
PHYSICAL REVIEW E 105, 064601 (2022)

Critical behavior of active Brownian particles: Connection to field theories
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We explore the relation between active Brownian particles, a minimal particle-based model for active matter,
and scalar field theories. Both show a liquid-gas-like phase transition toward stable coexistence of a dense
liquid with a dilute active gas that terminates in a critical point. However, a comprehensive mapping between
the particle-based model parameters and the effective coefficients governing the field theories has not been
established yet. We discuss conflicting recent numerical results for the critical exponents of active Brownian
particles in two dimensions. Starting from the intermediate effective hydrodynamic equations, we then present
a construction for a scalar order parameter for active Brownian particles that yields the active model B+. We
argue that a crucial ingredient is the coupling between density and polarization in the particle current. The
renormalization flow close to two dimensions exhibits a pair of perturbative fixed points that limit the attractive
basin of the Wilson-Fisher fixed point, with the perspective that the critical behavior of active Brownian particles
in two dimensions is governed by a strong-coupling fixed point different from Wilson-Fisher and not necessarily
corresponding to Ising universality.
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I. INTRODUCTION

The comprehensive understanding of critical phenomena
has been one of the major successes of statistical mechanics
[1], which has cumulated in the renormalization group (RG)
theory and a Nobel prize for Kenneth Wilson [2]. While
pushed forward by continuous transitions in equilibrium sys-
tems, critical behavior is not restricted to thermal equilibrium
and many driven systems exhibit special points and phases
that are governed by scale invariance [3–5]. One class of
steadily driven systems, in particular, active matter comprised
of many interacting units undergoing directed motion (ranging
from birds to bacteria to synthetic colloidal particles) has
received extensive attention lately [6–8]. Among others, the
emergence of spontaneous polar order [9,10], active nemat-
ics [11], and the self-organization of chemotactic cells and
bacteria [12,13] have been studied through the lens of critical
phenomena and the dynamic RG [14,15].

Within the wider field of active matter, active Brownian
particles (ABPs) defined through the stochastic equations of
motion

ṙk = v0ek + Fk + ηk (1)

have become an intensively studied paradigm for the inter-
play of directed motion with short-range repulsive forces Fk

modeling volume exclusion [16]. ABPs are propelled through
adding a velocity term v0ek with fixed magnitude v0 and
independent unit orientations ek (no alignment) that diffuse
freely with orientational correlation time τr. The translational
noise ηk might be absent. As first shown in simulations [17],
this model undergoes motility-induced phase separation [18]
that resembles liquid-gas phase separation in a passive fluid
(or suspension) but in the absence of cohesive forces. Instead,

the blocking of particles due to the repulsive forces in com-
bination with the persistence of forward motion leads to a
dynamic instability through the dependence of the effective
propulsion speed on the local density [19].

The phase diagram of monodisperse ABPs has been
mapped out in simulations for several variants of the model
in both two and three dimensions [20–29]. In two dimen-
sions, the phase diagram features a coexistence region above
a critical speed Pec � 40 � 1 (in terms of the dimensionless
Péclet number Pe ≡ 3v0τr/σ with bare propulsion speed v0,
orientational correlation time τr, and disk diameter σ ), cf.
Fig. 1(a). At high densities approaching the close-packing
limit, the transition of the passive fluid into a two-dimensional
solid continues to nonvanishing Péclet numbers with an
intermediate hexatic phase [20]. In three dimensions, quali-
tatively the same behavior is observed [22,23,26], although
the motility-induced transition is shifted to higher Péclet
numbers, indicating that in higher dimensions the blocking
mechanism is less efficient, as one might expect. Very re-
cently, it has been shown in simulations that the liquid-gas
coexistence in three dimensions is in fact metastable and lies
within the two-phase region of gas-solid coexistence [28,29],
cf. Fig. 1(b). This is reminiscent of the phase diagram for
passive colloidal suspensions with very short-range attractions
[30,31]. The binodal curve of coexisting densities terminates
in a critical point that has been investigated numerically in
several studies, some of which claim Ising universality [32,33]
as opposed to non-Ising behavior [34,35].

The coexistence of domains of low and high densi-
ties can be rationalized in field theories for a scalar order
parameter field φ(r, t ) related to the density. Cates and
coworkers extensively studied the extension of model B [36]
through additional terms of schematic order ∇4 and φ2 called
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FIG. 1. Sketch of the phase diagram of monodisperse active
Brownian particles in (a) two dimensions and (b) three dimensions.
Indicated in green is the two-phase region within which a dense
liquid domain coexists with a dilute active gas. The coexistence
line ends in a critical point (diamond). Fluid-solid coexistence is
indicated in light grey (with the homogeneous solid at even higher
densities). In two dimensions, there is also a thin hexatic region
between fluid and solid [20].

active model B+ [37–42]. These additional terms cannot be
represented through a free-energy functional, in general, and
potentially capture the effects of breaking detailed balance
at the particle level. Since these terms are higher derivatives
of the field, one would expect that they are irrelevant in the
RG sense. However, an explicit one-loop calculation shows
that they can induce new fixed points [41] and thus regions
in model space for which the RG flow is pushed away to a
nonperturbative regime. To assess this scenario for the vari-
ous ABP models, one would need to explicitly calculate the
coefficients of active model B+ from the microscopic model.
However, such a systematic link and its verification in numer-
ical simulations is still missing. Another line of investigation
has been the mapping to an effective free energy [43,44]
through the unified colored-noise approximation [45]. Such
an effective action necessarily yields a φ4 theory and will not
be discussed in the following.

