed
frame S0(t ) because S (t ) = R(t )S0(t ). Further, we rewrite
A = Aαα̇α , where the matrix Aα (α) is only dependent on the
shape parameters α and corresponds to the gauge potential
associated with αα . Time integration of (7) yields the path-
ordering expression of the swimming dynamics. With a small
deformation, α1, α2 � 1, let us expand the gauge potential
around α = 0 up to the quadratic term. If the deformation
is periodic in time, the average swimming velocity is written
[18,21] as

A = 1
2Fαβ ααα̇β, (8)

where a bar indicates time average and Fαβ = ∂αAβ −
∂βAα − [Aα,Aβ] is called the curvature tensor of the gauge
field or field strength. We use the notation ∂β := ∂/∂αβ and
the brackets denote the commutator, [Aα,Aβ] := AαAβ −
AβAα . The gauge field and its strength can also be represented
as a third-rank tensor [Aα]i j = Ai jα and a fourth-order tensor
[Fαβ]i j = Fi jαβ , respectively.

We then seek to find the average swimming velocity 〈A〉,
considering the probability distribution function in the shape
space p(α, t ) that obeys the Fokker-Planck equation associ-
ated with (6), i.e., ∂t p + ∂α jα = 0 with ∂t = ∂/∂t and the
probability flux jα , given by jα = −
αβ (αβ p) − Dαβ (∂β p).
When the distribution is steady, the probability flux draws
closed loops [Fig. 3(d)], for which we can expect that net
locomotion will be produced in an averaged manner [19].
Plugging (6) into (8), the average gauge field becomes 〈A〉 =
Fαβ〈−
βγ αγ αα + ααξβ〉. We then use the relation 〈ααξβ〉 =
Dαβ and introduce the shape covariance matrix Cαβ = 〈αααβ〉,
which is the solution to the Lyapunov equation [46]

�C + C�T = 2D, (9)

with superscript “T” denoting transpose of the matrix. Finally,
we can derive the average swimming velocity around the
equilibrium by introducing a matrix J = 1

2 (D − �C) in the
form

〈A〉 = Tr(FJ), (10)

where the trace is taken over the shape components, i.e.,
〈Ai j〉 = Fi jαβJβα . Further derivations and physical interpre-
tations are provided in Appendix C. This formula (10) is
a generalization of the deterministic swimming dynamics
(8), and the matrix J can be physically interpreted as the
areal velocity of the probabilistic current in the shape space.
By the definition of J, its transpose becomes 2JT = C�T =
C(C−1D − �T), and from the Lyapunov equation (9), it
follows that JT = −J, from which we conclude that J is
antisymmetric.

V. PURCELL’S SWIMMER UNDER SHAPE FLUCTUATION

With straightforward calculations, we can obtain the gauge
field strength around the equilibrium and find that only the
components F1312 = −F1321 are nonzero and the other com-
ponents are zero. Thus, only swimming along the x axis is
possible, if a time-periodic deformation is considered. Let us
denote the nonzero components as F13αβ = Fεαβ , which is
given by

F = −�1�2�3
(
�2

1 + �2
3 + �1�2 + �2�3 + �3�1

)
L−4. (11)

This form is in agreement with previous studies of Pur-
cell’s swimmer [20,47]. Because the shape space is two-
dimensional, the shape covariance, which is the solution to
the Lyapunov equation [46], may be solved as

C = 1

Tr�
[D + (det�)�−1D(�T)−1]. (12)

We need to give the specific form of D for the calculation of
the matrix J. For the fluctuations in thermal equilibrium, the
diffusion matrix is given by the fluctuation dissipation the-
orem D = kBT Q0 [48], where kB is the Boltzmann constant
and T is the system temperature. In contrast, the fluctuations
in the active filament considered here are the active fluctua-
tions generated by the internal activity. However, the universal
properties that identify the active fluctuation have not been
established. Here, we employ the effective temperature T eff

[49–52] to determine the diffusion matrix of the active fluctu-
ation, as a simple model. In fact, the effective temperature for
a sperm cell is observed to be larger than the room temperature
by an order of magnitude [35]. With the effective temperature,
the diffusion matrix becomes D = kBT effQ0, which can be
obtained by replacing T with T eff in the fluctuation dissipation
theorem.

