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Delayed collapse transitions in a pinned polymer system
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Employing Langevin dynamics simulations, we investigated the kinetics of the collapse transition for a
polymer of length N when a particular monomer at a position 1 � X � N is pinned. The results are compared
with the kinetics of a free polymer. The equilibrium θ -point separating the coil from the globule phase is located
by a crossover in 〈R2

g〉/N plots of different chain lengths. Our simulation supports a three-stage mechanism
for free and pinned polymer collapse: the formation of pearls, the coarsening of pearls, and the formation of
a compact globule. Pinning the central monomer has negligible effects on the kinetics as it does not break the
symmetry. However, pinning a monomer elsewhere causes the process to be delayed by a constant factor φX

depending linearly upon X . The total collapse time scales with N as τc ∼ φX N1.60±0.03, which implies τc is
maximum when an end monomer is pinned (X = 1 or N), while when pinning the central monomer (X = N/2)
it is minimum and identical to that of a free polymer. The average cluster size Nc(t ) grows in time as t z, where
z = 1.00 ± 0.04 for a free particle, whereas we identify two time regimes separated by a plateau for pinned
polymers. At longer times, z = 1.00 ± 0.04, while it deviates in early time regimes significantly, depending on
the value of X .

DOI: 10.1103/PhysRevE.105.064505

I. INTRODUCTION

The dynamics of a coil-globule transition in a polymer
system, when the solvent conditions are changed from “good”
to “poor” [1], has been of great interest since the first study
of Stockmayer [2]. In the good solvent, the chain remains
swollen and the radius of gyration scales with the degree
of polymerization as Rg ∼ N3/5. When the solvent changes
from good to poor, scaling is found as Rg ∼ N1/3 [1–3].
Generally, the solvent conditions are determined by an inter-
play between the monomer-monomer, monomer-solvent, and
solvent-solvent interactions, and they can be changed upon
variation of the system’s properties, e.g., temperature, pH,
interactions, etc. For example, in a low-temperature regime,
monomer-monomer interaction is strong, which favors the
globule state, while at higher temperatures, the magnitude of
this interaction is insufficient to perturb the coil state con-
formation. For the continuous drop in temperature from a
higher to a lower range, the transition can be located, and it is
the so-called θ -point, where the polymer behaves as an ideal
chain as Rg ∼ N1/2 and the associated temperature is called
the θ -temperature.

de Gennes and co-workers proposed the first theoretical
study of the coil-to-globule transition dynamics [4]. They pro-
posed an “expanding sausage model,” i.e., a two-stage model
in which the collapsing of a random-coil linear chain leads
to crumple (or blob) formation on a minimal scale along the
chain backbone. After that, the blobs that absorb monomers
form bigger blobs until a compact globule is formed [4,5]. The
associated characteristic relaxation times τcrumple and τcollapse
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are measured experimentally, showing that crumpling hap-
pens faster while collapsing is slower [6]. Later, Halperin and
Goldbart proposed a three-stage “pearl necklace model” in
which the blobs grow in size by absorbing the beads from the
bridges connecting them until the bridges become straight-
ened, which makes the polymer conformation look like a
“pearl necklace,” and finally the clusters join together and
deform into a globule. They also proposed three characteristic
times corresponding to the three different stages, i.e., scale
as N0, N1/5, and N6/5, respectively [7]. Several studies using
Langevin models [8,9], phenomenological models [5,10], and
computer simulations [11–14] have been used to consider the
kinetics of collapse in the absence of topological constraints;
however, there is no consensus on the exact mechanisms and
scaling law for these stages (“pearling,” bridge-stretching, and
collapse).

For a free polymer, Flory first predicted that the scaling
between the characteristic collapse time and N should follow
the relation τc ∼ N2 [3]. Later, Pham et al. obtained a relation
τc ∼ N1.01 using Brownian dynamics simulations [15]. The
collapse time is proposed to scale as τc ∼ N0.93 in Ref. [10],
τc ∼ N4/3 in Refs. [16,17], and τc ∼ N0.98 as reported by Guo
using the dissipative particle dynamics simulations [18]. The
increase in the collapse times with increasing chain length is
an expected result as it depends on how fast smaller blobs
absorb others to form the final compact structure [7,15,19–
24]. In a free polymer, the crumpling and coarsening process
starts from both ends and leads to the globule formation
at the center. Studies related to the kinetics of a collapsing
polymer with constraints, such as anchored polymers near
wedges and surfaces [25–28], have incorporated the effect of
perturbed symmetry due to pinning the chain to the surface.
While the impact of topological constraints on the equilibrium
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properties of the polymer have been widely explored, kinetic
studies of such systems remain elusive. Particularly in the
context of polymer aggregation, the constraint’s effect on the
characteristic times of various stages involved, such as the lo-
cal blob formation and coarsening, can reveal some intriguing
results.