The outline of the paper is as follows: First, we re-
view numerical results for the critical behavior of ABPs
in two dimensions. We then revisit the effective hydrody-
namic equations for density and polarization beyond the
adiabatic approximation. We schematically expand the con-
ditional force up to second order with four coefficients, two
of which can be related to the mean-field critical point.
We then derive active model B+ from these hydrodynamic
equations as the nonlinear evolution of the linearly unstable
mode. Building on the results for the dynamic RG of this
model [41], we discuss the renormalization flow at and close
to two dimensions.

II. CRITICAL BEHAVIOR

A. Background

Before we review the numerical evidence gathered so far,
let us briefly recall some of the basic properties holding close
to a critical point. We consider systems in d dimensions that
can be described by a scalar order parameter field φ(r) that
allows us to distinguish low density (gas) from high density

(liquid), with the average difference vanishing as a power law:

〈φ〉 ∼ (−τ )β. (2)

Here, τ measures the distance to the critical point and β is
the corresponding critical exponent. Other quantities show a
similar divergent behavior, in particular, the susceptibility∫

dd r′ 〈φ(r)φ(r′)〉 ∼ |τ |−γ (3)

and the correlation length ξ ∼ |τ |−ν defining two more critical
exponents γ and ν.

In RG theory, every quantity x comes with a scaling di-
mension 	x that captures the shift x 
→ b	x x under rescaling
lengths r 
→ r/b with some factor b. Considering the cor-
relation length ξ 
→ ξ/b = b	ξ ξ , we find 	ξ = −1. Scale
invariance dictates that the two-point correlation function

〈φ(r)φ(r′)〉 ∼ 1

|r − r′|d−2+η
(4)

decays as a power law with anomalous dimension η, which
yields the scaling dimension

	φ = d − 2 + η

2
(5)

of the field. The critical exponents imply the relations
	ξ = −ν	τ = −1, 	φ = β	τ = β/ν from Eq. (2), and
d − 2	φ = γ	τ from Eq. (3). The latter can be rearranged
to γ /ν = 2 − η. We thus find the well-known hyperscaling
relation

2	φ + γ	τ = 2β

ν
+ γ

ν
= d, (6)

restricting the exponents. Clearly, this relation is fulfilled by
the Ising exponents [46]

β = 1
8 , γ = 7

4 , ν = 1 (7)

for d = 2. However, note that we did not have to invoke a
free energy or assume equilibriumlike behavior at any point
to derive these relations.

B. Numerical results

There are now several studies, both on and off lattice,
that have determined numerical values for the three criti-
cal exponents from finite-size scaling simulations, which are
summarized in Fig. 2. Two lattice variants of ABPs have been
studied in Ref. [35]. Variant I controls the orientational diffu-
sion at constant speed (basically, the model of Partridge and
Lee [32], who do not report independent values for β). The
difference between square and hexagonal lattices is negligible.
We do, however, observe a systematic shift away from the
exact Ising values such that the hyperscaling relation Eq. (6)
is still obeyed. Changing the dynamics (on the square lattice)
to fix the rotational diffusion and change the propulsion speed
leads to variant II [47], which is displaced further from Ising
universality. There is an apparent violation of the hyperscaling
relation, although one has to keep in mind that measuring β is
challenging in these simulations and its value has the largest
uncertainty. Off lattice, ABPs with fixed rotational diffusion
and changing the speed v0 have been studied in Ref. [34].
The resulting values are even further from Ising universality
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FIG. 2. Numerical estimates of critical exponents in two dimen-
sions: off-lattice ABPs [34] and AOUPs [33], and lattice ABPs
variants I (on square and hexagonal lattice) and II [35]. The dashed
line is the hyperscaling relation Eq. (6) and the gray area indicates an
uncertainty of ±15%. The blue models vary the rotational diffusion
time τr to change the Péclet number Pe ≡ 3v0τr/σ whereas the red
models change the propulsion speed v0.

but still seem to obey the hyperscaling relation within un-
certainties. One explanation is that the system sizes studied
are insufficient due to large corrections to scaling, which
is pending further numerical investigations. Also shown are
results for active Ornstein-Uhlenbeck particles (AOUPs) [48]
obtained by Maggi et al. [33], which are related to variant I in
the sense that the control parameter is the rotational diffusion
but now the speed magnitude fluctuates.