Because J is antisymmetric, when written as Jαβ = Jεαβ ,
we have

J = − 3L6γ

2τn

[(
�3

1 + �3
3

)
�3

2 + 3�1�3
(
�2

1 + �2
3

)
�2

2

+ 3�2
1�

2
3(�1 + �3)�2 + 2�3

1�
3
3

]−1
, (13)

where we introduce viscosity drag coefficient η‖ =
2πμ/ ln(2L/b), with μ and b being the medium viscosity
constant and the radius of the rod, respectively. We also
assumed that the drag ratio between the perpendicular
and parallel components is anisotropic, η⊥ = 2η‖, and
introduced a noise relaxation timescale, τn = η‖L3/kBT eff .
The final expression of the average swimming velocity only
possesses an ex component, denoted by Vx, and we obtain
Vx = −2FJ , which is linearly proportional to γ and the noise
strength kBT eff . In the case of three rods with equal lengths
�1 = �2 = �3 = �, the results are simply given by

F = −5�

81
, J = − 81γ

16τn
, and Vx = −5γ �

8τn
. (14)

The angle diffusion of the swimmer is obtained by calcu-
lating the squared angle displacement 〈θ2〉. We can estimate
the angle θ as

θ =
∫ t

0
A12αα̇α dt ′ = A12ααα + higher-order terms
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for a small deformation and it then follows that 〈θ2〉 ≈
A12αCαβA12β = o(t ), indicating that the angle diffusion from
the active fluctuation is negligible. We can also add thermal
fluctuation in the system (2), which would affect all five
degrees of freedom. Then, the odd-elastic swimmer can be
represented as an active rotational Brownian particle with
swimming velocity given by (10) and angle diffusion from the
thermal noise.

With a finite size of the fluctuation of kBT eff , a pusher fila-
ment can reach a stable limit cycle in a self-organized manner
as demonstrated in Fig. 3(c), in which the swimmer is initially
located at rest with a straight configuration, but once the shape
exceeds the inner unstable limit cycle, it approaches the outer
stable limit and exhibits self-organized periodic swimming
[53].

VI. GENERAL ELASTOHYDRODYNAMICS

By representing the force and torque balance equations via
arbitrary degrees of freedom and their conjugate hydrody-
namic force [48], we show that the symmetric resistance
matrix and the symbolic elastohydrodynamic equations (2)
and (3), respectively, can be extended to a general linear
elastic system. More precisely, the elastic matrix K can be an
arbitrary positive-definite, N × N matrix, where N is the num-
ber of degrees of freedom in shape space. Examples include
(N + 1) spheres linked by N arms and (N + 1) links con-
nected by N hinges, with the latter model being established
as a coarse-grained representation of a continuous elastic
filament [39–41]. Hence, the results presented in this paper,
while mainly implemented for Purcell’s swimmer here, are re-
markably applicable to a wide class of low-Reynolds-number
elastohydrodynamics.

Furthermore, we consider a general microswimmer at
some steady state experiencing noise under the three assump-
tions of (i) linearity of the shape dynamics (� = Q0K), (ii)
fluctuation dissipation theorem-type relationship with some
effective temperature (D = kBT effQ0), and (iii) null proba-
bility current ( j = 0), termed as the detailed balance relation
[46]. We can then deduce that J = 0 if and only if the elas-
ticity matrix K is symmetric. A formal proof is given in
Appendix C. As an important consequence, this formally
demonstrates that an even-elastic swimmer can never exhibit
directed locomotion from random noise, whereas every odd-
elastic swimmer (nonsymmetric K) does.

According to [46], the entropy production rate is
given by T 〈σ̇ 〉 = −kBT eff Tr(�G) with the gain matrix
G = �CD−1 − I = 2JD−1. Using D = kBT effQ0, we obtain
T 〈σ̇ 〉 = 2Tr(KJ) = −4κoJ > 0 and find that the odd part of
the elasticity contributes to the entropy production and that the
entropy production coincides with the average power obtained
by the elasticity 〈Ẇ 〉 = −Kαβ〈α̇ααβ〉. These results may be
physically interpreted in the following way: nonconservative
forces characterized by the odd elasticity generate work W on
the fluid; then, the fluid viscosity turns the work to heat, and
the entropy of the fluid is produced.

VII. DISCUSSION AND CONCLUSION

In this paper, we describe our investigation of the elastohy-
drodynamics of a linear elastic material with a nonsymmetric

elastic matrix, with a focus on the analysis of Purcell’s
three-link swimmer. The odd elasticity, represented by the
antisymmetric parts of the elastic matrix, breaks the elas-
tic reciprocity and leads to nonreciprocal deformation. With
added internal fluctuation, we showed that the odd elasticity
produces a net current in the shape space, hence generat-
ing net locomotion, and provided an explicit formula for the
swimming velocity in (10). For a pusher-type odd-elastic rod,
time-periodic swimming is realized as a stable limit cycle,
which is reachable from a straight configuration under a finite
amount of noise, demonstrating self-organized swimming.

