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Active nonreciprocal attraction between motile particles in an elastic medium
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We show from experiments and simulations on vibration-activated granular matter that self-propelled polar
rods in an elastic medium on a substrate turn and move towards each other. We account for this effective
attraction through a coarse-grained theory of a motile particle as a moving point-force density that creates
elastic strains in the medium that reorient other particles. Our measurements confirm qualitatively the predicted
features of the distortions created by the rods, including the |x|−1/2 tail of the trailing displacement field and
nonreciprocal sensing and pursuit. A discrepancy between the magnitudes of displacements along and transverse
to the direction of motion remains. Our theory should be of relevance to the interaction of motile cells in the
extracellular matrix or in a supported layer of gel or tissue.
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I. INTRODUCTION

Active systems with local conservation laws generically
display long-range interactions. Swimmers in a viscous fluid
interact hydrodynamically, with profound consequences for
pair [1,2] and collective behavior [3–6]. Autophoretic col-
loids communicate through their diffusive chemical fields [7]
and passive inclusions through an ambient conserved active-
particle density [8]. A broken-symmetry mode leads to richer
interactions, for example, through suppression of nonequilib-
rium [9] fluctuations or strain fields generated by nonmotile
force dipoles [10–15]. Active polar order in elastic media has
been studied in [16–20,20–22], with a fully rotation-invariant
theory in [23]. Henkes et al. [24] study the effect of a collec-
tion of motile but noninteracting active Brownian particles on
an elastic medium on a substrate.

In this paper we study the effects of self-propulsion
in a crystalline medium with emphasis on single-particle
dynamics and pair interactions. We present findings from
experiments and simulations on rods tapered towards one tip
which acquire motility by transducing the energy of a vibrat-
ing substrate and move through a dense monolayer of beads.
We account for our observations through a theory whose fur-
ther predictions we test.

Here are our main results. The polar rods retain their
motility even in the crystalline phase that occurs at high bead
coverage. In the crystal, a pair of parallel rods placed side-
by-side turn and locomote towards each other [Figs. 1(a) and
1(c)]—unlike in the fluid phase at lower coverage [Figs. 1(b)
and 1(d), inset]. We account for this behavior through a theory
of a damped elastic medium driven by moving point forces
carried by the motile rods, whose orientations respond to the
strains of the medium (Fig. 9). Our theory predicts, and our
numerical measurements confirm, a distinctive form of the
elastic distortion created by a single moving rod, decaying

exponentially ahead of the rod and as (distance)−1/2 directly
behind it (Fig. 6). Our theory further implies a nonrecipro-
cal [25–34] pursuit-and-capture interaction between the rods,
which our experiments and simulations reproduce (Fig. 12).

The rest of this paper is organized as follows. In Sec. II we
describe experimental and simulation details of our system.
Section III demonstrates characterization of the bead medium
in terms of hexatic order parameter and microrheology anal-
ysis. In Sec. IV we present results on bead-velocity field and
two-particle attraction. Section V presents a theory of motile
particle in an isotropic elastic medium and compares the re-
sults extracted from the simulation. Section VI presents our
results on nonreciprocal interaction and discusses the effect
of polar coupling terms on the particle dynamics, and we end
with a brief Conclusion in Sec. VII.

II. EXPERIMENTAL AND SIMULATION DETAILS

We work with a well-established model active-matter sys-
tem [35–39]: brass rods, 4.5 mm long and tapered towards one
end and hence geometrically polar, with diameters 1.1 mm
and 0.8 mm at the two ends, surrounded by aluminum spheres
of radius a = 0.4 mm, the whole confined between a circular
base plate of diameter 13 cm and a glass lid, separated by a gap
w = 1.2 mm. The plate is mounted on a permanent-magnet
shaker (LDS V406-PA 100E) driving it sinusoidally in the
vertical direction with frequency f = 200 Hz and shaking
strength � ≡ A(2π f )2/g = 7.0, where A and g are the re-
spective shaking amplitude and the gravitational acceleration.
The vertical vibration endows the rods with motility through
mechanical asymmetry and static friction [40,41]. Images of
the particles are recorded using a high-speed camera (Redlake
MotionPro X3) and are further processed using IMAGEJ[42] to
extract the position, velocity, and orientation of the particles.
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FIG. 1. Rods attract in an elastic medium, (a, c) In experiment
and simulation, respectively, the y coordinates of a pair of rods are
shown, initially positioned as in the insets and separated only along
y by d0 = 15a, where a is the bead radius, at bead area fraction
φb = 0.78 deep in the crystalline phase of the bead layer. Experiment
(b) and simulation (d) show the change in the y separation of the
rods on traversing half the system size along x, averaged over 50
(12) independent runs in simulation (experiment) for d0 = 18a and
d0 = 24a as a function of φb. The sign change from positive to nega-
tive as φb increases past 0.75 signals the transition from avoidance in
the fluid phase [see insets to (b) and (d)] to effective attraction upon
entering the crystalline phase.