III. FIELD THEORY

A. Effective hydrodynamic equations

We are interested in an effective field theory in d di-
mensions that describes the large-scale evolution of the slow
collective degrees of freedom, typically the density. Such
theories are often constructed top-down from conservation
laws and symmetry considerations [49]. What we would like
to achieve is to coarse grain the particle-based Eq. (1) into
an evolution equation for an order parameter field. Even for
passive systems, there is no unique answer. One route is to
transform Eq. (1) into a stochastic field theory for a sum of δ

peaks which thus contains exactly the same information [50].
Smoothing the field over some length necessarily modifies the
evolution equation in a nontrivial way [51], precluding a sim-
ple correspondence between the (effective) parameters of the
evolution equation and the microscopic forces. Our strategy
here is based on the isotropic bulk pressure, which has been
shown to predict coexisting densities of ABPs that agree very
well with direct numerical estimates [52,53]. The pressure
function itself needs to be determined and parametrized from
computer simulations.

Our starting point is the hydrodynamic equations for ABPs
that follow from the evolution of the one-body joint proba-
bility of position and orientation for a tagged particle [19,54].
Integrating out the orientation leads to a hierarchy of moments
that can be closed (in the large-scale limit, viz. vanishing
wave vector q → 0) after the first nonconserved moment.

The zeroth moment of this hierarchy, the density ρ(r, t ), is
conserved, ∂tρ + ∇ · j = 0, with particle current

j = p − �−2∇ρ + F. (8)

The first two terms are the current of noninteracting particles,
and the conditional force F(r, t ) is a functional of the two-
body correlation function taking into account the effect of
surrounding particles onto a tagged particle [55]. Throughout,
we employ dimensionless quantities through measuring time
in units of the orientational relaxation time τr and lengths in
units of the persistence length v0τr with bare propulsion speed
v0. The control parameter thus is the scaled dimensionless
persistence length � ≡ v0

√
τr/D0 with bare translational dif-

fusion coefficient D0. The repulsive interactions reduce the
effective propulsion speed v(ρ), which becomes a function of
the local density. We scale the density so the effective propul-
sion speed reads v(ρ) = 1 − ρ and stays zero for ρ > 1. Such
a linear decrease of the effective speed with density has been
confirmed in computer simulations for ABPs [37,56].

The particle current Eq. (8) couples to the local polariza-
tion field p(r, t ), the first moment of the orientation, which
obeys [19]

∂t p = − 1

d
∇(vρ) + �−2∇2p − p. (9)

The polarization field is not conserved because of the last
term, which captures the relaxation due to the free rotational
diffusion. Here we have already neglected the coupling to
moments of higher order, which decay even faster and are thus
expected to be irrelevant in the q → 0 limit. To close these
hydrodynamic equations, one needs to find a representation of
the conditional force F(ρ, p,∇ρ, . . . ) in terms of the density
and polarization, and their derivatives.

B. Adiabatic mean-field theory

A simple closure is achieved through approximating the
conditional force Fad ≈ −ρpad together with the adiabatic so-
lution pad = − 1

d ∇(vρ) slaving the polarization to the density,
which is obtained through neglecting the temporal and spatial
derivatives in Eq. (9). This adiabatic solution together with
the current jad ≈ vpad − �−2∇ρ leads to a Landau mean-field
theory with effective free energy [57]

�ad[φ] =
∫

dd r
[

1

2

(
1

�2
− 1

8d

)
φ2 + 1

6d
φ4

]
(10)

for the field φ = ρ − ρc,ad. A weakly nonlinear analysis
around the critical point leads to the same free energy density
plus a squared gradient term [57,58]. This expansion can be
systematically pushed to higher orders [59,60].

While the adiabatic theory already predicts motility-
induced phase separation qualitatively [57], the critical
density ρc,ad = 3

4 and critical persistence length �c,ad = √
8d

are independent of details of the microscopic interactions. A
second route to the mean-field critical point is through the
equation of state for the bulk pressure [53,61],

p(ρ; �) = 1

d
ρ(1 − ρ) + pIK + �−2ρ, (11)
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whereby the last term is the ideal gas pressure. For a uniform
fluid, the repulsive interactions between particles give rise to
an isotropic pressure pIK(ρ; �) increasing monotonically with
density [52,53,61], and the conditional force F = −∇pIK.
An interaction term of the form pIK = �−1 f (ρ) has been
measured for active hard disks (d = 2) in computer simu-
lations in the homogeneous phase (� < �c) [52,53,61]. The
function f (ρ) captures the model-specific interactions. The
two conditions for the critical point are p′(ρc; �c) = 0 and
p′′(ρc; �c) = 0 (here the prime denotes the derivative with
respect to the density). For the data of Ref. [61], parametrizing
the function f (ρ) one finds ρc � 0.69 reasonably close to 0.75
but �c � 26.3 is much larger than the adiabatic prediction
�c,ad = 4 in d = 2 [53]. The simulations of Ref. [34] find
�c = Pec/

√
3 � 23.