The method of pinning a fraction of a particle by com-
pletely freezing the degree of freedom and observing the
thermodynamics of the remaining free particles has been
successfully applied to determine the existence of static
cooperative lengthscales in numerical models [29,30]. For
example, in glass-forming liquids, pinning induces a new
kind of glass transition, namely the random pinning glass
transition (RPGT) [31,32], which can be used to predict
some features of standard thermodynamic glass transitions
[33,34]. While pinning methods have been widely used
to showcase studies on the diverse class of systems such
as molecular liquids, magnetic spin systems, and glass
systems [29–31,35–37], only a few studies are available re-
lated to equilibrium and kinetic studies on pinned polymer
systems [28,38–40].

Since molecules are connected through a finitely extensi-
ble string, in this case of a polymer, pinning random sites
or fractions may not be as applicable as in a free-particle
system. However, moving the position of an arbitrarily pinned
monomer can provide better insight into various stages
involved in the transition process. Polymer translocation
through an interacting pore is one such exciting example.
In experiments, it is found that the blockade current mainly
depends on the few nucleotides passing through the channel at
a time in the threading process. The monomer at the interface
interacts with the pore. It divides the chain into two unequal
lengths across the pore, allowing the polymer to achieve dif-
ferent configurations on two sides [41]. The effect of unequal
entropy can be seen in the calculated mean first passage times
and the free-energy profile of a translocating polymer. In case
the solvent conditions felt by the polymer across the pore are
not similar, it is found that the translocation time depends on
the time of globule formation as well as the size of the globule
on the other side [42,43].

The paper is organized as follows: In Sec. II, we briefly
discuss the model and describe the Langevin equation used to
obtain the thermodynamic parameters of interest. In Sec. III,
we locate the θ -point for the coil-globule transition by cal-
culating equilibrium values of 〈Rg〉 at different temperatures.
Section IV deals with the kinetics of transition, when the
polymer is pushed into a globule state condition from the
extended state with variable pinning positions of a monomer.
The collapse time of the process as a parameter of length and
pinning index is investigated in Sec. V. Finally, we present a
brief discussion in Sec. VI.

II. MODEL AND METHOD

We consider a simple coarse-grained model of a linear
polymer chain (see Fig. 1), and we impose restrictive in-
teraction among monomers, which is sufficient to capture
some essential properties of different biopolymers, as ex-
plained in Refs. [24,44]. The energy of the system is defined

FIG. 1. Schematic representations of a self-interacting polymer
with a pinned monomer. The monomer presented with the black
sphere is pinned, and the other monomers are free to configure in the
space. X indicates the position of the pinned monomer, and X = N/2
represents a specific case in which the central monomer is pinned.
Here, every monomer can interact with the rest of the (nonadjacent)
monomers of the chain. The dashed lines show the attractive interac-
tion among the third and other nonbonded monomers.

as
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where di, j = |�ri − �r j | denotes the distance between the ith and
jth bead, �ri is the position of the ith monomer, and the number
of monomers is denoted by N . The adjacent monomers are
connected with a harmonic spring, and the potential between
them is explained by the first term in the above equation.
The nonbonded monomers interact via the Lennard-Jones (LJ)
potential, shown as the second term in Eq. (1) with the in-
teraction strength ε = 1. Following Refs. [24,44], we set the
equilibrium distance in the harmonic potential as d0(= 1) and
kσ 2/ε = 34, where σ is the unit for distance measurements.