In numerical simulations, the rod is modeled as an array
of overlapping spheres of different sizes [37], and the ver-
tically vibrating plate and glass lid are represented by the
two horizontal walls whose vertical positions at time t are
given by A cos 2π f t and A cos 2π f t + w, respectively. The
particle-particle and particle-wall collisions are governed by
the impulse-based collision model [43], and the ballistic dy-
namics of the particles is governed by Newtonian rigid body
dynamics. We use the time-driven particle dynamics algo-
rithm to perform the simulations.VMD software [44] is used to
make all the movies and snapshots from the simulations. The
values of the friction and restitution coefficients are 0.05 and
0.3 for particle-particle collisions, 0.03 and 0.1 for rod-wall
collisions, and 0.2 and 0.3 for bead-wall collisions, respec-
tively. Simulations are done in a square box of side length 78a,
with periodic boundary conditions applied in the xy plane.

III. CHARACTERIZATION OF THE BEAD MEDIUM

A. Hexatic order parameter and its correlation function

We examine here the ordering of the bead medium with-
out rods [45] as a function of bead area fraction φb. We
focus on the global sixfold bond-orientational order parameter
ψ6 and the bond-orientational correlation function gB(r). In
view of the close correspondence between the behavior of
vibrated-sphere monolayers [45] and equilibrium two-stage
melting [46], we use the properties of ψ6 as diagnostics of
crystalline as well as hexatic order. We first evaluate the local

FIG. 2. (a) ψ6 order parameter as a function of bead area frac-
tion φb and (b) bond-orientational correlation function vs distance r
scaled by bead radius a at different values of φb.

orientational order parameter

ψ6,i = 1

Ni

Ni∑
j=1

exp(6iθi j ), (1)

where Ni is the number of particles within a cut-off distance
rmin from the ith particle. θi j is the angle made by the vector
from the center of the ith to that of the jth bead with respect
to a reference direction, and rmin is the position of the first
minimum of the radial distribution function,

g(r) = 1

ρ0
〈ρ(r′)ρ(r′′)〉r . (2)

In the above expression, the angular bracket stands for the en-
semble average over all values of r′ and r′′ with |r′ − r′′| = r,
where

ρ(r) =
N∑

i=1

δ(r − ri ) (3)

is the number density field, and ρ0 is the average number
density. We then calculate the global bond-orientational order
parameter,

ψ6 = 1

N

∣∣∣∣∣
N∑

i=1

ψ6,i

∣∣∣∣∣. (4)

Figure 2(a) shows ψ6 as a function of φb, with a clear onset
of nonzero ψ6 around φb = 0.72, providing evidence that the
bead medium is an isotropic liquid for φb < 0.72. Above φb =
0.72, ψ6 grows gradually with area fraction φb and saturates
for φb > 78.

Measurements of the global ψ6 for a single system size are
insufficient to tell us about phases and transitions. However,
clear indications of behavior consistent with two-stage melt-
ing [46] are seen in the bond-orientational correlation function

gB(r) =

〈
ψ∗

6 (r′)ψ6(r′′)
〉
|r′−r′′ |=r

g(r)
.

Figure 2(b) illustrates that gB(r) decays exponentially for
φb < 0.72, and for 0.72 � φb � 0.75 it decays algebraically
with r. For φb > 0.75, gB(r) approaches a nonzero value for
large r. This is consistent with the two-dimensional (2D) melt-
ing scenario [46] in which the crystalline phase has long-range
bond order (and quasi-long-range translational order), and
the hexatic phase has quasi-long-range bond order. We can
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FIG. 3. Stiffness parameter 1/(s	̃(s))|s→0 as a bead area fraction
φb in simulation (a) and in experiment (b).

therefore use a nonzero hexatic order parameter as a reliable
identifier of the crystalline phase.