C. Current expansion

To improve the adiabatic result and take into account inter-
particle forces beyond an effective speed v(ρ), we expand the
conditional force in Eq. (8),

F ≈ −�−1∇[ f1δρ + f2(δρ)2] − ζpδρ + ζp∇p2, (12)

up to second order of polarization and density fluctuations
δρ ≡ ρ − ρc away from the critical density ρc. The two terms
inside the brackets stem from the expansion of f (ρ) obtained
for a uniform fluid. Even without knowledge of this function,
close to the critical point we can find the coefficients from the
conditions p′(ρc) = 0 and p′′(ρc) = 0 at � = �c, which imply
f2 = �c/d and f1 = �c(α − �−2

c ). Here we have introduced
the parameter α > �−2

c > 0, determining the critical density
through ρc = 1

2 + d
2 α. The values for �c and α are determined

by the functional form of f (ρ) but are considered an input to
the theory in the following.

The last two terms in Eq. (12) take into account the cou-
pling between polarization and density fluctuations as well as
the gradient of the polarization magnitude. The corresponding
coefficients ζ and ζp are additional free parameters of the
theory. We thus obtain the coupled hydrodynamic equations

∂tδρ = c∇2δρ − ∇ · p + ζ∇ · (pδρ)

+ ζ2∇2(δρ)2 − ζp∇2p2 (13)

and

∂t p = �−2∇2p − p + α∇δρ + 1

d
∇(δρ)2, (14)

with coefficients c ≡ f1/� + �−2 and ζ2 ≡ �c/(d�).

D. Linear analysis and Gaussian fixed point

We collect the density and polarization into d + 1 fields
pi(r, t ), whereby p0 = δρ. In Fourier space,

pi(r, t ) =
∫

dd qdω

(2π )d+1
ei(q·r−ωt ) pi(q, ω), (15)

with magnitude q = |q| of the wave vector q. The linearized
hydrodynamic equations can be written −iωpi = Li j p j , with

(d + 1) × (d + 1) matrix

L(q) =

⎛
⎜⎜⎝

−cq2 −iq1 −iq2 · · ·
αiq1 −(q/�)2 − 1 0
αiq2 0 −(q/�)2 − 1

...
. . .

⎞
⎟⎟⎠.

(16)

We follow the summation convention and sum over repeated
indices. In Appendix, we show that d eigenvalues of this
matrix are of the form −1 + O(q2) and thus negative for small
q, plus one eigenvalue σ+(q) that can be expanded for small q
into σ+(q) ≈ −aq2 − κq4 with two coefficients, the distance

a = c − α = −(α + �−2
c )(1 − �c/�) + �−2

c (1 − �c/�)2 (17)

to the mean-field critical point and the positive stiffness:

κ = α�−2
c + α(α − �−2

c )(1 − �c/�). (18)

For a < 0 (� > �c), the eigenvalue σ+ becomes positive for
small q, signaling a dynamic instability.

The corresponding eigenvector Li jv
+
j = σ+v+

i reads

v+(q) ≈

⎛
⎜⎜⎝

1 + κ
α

q2

αiq1

αiq2
...

⎞
⎟⎟⎠ (19)

up to order q2. So far, we have ignored that the hydrodynamic
equations do come with a noise term, both due to the influence
of the solvent and due to the coarse graining into fields. The
noise is modeled as Gaussian with zero mean and correlations:

〈η(q̂)η(q̂′)〉 = 2Dq2(2π )d+1δd (q + q′)δ(ω + ω′). (20)

Note the factor q2, which appears due to the conservation of
the density. The evolution of the eigenmode v+ with coeffi-
cient φ(q, ω) is thus φ = G0η with free propagator

G0(q̂) = G0(q, ω) ≡ 1

−iω + aq2 + κq4
(21)

after switching to the frequency domain and writing q̂ ≡
(q, ω). The correlation function of the eigenmode becomes

〈φ(q̂)φ(q̂′)〉 = (2π )d+1C0(q̂)δd+1(q̂ + q̂′), (22)

with C0(q̂) ≡ 2Dq2G0(q̂)G0(−q̂). The static structure factor
follows as

S0(q) = 1

2π

∫ ∞

−∞
dω C0(q, ω) = D

a + κq2
, (23)

from which we read off the correlation length ξ = √
κ/a ∝

a−ν with exponent ν = 1
2 . The correlation length diverges at

the critical point with S0(q) ∼ q−2. In general, S(q) ∼ q−2+η,
and the two critical exponents ν = 1

2 and η = 0 define the
Gaussian fixed point.

E. Nonlinear theory: Eigenmode expansion

We return to the evolution Eq. (13) for the
density field p0, which now reads (with index
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k = 1, . . . , d)

−iωp0 = L0i pi + iζqk

∫
k̂

pk (k̂)p0(q̂ − k̂)

− ζ2q2
∫

k̂
p0(k̂)p0(q̂ − k̂)

+ ζpq2
∫

k̂
pk (k̂)pk (q̂ − k̂), (24)

writing k̂ ≡ (k,�) and
∫

k̂
≡

∫
dd kd�

(2π )d+1
. (25)

Clearly, the density couples to the polarization fields pk

through the first nonlinear term. For a closure, we expand the
fields into the eigenvectors of the matrix L:

pi =
d∑

n=0

φ(n)v
(n)
i ≈ φv+

i . (26)