The Langevin equation can provide a complete descrip-
tion of the collapse on all timescales and thus allows for a
systematic analysis of the problem. The following stochastic
differential equation, which includes friction and noise terms,
is used to obtained the time evolution of the system:

m
d2r
dt2

= −ζ
dr
dt

+ Fc + �, (2)

where m is the mass, ζ = 0.4m/τ is the friction coefficient,
and � is random force with zero mean [44–46]. Fc = −∇H
is the conservative force and � is the white noise, which is
related to the friction coefficient by the fluctuation dissipation
theorem 〈�i(t )� j (t ′)〉 = 2ζkBT δi, jδ(t − t ′). The temperature
(T ) is measured in units of ε/kB, where kB is the Boltzmann
constant, and δ(t − t ′) is the Dirac δ-function. To incorporate
this numerically, we use the sixth-order Gear algorithm with
a time step 
t = 0.005τ , where τ ≡

√
mσ 2/ε. Time is mea-

sured in units of τ , and the presented results are averaged over
many trajectories.
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FIG. 2. The scaled mean-square radius of gyration 〈R2
g〉/N as a

function of temperature for different chain lengths (from N = 40 up
to 240). The θ -point is located at Tθ = 3.4. The Flory exponent ν,
which is related to Rg with relation Rg ∼ Nν , is shown in the inset,
which scales from 0.30 to 0.56 (with the given error bars) and attains
a value ν = 1/2 at the θ -point. The markers shows the data point,
while the curve represents the least-squares fit.

III. LOCATING THE θ-POINT

As discussed in the Introduction, the point where two
phases separate is called the θ -point. At the θ -point, the
chain behaves as ideal because the monomer-monomer at-
traction perfectly balances the excluded volume interaction.
The Flory exponent ν, which relates the radius of gyration
with N (Rg ∼ Nν), attains a value ν = 1/2, between ν = 1/3
(globule phase) and ν = 3/5 (coil phase). Another quantity,
〈R2

g〉/N , behaves independent of the chain length. A crossover
in 〈R2

g〉/N versus temperature (T ) curve for different N values
is used to locate the θ -point here (see Fig. 2).

Depending on temperature values, the polymer can achieve
three nontrivial phases: the collapsed phase at low tempera-
tures, the random walk phase (RW) at medium temperatures,
and the self-avoiding random walk phase (SARW) at higher
temperatures. The transition between the collapsed and RW
phases is a phase transition, while a smooth crossover tran-
sition separates the RW and SARW phases. To locate the
θ -point in our system, we analyzed the values of ν and Rg in
a temperature range from better-than-θ to worse-than-θ only.
Lengths varied from a minimum of N = 40 up to N = 240.
We performed a simulation for a time duration of 6 × 108
t ,
and after equilibrium is achieved at 2 × 108
t ; data are sam-
pled on an interval of 
t for a duration of another 4 × 108
t .

In Fig. 2, we plotted 〈R2
g〉/N as a function of temperature

for different chain lengths, and we identify the phase transition
at the point of intersection. We differentiate a low-temperature
phase from a high-temperature phase passing through the
θ -point. We found Tθ = 3.4, close to the value reported in
Refs. [47–54]. In the inset of Fig. 2, the Flory exponent ν

is calculated using the 〈Rg〉 values, shown in the main plot.
At very low temperatures T < 1, the value of the Flory co-
efficient is ν = 0.3, which corresponds to the globule state.
A decent rise is registered in the ν curve as the temperature

increases until it attains a value ν = 0.5 at the transition tem-
perature Tθ = 3.4. A further increase in temperature yields
a saturation in the ν plot at ν = 0.56, which shows that the
polymer has finally achieved the coiled state. This value of
Tθ = 3.4 and 〈R2

g(Tθ )〉/N ∼ 0.75 is used as a reference for
further calculations.

IV. KINETICS OF TRANSITION

The transition from the coil to a globule follows the “pearl
necklace” mechanism, an effective three-step mechanism. The
crumple formation characterizes the first step, sometimes
called tiny clusters, blobs or droplets, throughout the chain.
The second and third stages correspond to the coarsening
and the compact globule formation stage. Crumpling happens
faster and collapses relatively slower [6]. Since we aim to
understand the collapse of a polymer chain when an arbitrar-
ily chosen monomer is pinned in the chain, we ensure that
the polymer initially (at t = 0) remains in its stretched state
to avoid crumples before the simulation starts. For imple-
mentation, we choose a polymer configuration equilibrated
in the SARW phase (at a very high temperature) to ensure
that monomers do not form any non-native bonds before the
process starts. We used the same initial condition for every
simulation so that the local blob formation before quenching
does not affect the transition’s kinetics when the monomer is
pinned. The system immediately quenched into poor solvent
conditions by abruptly decreasing the temperature below the
transition point down to T = 1.0 (as Tθ = 3.4 from Fig. 2).