B. Viscoelastic properties of the bead medium

We employ microrheology to explore the viscoelastic prop-
erties of the bead medium. We assume the force on a tagged
particle of the bead medium at time t is given by − ∫ t

0 k(t −
t ′)[x(t ′) − x(0)]dt ′, with a memory kernel k(t ) that we have
chosen, for convenience, to act on the displacement rather than
the velocity. The equation of motion for the bead then reads

m
dv
dt

= −�v −
∫ t

0
k(t − t ′)x(t ′)dt ′ + η(t ). (5)

Here m is the mass of the bead, −�v(t ) is the dissipative
force acting on the bead due to the substrate, and η(t ) is noise
force with zero mean due to the surrounding medium. For a
purely elastic and a purely viscous medium, k(t ) ∼ δ(t ) and
−dδ(t )/dt , respectively. Denoting Laplace transforms by a
tilde, Eq. (5) becomes

m[sṽ(s) − v(0)] = −�ṽ − k̃(s)

[
x̃(s) − x(0)

s

]
+ η̃(s), (6)

which simplifies, using ṽ(s) = sx̃(s) − x(0), to

ṽ(s) = mv(0) + η̃(s)

ms + � + k̃(s)/s
. (7)

The sample average of the dot product of the above equa-
tion with v(0) gives

〈ṽ(s) · v(0)〉 = m〈v2(0)〉
ms + � + k̃(s)/s

. (8)

Here we have used, for s > 0, 〈v(0) · η̃(s)〉 = v(0) · 〈η̃(s)〉 =
0 as 〈η(t )〉 = 0. Assuming an effective thermal description
with temperature T for the bead fluctuations in the absence
of polar rods implies

〈ṽ(s) · v(0)〉 = 2T

ms + � + k̃(s)/s
. (9)

As the Laplace transform of the mean square displacement
	(t ) = 〈|x(t ) − x(0)|2〉 is 	̃(s) = (2/s2)〈ṽ(s) · v(0)〉, Eq. (9)
implies

	̃(s) = 4T

s[ms2 + �s + k̃(s)]
. (10)

FIG. 4. Velocity field and dragging of beads. Bead-velocity unit-
vector field around a single motile rod at bead area fractions (a)
φb = 0.70 and (c) 0.80. At φb = 0.70, the flow pattern is similar
to that of a monopole force density [37] in a fluid on a substrate;
at φb = 0.80, the velocity field is extinguished by the elasticity of
the medium. Motile rod drags surrounding beads (marked purple)
at (b) φb = 0.70 but leaves them undisturbed at (d) φb = 0.80 (see
Supplemental Movies S5 and S6 [48]).

We calculate the quantity 1/[s	̃(s)]|s→0 to estimate the stiff-
ness of the effective potential felt by the bead. Figure 3 shows
that 1/[s	̃(s)]|s→0 is consistent with zero at small values of φb

and shows an onset to nonzero values around φb = 0.7. The
onset φb is higher in the simulations than in the experiments,
but the picture is broadly consistent with the presence of an
elastic medium at large enough area fractions.

IV. RESULTS

We now show key results from experiments and me-
chanically faithful simulations. In last section we establish,
consistent with [45], the presence of liquid, hexatic, and
crystalline phases for bead area fraction φb < 0.72, 0.72 �
φb < 0.75, and φb � 0.75, respectively, and corroborate this
structural characterization by single-particle microrheology
on bead displacements, to establish the presence of a nonzero
elastic stiffness at large enough φb.