This result suggests that some specific microswimming
patterns emerging from internal activity in materials could be
well captured by odd elasticity, as shown by the pusher-like
beating of the odd-elastic three-link swimmer, although the
limitations of this simple model are also clearly revealed by
the absence of stable swimming for a puller-type rod. Further
studies are needed to understand the microscopic origin of
odd-elasticity. Moreover, this study also advocates the po-
tential of enforcing odd elasticity within artificial flexible
microswimmers to generate autonomous motion, rather than
explicitly prescribing the shape or using external controls.

The theoretical framework established in this study is ap-
plicable to a general swimmer with a large number of degrees
of freedom. The function of many biological molecules de-
pends on their shape, as seen in molecular machines and
enzymes whose shape changes with fluctuations [54–58]. The
swimming formula of noisy elastic material may be applied to
these micromachines, but this is also left as future work.
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APPENDIX A: SYMMETRIC PROPERTIES
OF THE RESISTANCE MATRIX

We denote the positions of ends of the rods in the
body-fixed coordinates as r0, r1, r2, r3. From the definition
of the body-fixed coordinates r0 = 0, r1 = �1ex0, r2 = r1 +
�2(cos α1ex0 + sin α1ey0) and r3 = r2 + �2[cos(α1 + α2)ex0 +
sin(α1 + α2]ey0). From the linearity, the two-dimensional
surface velocity of a Purcell swimmer in the body-fixed co-
ordinates at the position r can then be represented in matrix
form, using the state vector z, as

v = Hż. (A1)
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The entries of the matrix H = H(r; z) are given by

H=
(

1 0 −r0 sin θ0 −g1(r)r1 sin θ1 −g2(r)r2 sin θ2

0 1 r0 cos θ0 g1(r)r1 cos θ1 g2(r)r2 cos θ2

)
,

(A2)

where we introduced the lengths of vectors r0 = |r − r0|,
r1 = |r − r1|, and r2 = |r − r2|; angles from the ex0 axis as
θ0 = arg(r − r0), θ1 = arg(r − r1), and θ2 = arg(r − r2); and
functions g1(r) and g2(r) as

g1(r) =
{

0 (r is on the first rod),
1 (r is on the second and third rods), (A3)

and

g2(r) =
{

0 (r is on the first and second rods),
1 (r is on the third rod). (A4)

The surface traction force f defines the conjugate hydrody-
namic force vector h by the integral over the swimmer surface
[48]

h =
∫

S
f TH dS. (A5)

By direct calculation, we obtain h = (Fx0, Fy0, Tz, T1z, T2z )T.
Here, Fx0 and Fy0 are the total hydrodynamic force along the
ex0 and ey0 axes, respectively, and Tz is the total hydrodynamic
torque. T1z and T2z are internal torque around the points r1

and r2, respectively, and these should be balanced by the
elastic torque. If we write down the force and torque balance
equations for the vector h, we obtain the elastohydrodynamic
equation

−Mż = Lz, (A6)

as in the main text, where M is the resistance matrix. If
the resistance matrix is introduced between the generalized
velocity and its conjugate force, the resistance matrix found to
be symmetric and positive-definite by the Lorentz reciprocal
relation [48].

As in the main text, we introduce lengthscale L = �1 +
�2 + �3 and viscosity drag coefficient η‖ = 2πμ/ ln(2L/b)
with μ and b being the medium viscosity constant and radius
of the rod, respectively. We also assume the drag anisotropy
ratio between the perpendicular and parallel components
η⊥ = 2η‖. The expression for Q0 is then given by

Q0,11 = 6

η‖L3
× (�1 + �2)3(�1 + �2 + �3)4

�3
1�

2
2[4�2(�1 + �2 + �3) + 3�1�3]

, (A7)

Q0,22 = 6

η‖L3
× (�2 + �3)3(�1 + �2 + �3)4

�2
2�

3
3[4�2(�1 + �2 + �3) + 3�1�3]

, (A8)

Q0,12 = Q0,21 = − 3

η‖L3
× L3

[
3�3

2 + 6(�1 + �3)�2
2

+ (
3�2

1 + 8�1�3 + 3�2
3

)
�2 + 2�1�3(�1 + �3)

]
/
{

�1�
2
2�3[4�2(�1 + �2 + �3) + 3�1�3]