In the following, we restrict our attention to the dynamics
of the slowest mode amplitude φ(q, ω) corresponding to the
eigenvalue σ+(q). Inserting p0 = v+

0 φ and pk = αiqkφ into
Eq. (24) yields

−iωv+
0 φ = σ+v+

0 φ −
∫

k̂
[ζαq · kv+

0 (q − k)

+ ζ2q2v+
0 (k)v+

0 (q − k)

+ ζpα
2q2k · (q − k)]φ(k̂)φ(q̂ − k̂). (27)

Gathering terms into the free propagator G0 [Eq. (21)] and
including again the noise field leads to the evolution equation

φ = G0η + G0

∫
k̂
v2(k, q − k)φ(k̂)φ(q̂ − k̂), (28)

which is our first central result. It suggests that the scalar order
parameter for the critical fluctuations is not exactly the density
δρ but the coefficient φ of the slowest mode with density δρ ≈
φ − (κ/α)∇2φ and polarization field p ≈ α∇φ in real space.
Neglecting the term ∇2φ, we recover the linearized adiabatic
solution.

In Eq. (28), we have defined the bare symmetric vertex

v2(k1, k2) = 1
2 [v′

2(k1, k2) + v′
2(k2, k1)], (29)

with

v′
2(k1, k2) ≡ − v+

0 (k2)[ζαq · k1 + ζ2q2v+
0 (k1)]/v+

0 (q)

− ζpα
2q2k1 · k2/v

+
0 (q). (30)

Since there is only one field φ, v2(k1, k2) must be symmetric
with respect to exchanging k1 ↔ k2. Note the effective mo-
mentum conservation q = k1 + k2. In real space, this function
represents a nonlocal kernel and upon expansion generates
spatial derivatives of φ.

Let us see what these derivatives are. At the mean-field
critical point with a = 0, we insert v+

0 (q) ≈ 1 + (q/�c)2. To
lowest order q2, we find

v
(2)
2 = − 1

2ζαq · (k1 + k2) − ζ2q2 = −b̄q2 (31)

with b̄ = ζα/2 + ζ2, which corresponds to b̄∇2φ2 in real
space. The next order comprises products of four wave
vectors:

v
(4)
2 = b̄

�2
c

q4 − ζ2

�2
c

q2
(
k2

1 + k2
2

) − ζpα
2q2k1 · k2

− 1

2

ζα

�2
c

(q · k1k2
2 + q · k2k2

1 ). (32)

The second term is split using k2
1 + k2

2 = q2 − 2k1 · k2 so

v
(4)
2 = c1

2
q4 + c2q2k1 · k2 − c3

2

(
q · k1k2

2 + q · k2k2
1

)
, (33)

with three further coefficients (using ζ2 = 1/d)

c1 = ζα

�2
c

, c2 = 2

d�2
c

− ζpα
2, c3 = ζα

�2
c

. (34)

In real space, these terms correspond to 1
2 c1∇4φ2, c2∇2|∇φ|2,

and −c3∇ · [(∇2φ)∇φ]. The values for the bare coefficients
b̄ and cn are given to leading order at the mean-field critical
point but in principle they depend on the distance a from the
critical point.

The evolution Eq. (28) for the order parameter field φ(r, t )
in real space thus becomes

∂tφ = ∇2(aφ + b̄φ2 − κ∇2φ) + c1

2
∇4φ2 + c2∇2|∇φ|2

− c3∇ · [(∇2φ)∇φ] + η, (35)

which is precisely active model B+ and constitutes our second
central result. It includes all quadratic terms involving up to
four ∇’s that respect translational and rotational symmetry.
Clearly, the coupling ζ between polarization and density in the
conditional force [Eq. (12)] is crucial to generate the nonlinear
terms with coefficients c1 and c3. Equation (35) corresponds
to a conserved dynamical equation for φ with current

jφ = −∇ δ�

δφ
− ∇

(c1

2
∇2φ2 + c2|∇φ|2

)
+ c3(∇2φ)∇φ

(36)
involving the Landau-Ginzburg functional:

�[φ] ≡
∫

dd r
[
κ

2
|∇φ|2 + a

2
φ2 + b̄

3
φ3 + u

4
φ4

]
. (37)

Here we have added a φ4 term with coefficient u > 0, which
would have been generated by our expansion of f (ρ) to third
order [Eq. (12)] (and neglecting all other terms that would ap-
pear at this order). The cubic term b̄φ3 can then be eliminated
through shifting φ 
→ φ + φ0 with φ0 = −b̄/(3u). This shift
leads to a linear term ∝ φ in � which does not change the
evolution equation. It also reduces a 
→ a − b̄2/(3u) with the
Gaussian critical point still defined by the condition a = 0
as well as κ 
→ κ − c1φ0. Table I summarizes the fields and
parameters of the coarse-grained descriptions.