In the liquid and hexatic phases the flow profile around a
single rod [Figs. 4(a) and 4(b)] has the source-dipole form
expected [37,47] for self-propulsion through a fluid on a sub-
strate. In experiment and simulation in the liquid phase (e.g.,
at φb = 0.70, Figs. 1(b) and 1(d) insets and Supplemental
Movies S3, S4 [48]), a pair of polar rods initially pointing
along, say, the x direction, with initial separation d0 strictly
transverse to their orientation, turn away from each other and
thus move apart, a simple consequence of the rotation of the
orientation of each rod by the vortical flow generated by the
other [49]. When φb is increased past 0.75 into the crystalline
phase the polar rods remain motile, but the large-scale flow
they generate shuts down [Figs. 4(c) and 4(d)]. Despite the
absence of flow, a long-range pair interaction persists but
opposite in character to that in the fluid regime: the rods now
turn to point and move toward each other in both experi-
ment and simulation (see Figs. 1(a) and 1(c) for φb = 0.78
and d0 = 15a and Supplemental Movies S1 and S2 [48]).
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This effective attraction, more accurately a positive pairwise
reorienting or “tactic” [50] response, depends crucially on
the motility of the rods. Rods of the same central diameter,
but tapered symmetrically at their two ends and hence non-
motile [51], show no detectable interaction when placed in the
vibrated crystalline array of beads at area fraction φb = 0.70
and φb = 0.80. The apolar rods neither attract nor repel each
other (see Supplemental Movies 7 and 8 [48]). This obser-
vation shows unambiguously that motility is crucial for the
attractive interaction of polar rods in our studies. Static in-
teractions between scalar or apolar inclusions such as those
discussed in [52,53], if present, are insignificant compared to
the interaction arising from motility-driven strain fields.

As a measure of the nature of the interaction of the rods,
we use the relative transverse displacement 	y of a pair of
rods initially pointing along x, as their x position traverses
half the system length. To obtain a systematic trend in the
presence of rotational noise we average over 50 (12) indepen-
dent runs in the simulation (experiment) for a given φb and
d0. Figures 1(b) and 1(d) present 	y vs bead area fraction
φb for two initial separations in experiment and simulation.
A systematic trend of a positive 	y (effective repulsion) for
φb corresponding to the liquid or hexatic for φb < 0.74, and
negative (effective attraction) for the crystal at φb > 0.74, is
seen, with possible weakening of attraction for φb = 0.8 in
the simulation. In some cases the rods turn towards each other
at the same time after a latency period, but more often one
goes straight and the other turns. The lag in the response of
the rods is presumably a result of kinetic barriers associated
with the precise arrangement of the beads. These will typically
differ for the two rods, so that one of them will get ahead of
the other, leading to the observed asymmetry between their
trajectories.

V. THEORY

Motivated by these observations, we construct a theory of
the coupled dynamics of N motile rods labeled α = 1, ..., N ,
with positions Rα (t ) and orientation unit vectors nα (t ), and a
medium characterized by a Eulerian displacement field u(x, t )
as a function of position x and time t , the whole in contact
with a structureless substrate that provides a damping linear
in velocity, and defining a natural rest frame with respect to
which we write our equations of motion. Unlike in [24], we
distinguish the particles driving the medium from those that
comprise it. We make several simplifying assumptions and
approximations which we list here. We neglect inertia, as the
rods do not fly, they walk [35,40,41]. We do not resolve the
bead-scale structure of the medium and so treat it as transla-
tion and rotation invariant. We assume that in the absence of
rods u relaxes to minimize an elastic free energy [54],

F =
∫

d2x [λ(Trε)2/2 + μTr(ε2)], (11)

with symmetric strain ε = (∇u + ∇uT)/2 and elastic con-
stants λ and μ. We focus on low rod concentrations where
the bead medium remains crystalline and where steric or po-
tential interactions between rods play no role. The absence of
interaction between nonmotile rods mentioned above assures
us that we can ignore elastic couplings between rods as static

FIG. 5. Relation between the force F exerted by the motile par-
ticle on the elastic bead medium and its velocity v0, as measured in
simulations.

inclusions [52]. We focus here on the average behavior, but
it is straightforward to include noise in our treatment. Within
our description each rod simply follows its nose at constant
speed v0:

Ṙα (t ) = v0nα (t ), (12)

which would describe an active Brownian particle [55–57]
if nα executed a rotational random walk. The effect of the
elastic medium on a motile rod, and of the rods on each other,
enters in our theory through rotation of n and the resulting
redirection of the velocity of self-propulsion, much as in the
imitation of chemotaxis by active colloids [7,30,58–60].

As argued in [24,37], the pushing or dragging of the
medium with respect to a substrate that serves as a momentum
sink endows each motile rod with a monopole force density of
strength f , consistent with the general properties of swimmers
in contact with a substrate [23,61,62]:

ζ∂t u = −δF

δu
+ f

∑
α

nα (t )δ[r − Rα (t )], (13)

where ζ is the coefficient of drag due to the substrate. In
Fig. 5 we show that the values of f and v0 inferred from our
simulations are roughly proportional. We obtain the relation
between self-propelling speed v0 and the force f by simulat-
ing polar particles with imposed velocities and measuring the
momentum transferred to the beads.