}
. (A9)

APPENDIX B: INFLUENCE OF THE
SWIMMER’S GEOMETRY

In this section, we discuss the influence of the segment
lengths �1, �2, �3 on the swimming behavior, particularly on

FIG. 4. Bifurcation value γc with respect to the ratios �1/L and
�2/L. The dashed line separates the �1 < �3 region on the left (puller
case) from the �1 > �3 region on the right (pusher case). In areas (a),
(b), and (c), delineated by indicative dotted lines, no bifurcation can
be observed. White dots represent the values used in Fig. 2.

the value γc at which the bifurcation displayed in Fig. 2
occurs. As above, we define the lengthscale L = �1 + �2 + �3

and study the variation of γc with respect to the nondimen-
sional ratios �1/L and �2/L, as shown in Fig. 4. For positive
values of γ , the swimmer behaves as a puller (or pusher) if
�1 < �3 (or �1 > �3), which coincides with the region on the
left (or right) of the dashed line on Fig. 4. The colored dots
cover the areas where a bifurcation similar to the ones pre-
sented in Fig. 2 can be observed, showing that this bifurcation
phenomenon holds for a wide array of swimmer geometries.
The white dots indicate the values used in Fig. 2. Strikingly,
the bifurcation occurs for much larger values of γ in the
pusher case, as indicated by the colors in Fig. 4: γc remains
less than 102 in the puller case, while it ranges between 102

and more than 104 in the pusher case. In regions marked (a)
and (b), all the orbits converge to the stable equilibrium 0,
however, the convergence speed is extremely slow. In region
(c), the nonzero stable cycle observed for the pusher becomes
unstable, with the orbits then converging to a nonphysical
stable cycle (with values of αi greater than π ).

APPENDIX C: NOISY SWIMMER AROUND
THE EQUILIBRIUM

Here, we consider an n-dimensional general swimmer with
an N-dimensional shape space; in particular, for the Purcell
swimmer, n = 2 and N = 2. We write the generator for the
n-dimensional Euclidean group A, which can be represented
as an (n + 1) × (n + 1) matrix. The swimming velocity with
a small deformation can be expanded as

A(α) = Aα (0)α̇α + 1
2 (Gαβ (0) + Fαβ (0)) ααα̇β, (C1)

where Gαβ and Fαβ indicate the symmetric and antisymmetric
part of the second-order term, respectively, and the later term
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is identical to the strength of the gauge field or the curvature
of the gauge field.

We consider the Langevin equation for the dynamics
around the origin of the shape space, given by

α̇ = −�α + ξ(t ), (C2)

with the zero-mean Gaussian noise ξα (t ). Here, the N × N
matrix � is constant in time and positive-definite, representing
deterministic dynamics, which is linearly stable around the
origin of the shape space. For the Purcell swimmer in the main
text � = Q0K. The Gaussian noise satisfies

〈ξα (t )ξβ (t ′)〉 = 2Dαβδ(t − t ′), (C3)

where the brackets indicate ensemble average, δ(t ) is the
Dirac delta function, and the diffusion matrix D is symmetric
and positive-definite. Hereafter, we do not explicitly indicate
that the evaluation point is at α = 0.

By plugging (C3) into (C2) and noting that the equal-time
correlation between the shape and the noise can be obtained
by 〈ααξβ〉 = Dαβ , the average swimming velocity becomes

〈A〉 = 1
2 (Gαβ + Fαβ )〈ααα̇β〉

= − 1
2 (Gαβ + Fαβ )(
βγCγα − Dαβ ), (C4)

because the first-order term vanishes, that is, 〈α̇α〉 = 0. Here
we introduced the shape covariance matrix, Cαβ = 〈αααβ〉,
which obeys the Lyapunov equation [46]

�C + C�T = 2D, (C5)

with superscript “T” denoting transpose of the matrix, and the
formal solution may be written as

C = 2
∫ 0

−∞
e�t D e�Tt dt . (C6)

The time-dependent probability distribution function in the
shape space p(α, t ) can be obtained from the Fokker-Planck
equation associated with (C2), i.e., ∂ p/∂t + ∂ jα/∂αα = 0
with the probability flux jα given by

jα = −p
αβ αβ − Dαβ

∂ p

∂αβ

. (C7)

The steady-state probability distribution function is the Gaus-
sian function

p(α) = 1

(2π )N/2
√

det C
exp

[
−1

2
αTC−1α

]
, (C8)

and plugging this expression into (C7) leads to the steady-state
probability current, j = �αp, where the matrix � is defined
as

� = −� + DC−1, (C9)

where � may be interpreted as the matrix of rotational veloc-
ity of the probability current in the shape space and the vector
�α represents the shape space velocity. At steady state, by
∂ jα/∂αα = 0, substituting (C8) yields the traceless property
of the matrix, Tr � = 0.