IV. DISCUSSION

A. Coexistence

Before going to the critical point, let us look at state points
� > �c in the two-phase region with coexisting dense and
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TABLE I. Summary of the three levels of description. The only
independent input to ABPs [Eq. (1)] is a pair potential u(r) determin-
ing the pairwise forces. The closed hydrodynamic Eqs. (13) and (14)
depend on the mean-field critical persistence length �c, α determining
the mean-field critical density ρc, and the unknown coefficients ζ

and ζp. Active model B+ [Eq. (35)] only involves a single scalar
field φ(r, t ) with now seven model parameters that can be expressed
through the four hydrodynamic parameters. These parameters are
functions of a microscopic length �−1.

Degrees of freedom Model parameters

Active model B+ φ(r, t ) κ , D, a, u, cn

Effective hydrodynamics ρ(r, t ), p(r, t ) �c, α, ζ , ζp

Microscopic ABPs {rk, ek} u(r)

dilute domains. First, note that the terms involving κ , c1, and
c2 in Eq. (35) can be rewritten as

∇2[−(κ − c1φ)∇2φ + λ|∇φ|2], (38)

with λ ≡ c1 + c2. If we compare this expression with the
functional derivative

δ

δφ

∫
dd r

1

2
κ (φ)|∇φ|2 = −κ (φ)∇2φ − 1

2
κ ′(φ)|∇φ|2,

(39)

we see that with κ (φ) ≡ κ − c1φ these terms can be absorbed
into the Landau-Ginzburg functional Eq. (37) if the relation
λ = −κ ′(φ)/2 holds. For the nonlinear coefficients cn, this
leads to the conditions c3 = 0 and c1 + 2c2 = 0 along which
a free-energy functional is restored implying equilibriumlike
behavior.

Moving away from the equilibriumlike regime with c3 �= 0,
Eq. (35) predicts a qualitatively new feature: droplets of the
(local) minority phase have a typical finite size with smaller
droplets growing and larger droplets shrinking [40]. This
reverse Ostwald ripening leads to both “bubbly” phase sep-
aration with gas droplets suspended within the dense liquid as
well as a state that resembles microphase separation [Fig. 3(a),
see also Ref. [63] for the emergence of periodic solutions in
a related type of field theory]. This process implies a distribu-
tion of droplet sizes that is peaked around the typical size as

(a)

(b)

(b)

(c)

(a)

FIG. 3. Numerical results at coexistence. (a) Numerical solution
of active model B+ [Eq. (35)] for c1 = 0, c2 = 1, and c3 = 4 inside
the two-phase region. (Reproduced from Ref. [40].) (b), (c) Sim-
ulation snapshots for active Brownian particles with anisotropic
mobility tensor for two system sizes. (Reproduced with permission
from Ref. [62].)

confirmed in numerical solutions of Eq. (35). At variance with
this picture, the distribution of droplet sizes in simulations of
ABPs decays algebraically and scales with the system size
[62], cf. Figs. 3(b) and 3(c) (the authors even had to introduce
an anisotropic mobility tensor to promote gas bubbles). In-
deed, a closer looks suggests that the creation of these bubbles
is connected to defects between domains of differently aligned
hexatic order [64]. Moreover, it has been shown recently that
the coexisting densities predicted from analytical expressions
for κ (φ) and λ(φ), which have been derived from the stress,
are in excellent agreement with numerical results for ABPs in
d = 2 setting c3 = 0 [53]. Together, these results suggest that
the coexistence of (standard) ABPs is closer to active model
B with c3 = 0.

B. Perturbative renormalization

We now turn to the large-scale behavior in the vicinity
of the critical point. The scaling dimension 	x determines
whether the quantity x is relevant (	x > 0) or irrelevant
(	x < 0) with the borderline 	x = 0 termed marginal. In-
variance of aφ + uφ3 implies 	a = 	u + 2	φ with (naive)
scaling dimension 	u = 4 − d so in dimensions d > 4 the
nonlinear terms in Eq. (35) become irrelevant (they are
mapped to zero under the RG flow). The critical behavior
is then determined by the Gaussian critical fixed point (see
Sec. III D) with a the only relevant parameter determining
the distance to the Gaussian critical point. The accepted pic-
ture for the Ising model is that at dc = 4, another fixed point,
the Wilson-Fisher fixed point (WF), detaches from the Gaus-
sian fixed point (G). WF moves away as d is reduced and for
d < 4 determines the critical behavior (G now is repulsive
along u while WF is attractive so any initial point not fine-
tuned to a = 0 will flow into WF). The WF has been studied
extensively through perturbative RG with good quantitative
agreement with the critical exponents of the Ising model in
d = 2 and (numerically determined) in d = 3 [65].

Wilson’s shell renormalization scheme produces flow
equations for the model parameters x = (κ, D, a, . . . ) of
the form

∂l xn = (	n + ψn)xn. (40)

Here, ψn(x) denotes the graphical corrections due to the
recursive solution of Eq. (28), which generates a series of
terms with increasing powers of the vertices. In a nutshell,
internal wave vectors are integrated out in the thin shell
�/(1 + δl ) < k < � with microscopic cutoff � leading to
x̃n = (1 + ψnδl )xn. Restoring the cutoff requires us to scale
external wave vectors q → bq with b = 1 + δl implying x′

n =
b	n x̃n ≈ (1 + 	nδl )(1 + ψnδl )xn, leading to Eq. (40) in the
limit δl → 0. The model parameters x(l ) become a function
of the scale b = el . Since ξ (l ) = ξ0e−l , any initial values x0

with finite correlation length ξ0 will flow to ξ → 0 as l → ∞.
Only when hitting ξ → ∞ will the flow take us to a critical
fixed point of the RG flow.