We proceed by first solving (13) for one motile rod. Let the
displacement field in a frame comoving and corotating with
the rod be U = (Ux,Uy), which is stationary in an unbounded
system if no other rods are present. The laboratory-frame
displacement u(r, t ) = S(t ) · U(r′), where S is the rotation
matrix from the frame fixed in the rod to the laboratory
frame and r′ = ST · [r − R(t )]. Considering that the motile
particle is oriented along the x direction in frame S, i.e.,
n(t ) = S(t ) · x̂, then, from Eq. (13),

ζ

[
∂

∂t
+ ST · Ṡ · +r′ · ST · Ṡ · ∇′

]
U = [ζv0∂

′
x

+(μ∇′2 + λ∇′∇′·)]U + f δ(S · r′)x̂. (14)
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For the motile particle pointing at angle θ (t ) from the x axis,
n(t ) = [cos θ (t ), sin θ (t )] and the rotational matrix

S =
(

cos θ (t ) − sin θ (t )
sin θ (t ) cos θ (t )

)
, (15)

which gives us ST · Ṡ = εTθ̇ . Here ε is the 2D Levi-Civita
symbol. As |S| = 1, δ(S · r′) = δ(r′). Then Eq. (14) reduces
to

ζ

[
∂U
∂t

+ [εT · U + (r′ · εT · ∇′)U]θ̇ (t )

]
= [ζv0∂

′
x

+ (μ∇′2 + λ∇′∇′·)]U + f δ(r′)x̂. (16)

For the motile particle subjected to no torque, θ̇ (t ) = 0, and U
will be constant in time in the stationary state, i.e., U ≡ U(r′),
and the above equation is simplified to

[−ζv0∂x − (μ∇2 + λ∇∇·)]U = f δ(r)x̂. (17)

This is reminiscent of Oseen’s modification [63] to the Stokes
solution [64] for flow around a slowly moving object, with
the difference that (17) describes a displacement field and
not a velocity field, with the relative importance of advec-
tion and diffusive relaxation on a length scale L encoded
not in the Reynolds number but in a Péclet number Pe(L) ≡
ζv0L/μ. The Fourier transform Uq = ∫

x exp(−iq · x)U(x)
satisfies

−iv0ζqxUq + μq2Uq + λqq · Uq = f x̂, (18)

so that

Uq = f

ζv0

(
1

(ξq2 − iqx )
+ qxξ

i(q2ξ − iqxν)
− qxξ

i(q2ξ − iqx )

)
x̂

+
(

i f qyξ

iζv0(ξq2 − iqxν)
− i f qyξ

iζv0(q2ξ − iqx )

)
ŷ, (19)

where ξ = μ/ζv0 is a screening length, and ν = (1 + η−1)
with η = λ/μ. Inverting the Fourier transform in terms of
tabulated integrals [65] yields

Ux = f

4πμ

{[
K0

(
r

2ξ

)
− x

r
K1

(
r

2ξ

)]
e−x/2ξ

+ ν

[
K0

(
νr

2ξ

)
+ x

r
K1

(
νr

2ξ

)]
e−νx/2ξ

}

Uy = f

4πμ

y

r

[
νK1

(
νr

2ξ

)
e−νx/2ξ − K1

(
r

2ξ

)
e−x/2ξ

]
(20)

for the x and y components of U, where r =
√

x2 + y2, and K0

and K1 are the modified Bessel functions of the second kind.
The force monopole in (17) introduces a quantity f /μ with
units of length [66], which gives a natural scale for U.