Let us write

J = 1
2�C = 1

2 (D − �C), (C10)

which may be interpreted as the areal velocity of the prob-
ability current in the shape space. By the definition of J, its
transpose becomes 2JT = C�T = C(C−1D − �T), and from
the Lyapunov equation (9), it follows that JT = −J. Thus,
we conclude that J is antisymmetric. With areal velocity
matrix J, the average swimming velocity (C4) can be finally
derived:

〈A〉 = Tr((G + F )J) = Tr(FJ), (C11)

where the trace is taken over the shape indices. In the second
equality, we used Tr(GJ) = 0, because G is symmetric and J
is antisymmetric in the indices of the shape space.

For simplicity, we first consider the N = 2 case as in
the main text. We rewrite (Fαβ )i j = Fi jαβ = (

√
det F )i jεαβ

with an (n + 1) × (n + 1) matrix
√

det F , noting that the
determinant is taken for the shape space labels. By di-
rect calculation, we have Tr(F J) = −2

√
det F

√
det J =

−2
√

det F
√

det C
√

det �. From the zero trace of �, the
eigenvalues of the matrix are simply ν = ±i

√
det �, which

are pure imaginary. The average swimming velocity is there-
fore written as

|〈A〉| = 2
√

det F
√

det C |ν|, (C12)

which successfully generalizes the finding in the three-sphere
model [Eq. (19) of Ref. [19]]. The form in (C12) shows
that the average velocity is represented by the products of
a shape-dependent geometrical factor, the explored area in
the shape space, and the speed of the rotational probabil-
ity flux. The product of the later two indicates the areal
velocity.

Formula (C12) is easily extended into a general shape
space with N dimensions. The antisymmetric matrix, J, can
be block-diagonalized by an orthogonal matrix⎛

⎜⎜⎜⎝
J̃(1) O O

. . .
...

O J̃(d ) ...

O · · · · · · O

⎞
⎟⎟⎟⎠, (C13)

in which the 2 × 2 matrices J̃(1), . . . , J̃(d ) are all real anti-
symmetric with eigenvalues all pure imaginary, where d =
[N/2] is the integer part of N/2. With positive real numbers
ω1, . . . , ωd , the matrices are represented as J̃ (1)

αβ = iω1εαβ .
Similarly, with the same orthogonal transformation,⎛

⎜⎜⎜⎝
F̃ (1) ∗ ∗

. . .
...

∗ F̃ (d ) ...

∗ · · · · · · ∗

⎞
⎟⎟⎟⎠, (C14)

where the asterisks denote arbitrary entries. Here,
F̃ (1), . . . , F̃ (d ) are real antisymmetric with respect
to the shape indices, and we again rewrite these as
(F̃ (1) )αβ = F̃ (1)

i jαβ = (
√

det F̃ (1) )i jεαβ . The average swimming
velocity is then simplified in the form

|〈A〉| =
d∑

q=1

|Tr(F̃ (q)J̃(q) )| =
d∑

q=1

|ωq|
√

det F̃ (q). (C15)
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The average swimming velocity is decomposed into the
contributions from the shape subspace and represented as
the product of field strength and areal velocity in each
two-dimensional (2D) subspace. In the case with three-
dimensional (3D) shape space (N = 3), the probability current
lies in the 2D plane in 3D space. When N = 4, the dynamics
in the shape space are then decomposed into two separated 2D
planes.

Finally, we demonstrate that the nonzero noise-induced
swimming velocity originates from the nonsymmetric prop-
erty of the matrix K, under the assumptions of (i)
linear shape dynamics (� = Q0K), (ii) fluctuation dissi-

pation theorem-type relationship with some effective tem-
perature (D = kBT effQ0), and (iii) null probability current
( j = 0).

The null probability current leads to � = 0 from Eq. (C9)
and we therefore have � = DC−1. Substituting this into
the Lyapunov equation (9) and eliminating C, we obtain
�D − D�T = 0. With assumptions (a) and (b), we then ob-
tain D(K − KT)D = 0. Thus the null probability current is
equivalent to the symmetric property of the elastic matrix K.
Conversely, this indicates that a non-symmetric K generates
nonzero � and nonzero J, yielding the nonzero swimming
velocity from formula (C11).
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