Caballero et al. have calculated Wilson’s flow equa-
tions for active model B+ including the one-loop corrections
[41]. Good references for technical details of dynamic RG
calculations are Refs. [15,66]. For completeness, let us re-
capitulate the main points. First, note that the naive scaling
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(a)

q

−kk

(b)
q

q − k
q

k −k

(c)

q

k −k (d)

q

k −k

FIG. 4. Graphical representation of the relevant one-loop correc-
tions with two vertices. Outgoing external legs represent φ [noise in
(b)], internal lines the free propagator G0 [Eq. (21)], and the open
circle is the correlation function C0. Each edge has an orientation
and carries a wave vector (and frequency) such that at each vertex
vn(k1, . . . , kn) the sum of outgoing wave vectors ki equals the single
ingoing wave vector (orientations indicated by arrows).

dimensions keeping Eq. (35) invariant under rescaling length
and time are 	κ = z − 4, 	u = z − 2 − 2	φ , and 	D =
	κ + η = z − 2 − d + 2	φ using Eq. (5) with dynamic ex-
ponent z. Moreover, the coefficients cn have the same scaling
dimension 	c = z − 4 − 	φ . Second, we introduce suitable
reduced parameters

ū ≡ uD

κ2
Kd�

4−d , c̄n ≡ cnD1/2

κ3/2
K1/2

d �d/2−1 (41)

that remove the dependence on the unknown exponents z and
	φ with Kd ≡ Sd/(2π )d (Sd is the surface area of a hyper-
sphere in d dimensions).

To complement the discussion of Ref. [41] and relate to
the numerical results for the critical exponents of ABPs, let
us focus on the RG flow close to two dimensions through
setting d = 2 + ε with ε assumed to be small. To lowest order
of the nonlinear coefficients u and cn, only graphs with two
vertices contribute, which are shown in Fig. 4: Fig. 4(a) is
the conventional Ising contribution ψu ∝ u2, Fig. 4(b) leads
to the correction ψκ ∝ c2

n, and Figs. 4(c) and 4(d) give rise to
corrections ψcn ∝ ucn. The final flow equations read

∂l ū = (2 − ε − 9ū − 2ψκ )ū (42)

and

∂l c̄1 =
(

−ε

2
− 3

2
ψκ

)
c̄1 − 3ū(c̄1 + 2c̄2) + 9

2
ūc̄3, (43)

∂l c̄2 =
(

−ε

2
− 3

2
ψκ

)
c̄2 + 3

2
ūc̄1ε − 3ūc̄3, (44)

∂l c̄3 =
(

−ε

2
− 3

2
ψκ

)
c̄3. (45)

Here we have used that the noise strength D does not receive
corrections (ψD = 0) and we have expanded ψcn with the
coefficients taken from Ref. [41] to leading order of ε.

For cn = 0 implying ψκ = 0, we immediately recover the
WF fixed point at ū∗ = (2 − ε)/9. Of course, the exact value
is not to be trusted close to two dimensions but it is widely
accepted that the qualitative picture is correct and the WF cor-

FIG. 5. Renormalization flow portrait. (a) Varying c̄1 and c̄2 for
c̄3 = 0 and ū∗ = (2 − ε)/9 at ε = 0.04. The filled symbol indicates
the Wilson-Fisher fixed point and the open symbols the fixed points
Eq. (47). Along the solid black line, c̄1 + 2c̄2 = 0 corresponding to
an equilibriumlike free-energy functional. (b) Varying c̄2 and c̄3 with
c̄1 + 2c̄2 = 0.

responds to Ising criticality even away from the upper critical
dimension dc = 4. For the following discussion, it is sufficient
to assume that the WF sits at some positive ūWF ∼ O(1).

From Ref. [41], we find

ψκ = − 1
2 c̄2

1 + c̄1c̄2 − 1
4 c̄1c̄3 + c̄2

2 − 2c̄2c̄3 (46)

at d = 2 (which we have confirmed independently). To de-
termine further fixed points, we thus have to solve the set of
cubic equations. The first pair is determined by ψκ = −ε/3,
which fixes ū∗ = (2 − ε/3)/9. The remaining equations are
independent of ū∗ with solutions

c̄∗
1 = ± 2

3ε1/2, c̄∗
2 = ∓ 1

3ε1/2, c̄∗
3 = ± 1

3ε3/2 (47)

to leading order consistent with the perturbative expansion of
Eq. (35). These fixed points merge with the WF for ε → 0.
Moreover, they lie along the line c̄1 + 2c̄2 corresponding to
an equilibrium-like free energy functional with stiffness κ (φ)
discussed in the previous section IV A. Further fixed points lie
outside the perturbative region. Figure 5 visualizes the flow of
the nonlinear coefficients around the fixed points.