We extract displacement fields from the distortion of bead-
density profiles, focusing here on the single-rod case, using
ρ0(r) = ρ[r + U(r)], where ρ(r) is the time-averaged num-
ber density profile in the rest frame of a motile rod, and ρ0(r)
a reference profile obtained by extrapolating from the far field.
Figures 6(a) and 6(b) show that the displacement field around
a single rod from the simulation at φb = 0.80 qualitatively
matches that predicted by our theory with η = 1.3 and α =
0.1, except close to the polar rod whose nonzero size is not
included in our theory. The distinctive profile of Uy, including

FIG. 6. Displacement field, scaled by f /μ, around a single
motile rod. (a, b) x dependence of Ux at y = 0 in simulation and
theory. Both cases see the rapid decay of Ux (x, y = 0) for x > 0
as compared to x < 0. (c, d) x dependence of Uy at yμ/ f = 1.8 in
simulation and theory. (e) constant unit profile of |x|1/2Ux (x, 0) for
negative x values shows that Ux (x, 0) decays as 1/

√
x behind the

particle. For x > 0, after factoring out 1/
√

x, a substantial decay
remains, consistent with the predicted exponential but better fitting
a linear decrease. In simulation, φb = 0.80 and f /μ = 2.2a.

its sign change as x goes through zero, are well confirmed
by the simulation, as are all qualitative features of the y de-
pendence. Crucially, the asymptotic properties of K0 and K1

imply that, for locations along the x axis, the dominant large-x
decay of U is exponential ahead of the motile particle but only
as 1/

√
x behind it. The measured displacement field confirms

this prediction: Fig. 6(e) shows that |x|1/2Ux as a function of
x for y near 0 is flat for x < 0. For x > 0 by contrast, |x|1/2Ux

decays rapidly, though better described by 1 − const.x than an
exponential. We will see below that this extreme asymmetry
confers stealth on a motile rod as it approaches another from
behind, a feature central to the nonreciprocal pair interaction.
In the next section, we show that the x and y dependence
of Ux are described satisfactorily by a common value of the
parameters in (20) (Fig. 7) and discuss possible reasons why
measured values of Uy exceed our theoretical estimates.

A. Fitting the numerical displacement field to the theory

We fit Ux(x, y = 0) vs x calculated from the simulation
at φb = 0.80 to our theoretical model [see Eq. (20)] us-
ing a least-squares method [see Fig. 7(a)]. The values of
fitting parameters are η = 1.3, f /μ = 2.2a, and α = 0.1.
Figure 7(b) shows that these parameter values provide a
satisfactory fit to Ux(x = 0, y) vs y as well [see Fig. 7(b)].
However, the profile of Uy deviates from the theory with
these parameter values [see Figs. 7(c) and 7(d)]. It remains
unclear why the y component of the displacement is sub-
stantially underestimated by the theory. One possibility is
that the motile particle, in addition to exerting a monopole
force in the direction in which it points and moves, pushes
outward on the medium in the transverse direction. We have
attempted to accommodate such a process by extending our
calculation to include a force dipole of strength f2 along y in
addition to a force monopole of strength f1 along x. The result
is not encouraging—unsurprisingly, in retrospect. The relation
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FIG. 7. The displacement field components Ux and Uy as a func-
tion of x and y as observed in the simulation (dots) and corresponding
theoretical fits (line): (a) Ux vs x at y = 0, (b) Ux vs y at x = 0, (c) Uy

vs x at y = 4a, and (d) Uy vs y at x = 0. Here the fitting parameters
are calculated by fitting the x dependence of Ux at y = 0, and their
values are η = 1.3, f /μ = 2.2a, and α = 0.1. The length unit is bead
radius in the simulation.

between forces and elastic displacements is not diagonal sim-
ply because a crystal has a bulk and a shear modulus; a y force
dipole large enough to produce a y displacement sufficient to
account for the observed value pushes the x displacement to
unacceptably large values (Fig. 8). We speculate that the ori-
gin of the discrepancy lies outside a linear elastic description,
possibly in a dilatant response [67] to the shear force exerted
by the moving rod on the fluidized medium adjacent to it.

B. Coupled dynamics of two motile particles in an elastic
medium and discussion of coupling terms

Let us consider two motile particles, say, α and β, whose
orientations and positions at time t are denoted by nα,β (t ) ≡
[cos θα,β (t ), sin θα,β (t )] and Rα,β (t ), respectively. Then the
displacement field in the laboratory frame created by the
βth particle will be uβ (r, t ) = Sβ (t ) · Uβ (r′

β, t ) with r′
β (t ) =

Sβ (t )T · [r − Rβ (t )], where the rotation matrix Sβ (t ) is given

FIG. 8. The displacement field components Ux and Uy as a func-
tion of x as observed in the simulation (dots) and comparison to
theory (line). Here parameters are calculated by fitting the x depen-
dence of Uy at y = 4a. The resulting values η = 1.0, f1/μ = 6.46a,
f2d/μ = 0.10a, and ξ = 16a are then used to generate the curve for
Ux . (a) Ux vs x at y = 0, and (b) Uy vs x at y = 4a.