As one might expect, the scaling dimensions of the WF are
not changed by the new fixed points (47). However, these fixed
points strongly limit the region of the nonlinear parameters for
which the WF is attractive, which vanishes entirely as ε →
0. The new fixed points are attractive along the directions ū
and c̄1, and repulsive along c̄3. At least for small ε, the flow
is attracted to the line c̄1 + 2c̄2 = 0 running away from the
perturbative region outside the new fixed points. For ε = 0,
the linearized flow around these fixed points reads

∂lδc̄ = −3ū

⎛
⎝1 2 − 3

2
0 0 1
0 0 0

⎞
⎠δc̄, (48)

which has eigenvector e1 = (1, 0, 0)T with eigenvalue 	1 =
−3ū and eigenvector e0 = (−2, 1, 0)T with zero eigenvalue.
Figure 5(a) shows that the flow along e0 is repulsive and thus
marginally relevant.

V. CONCLUSIONS

As a step toward a comprehensive link between micro-
scopic particle-based models of scalar active matter and their
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continuum field theories, we have presented a route to active
model B+ [Eq. (35)] starting from the intermediate hydro-
dynamic equations for density [Eq. (13)] and polarization
[Eq. (14)]. We have identified the coupling ζ between density
fluctuations and polarization in the quadratic expansion of the
conditional force [Eq. (12)] as the crucial term that generates
the nonpotential contributions with coefficients c1 and c3 to
active model B+ in Eq. (35). Still missing is a strategy to
calculate ζ from particle-based simulations of the microscopic
equations of motion.

We have then revisited the RG flow close to two dimen-
sions. The picture that follows from the perturbative RG in
d → 2 is the following: While the naive scaling dimension
	c = −ε/2 of the nonlinear coefficients cn indicates that they
are irrelevant, they do give rise to a pair of new fixed points
that destabilize the WF in two dimensions. Consequently, the
parameters cn run off to a nonperturbative regime. While one
can only speculate about their fate, it is interesting to note that
c̄1 and c̄2 are pulled toward values that restore the Landau-
Ginzburg functional [Eq. (37)] with field-dependent stiffness
κ (φ) = κ − c1φ and current

jφ = −∇ δ�

δφ
+ c3(∇2φ)∇φ. (49)

This suggests that two outcomes are possible: For ζ = 0
implying c3 = 0, one would expect indeed equilibriumlike
behavior (with a strong-coupling equilibrium fixed point re-
siding on the line c1 + 2c2 = 0). If ζ �= 0 and the coupling
between density and polarization in Eq. (12) is relevant, then
c3 runs off from its initial value c3(0) = ζα and it is conceiv-
able that the critical behavior is governed by a non-Ising fixed
point. The strong discrepancy between the numerical results
for different models (Fig. 2) hints at such a possibility, in
particular, between (on and off lattice) ABPs and AOUPs.

Maggi et al. studied the fluctuation-dissipation theorem in
AOUPs in d = 2 dimensions as a function of wave vector
q [67]. They found that the FDT is fulfilled on large length
scales (small q) but violated on shorter scales. This prompted
them to replace the white-noise Eq. (20) by colored noise
characterized by a spatial and temporal decay scale. However,
in the limit q → 0 such colored noise will again reduce to

white noise and does not affect the critical properties. It does
agree with our observation that the equilibrium line is attrac-
tive and, at least for AOUPs on large scales, equilibriumlike
behavior obeying the fluctuation-dissipation theorem is re-
stored. It would be interesting to study if that extends to ABPs
with fixed speed magnitude, which are also characterized by
the absence of persistent particle currents in the steady state.
Further numerical studies are certainly welcome to shed light
on the critical behavior of active particles.
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APPENDIX: EIGENVALUES

We exploit that the determinant of a block matrix M that is
decomposed into

M =
(

A B
C D

)
(A1)

reads det(M) = (A − BD−1C) det(D). Setting M = L − σ1
with L from Eq. (16), we have A = −cq2 − σ , B = −iqT ,
C = αiq, and D = −(1 + (q/�)2 + σ )1, whence the charac-
teristic equation reads(

cq2 + σ − αq2

1 + (q/�)2 + σ

)(
1 + (q/�)2 + σ

)d = 0.

(A2)

Clearly, d − 1 eigenvalues are given by σ0 = −1 − (q/�)2

and two more eigenvalues are the solutions σ± of a quadratic
equation. We use v± = (v±

0 , αiq) as an ansatz for the eigen-
vector with unknown v±

0 (q) leading to

L · v± = σ±

(−cq2v±
0 +αq2

σ±
αiq

)
, (A3)

with σ±(q) = v±
0 (q) − 1 − (q/�)2 and σ±v±

0 = −cq2v±
0 +

αq2. The solution of these two quadratic equations yields the
same σ±(q) and v+

0 (q) ≈ 1 + (κ/α)q2.
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