by (15), and the displacement field Uβ (r, t ) due to motile
particle β in its comoving and corotating frame follows the
equation of motion (16). Equation (12) tells us that within our
treatment each polar rod simply follows its nose. Accordingly,
interactions between the rods take place only through changes
in their orientations. The general form of the interaction of the
orientation nα with lattice distortions created by particle β, as
permitted by symmetry and at leading orders in gradients, is
given by

dnα

dt
= (I − nαnα ) · [κεβ · nα + (γ∇εβ ) + · · · ], (21)

where the right-hand side of (21) is evaluated at Rα (t ). At
leading order in gradients (21) is invariant under nα → −nα:
the apolar coupling κ , promoting the alignment of the rod
axis along a principal direction of εβ, is permitted even for
a fore-aft symmetric rod [23]. Polarity enters at order ∇εβ,
biasing the rod to point in a direction determined by inhomo-
geneities in strain [17,68]. We denote the relevant coefficients
schematically by a single symbol γ in (21), though ∇ · εβ,
∇Trεβ, and contractions of ∇εβ with nα are all permitted. The
solution (20) contains a decay length ξ , so that ∇εβ ∼ ξ−1εβ.
The γ terms in (21) should therefore be of order �/ξ relative
to the κ terms, where � is the shape-polarity length defined
earlier. Our neglect of γ in (21) is thus justified for large ξ ,
i.e., small v0.

We will therefore focus on the κ term on the right of (21),
capturing the reorienting effect of distortions to leading order
in gradients, but will return briefly to γ below. Based on our
observations below, we will take κ > 0; i.e., we will consider
rods that align with the extensional axis of ε. We can easily
see from Eq. (21) that the equation of motion for θα will be

θ̇α (t ) = ẑ · [nα × (κεβ · nα + γ∇εβ + · · · )]. (22)

With the above expression of θ̇α , the second term on the
left-hand side of Eq. (16) will be a nonlinear term which we
ignore in our calculation. Therefore, in the stationary state,
the displacement field Uα is simply given by Eq. (20). From
Eq. (12), the positions Rα,β (t ) obey

Ṙα,β (t ) = v0nα,β (t ). (23)

We integrate Eqs. (21) and (23) numerically to get the trajec-
tories of the two particles in the elastic medium.

Figure 9(a) shows the map of the extensional axis of the re-
sulting strain field ε. Through (21), for κ > 0, two such rods,
pointing along x̂ and separated only along ŷ, each reorient
the other’s axis along the field in Fig. 9(a) and thus locomote
towards each other through (12). The resulting trajectories in
Fig. 9(b) account qualitatively for the positive pairwise “taxis”
of a pair of particles reported in Fig. 1, modulo the trajectory
asymmetry of the latter on which we have already commented
above.

We now discuss the polar couplings γ in (21) by including
terms γ1∇ · ε and γ2∇Trε. The streamline plots, Fig. 10,
suggest that γ1, γ2 give rise to more complex and rapid spatial
variation than the apolar strain-aligning κ term and do not
play an important role in the pair attraction. We illustrate
these distinct roles by plotting trajectories calculated by nu-
merically solving (21) and (12) for the pair, with κ = 0, for
various positive and negative values of γ1, γ2, and see that
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FIG. 9. From the displacement field created by a single motile
particle moving along the x direction. (a) Principal axis of the trace-
less part of κε superimposed with the color map, on a log scale, of its
positive eigenvalue at κ f /μv0 = 1. (b) Trajectories of the two motile
particles coupled with each other’s displacement field via Eq. (21) for
initial lateral distance dμ/ f = 5. Here, κ f /μv0 = 0.5, η = 1, and
α = 1.

in all cases capture does not take place. We also show that
for γ1, γ2 = ±10 and κ < 0 again capture is unsuccessful
(Fig. 11). The reason is that the alignment directions of the
rods would now have to be perpendicular to those shown in
Fig. 10. The particles in the experiments and simulations are
rods tapered towards one tip and self-propel with the tapered
end forward. Considerations of excluded volume suggest that
the fat, i.e., nontapered end would be more easily accom-
modated in dilated regions and on the “outside” of a curved
region of crystal. This suggests that n would like to point
antiparallel to ∇∇ · u but parallel to ∇2u, i.e., γ1 > 0, γ2 < 0.
However, the interactions could be based on motility, in which
case essentially entropic excluded-volume arguments are not
a good guide. A behavioral motility-strain coupling arises in

FIG. 10. Streamline plot of γ1∇2u + γ2∇∇ · u for a single
motile particle moving along the x direction superimposed with the
color map of its magnitude. The color map is shown on a log scale.

FIG. 11. Trajectories of two polar particles in theory, which are
initially pointing normal to each other, (a) for different values of
γ1/v0 and γ2/v0 at κ f /μv0 = 0, and (b) for κ f /μv0 = −100 and
100 at γ1/v0 = γ2/v0 = 0. Here α = 10 and η = 1.

a model of swarm mechanics [69], in which bees orient and
move towards more dilated regions, which would amount to
γ2 > 0.

VI. NONRECIPROCAL INTERACTIONS

It is clear from the formulation (21)–(17) that the in-
teraction between the motile particles in our theory is a
consequence of the reorientation of their active motion rather
than a pair potential. We now underline the nonequilibrium
character of this interaction by a direct demonstration of its
nonreciprocal nature. Unlike in [27,28,32], we are dealing
here with interactions between two particles of the same
type, so nonreciprocality operates with respect to their relative
locations and orientations, as in [25,26,29–31]. The strain
field generated by each motile rod reorients the other, thus
redirecting their velocities. The fore-aft asymmetry of the
lattice distortion in (20) and Fig. 6 implies that if one rod
is situated in front of another, as defined by the heading of
the latter, the two experience drastically different reorienting
torques. The strain field generated ahead of the trailing rod is
highly screened, unlike that which the leading rod produces
in its wake. We expect the trailing rod to reorient strongly,
while effectively concealing its approach from the leading
rod. We illustrate this through theoretically calculated particle
trajectories which we compare with laboratory and numerical
experiments.

We consider a pair of particles initially aligned perpendic-
ular to each other, pointing along say the x and y directions.
Equation (21) with γ = 0 and κ > 0 always leads to capture,
as illustrated in Fig. 12(a) for κ f /μv0 = 100. The calculated
dynamics graphically reiterates what we argued qualitatively
above: the encounter takes place by one particle approach-
ing the other from behind, and turning towards it, while the
particle in front moves entirely oblivious of the approach of
the other, see Fig. 12(a), a direct consequence of the strong
fore-aft asymmetry in the screening of the displacement fields
of the moving particles, (20). We find convincing confirmation
of this prediction in our simulation as well as in experiment,
see Figs. 12(b) and 12(c), and Supplemental Movies S9 and
S10 [48].
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FIG. 12. Nonreciprocality in capture. Trajectories of two polar
particles which are initially pointing normal to each other, (a) in
theory for κ f /μv0 = 100, (b) in simulation, and (c) in experiment
at φb = 0.78 for initial y separation 39.4a and 26a, respectively.

VII. CONCLUSION

We have thus shown, through experiments and simulations
on vibrated grains, that active particles can locomote through
a supported two-dimensional crystalline medium, which me-
diates an effective attraction between them by reorienting their
direction of motion. We have accounted for our observations
through a theory of moving force monopoles, which implies
a nonpotential sensing and trail-following behavior of purely
mechanical origin. Our measurements confirm qualitatively
the predicted form of the strain field of a single motile particle
and the nonreciprocal attraction and pursuit of a pair. This
interaction should be observed between motile cells in a sup-
ported gel layer or epithelium, and possibly in chase-and-run
dynamics in cell migration [70,71]. Despite the qualitative
success of the theory, we find it substantially underestimates
the component of the displacement field of the medium trans-
verse to (or overestimates the component parallel to) the

direction of motion of the active particle. We speculate that
the explanation may lie in dilatancy. Modifications associated
with momentum conservation arise in principle for a bulk
three-dimensional medium such as the extracellular matrix,
but even there the relatively rigid components of the matrix
could serve, over some time and length scales, as a momentum
sink for the dynamics of the more deformable components.
Multiparticle behavior, the competition between alignment,
and attraction in the collective dynamics, and the effect of
quenched disorder, as well as the relation between the parame-
ters of our coarse-grained theory and particle-scale properties,
remain outstanding challenges.
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