First, we analyze the collapse of a free polymer at varying
temperatures. In Figs. 3(a)–3(e), chain configurations show a
typical sequence of events along with the folding pathway for
a free polymer chain. Initially formed crumples are encircled
with dots across the length in the Fig. 3 snapshots. Figure 3(b)
shows blobs of increased size after absorbing monomers from
the smaller blobs along the bridges between them. The “bridge
straightening” stage proposed by Halperin and Goldbart is
apparent from Fig. 3(c), where two smaller compact glob-
ules are pushing outwards, and the bridge between them is
stretching. In the end, bridge monomers are also absorbed by
the two globules to form a deformed globule, as shown in
Fig. 3(d), which relaxes to a perfect spherical globule state
after equilibration, shown with the solid circle in Fig. 3(e).

To study the coil-globule transition in a pinned polymer
system, we froze the degree of freedom of an arbitrarily
chosen monomer at its equilibrium position. The thermody-
namics of the remaining free chain is studied. Pinning an
end monomer (when pinning index X = 1 or X = N), hereby
referred to as an anchored polymer, represents the similar
dynamics involved in studies related to a polymer anchored to
noninteracting wedges or surfaces through fixing the one end
only [26,27]. Moving the pinned monomer towards the center
partitions it into two chains of unequal lengths. For example,
X = N/2 indicates that the pinned monomer sits at the center
of the chain and divides it into two almost equal parts. This
example is also shown in the schematic diagram of the model,
Fig. 1, where the pinned monomer is represented by a black
sphere, and other free monomers are represented by maroon.

As an aggregate measure of the process, we monitor 〈Rg〉 as
a function of time. The results are shown in Figs. 4 and 5 for
a free and pinned polymer, respectively. In the first column
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FIG. 3. Pathway of a collapsing polymer at temperature T = 1.0 with 120 beads. The red monomer is the pinned monomer. The left panel
(a)–(e) represents collapse stages for a free polymer, the midpanel (f)–(j) for X = N/4, and the right panel (k)–(o) presents stages for X = 1
(the anchored polymer). A dashed circle represents activated globules or crumples, while solid circles show the final structures. In the case of a
free polymer, crumpling and coarsening are symmetric at both free ends, while in the second case, X = N/4, the chain is divided into two parts
of unequal entropy. Fast aggregation of the shorter chain around the pinned monomer is observed before the longer segment could overcome
the crumpling process. In the third case of an anchored polymer (X = 1), crumpling and coarsening are both biased to start from the free
end only.

of Fig. 5, we plotted Rg versus t for (a) anchored: X = 1
or X = N , (b) X = N/4, and (c) X = N/2, when the pinned
monomer is moved to the chain’s one-fourth and half-length,
respectively. The effect of increasing length is apparent in
Fig. 4, as 〈Rg〉 relaxes faster for the shorter chains, and slowest
for N = 160 among all the chain lengths shown in the plot. In
Fig. 4 (inset), collapse time is shown, which we will discuss
later in the next section.

The pinning effect on 〈Rg〉 versus t plots is shown for
various chain lengths from N = 40 up to N = 160. In the sec-
ond column, we analyzed the effect of various pinning sites,

FIG. 4. 〈Rg(t )〉 vs t for a free polymer of variable chain lengths.
The inset shows the dependency of collapse time τc, obtained using
Eq. (4) (discussed in Sec. V) on N . The markers represent the cal-
culated values, and the curve represents the fit τc ∼ N1.60±0.03. The
error bars are obtained by using the method of least squares.

keeping the chain length fixed as (a) N = 40, (b) N = 80,
and (c) N = 120. By doing so, a comparison of timescales
induced by the two parameters [the chain length (N) and the
pinning site (X )] can be drawn. For homogeneity between the
plot of different lengths (N), plotted in the second column,
we introduced a variable n, which is related to X by the
relation X = n × (N/10). For N = 40, n = 1 to 5 represents
X = 4, 8, 12, 16, and 20, while for N = 80, similar n values
represent the corresponding X = 8, 16, 24, 32, and 40 values.
The presented curves are averaged over 200 trajectories. The
curves are all seen to be smooth and monotonic, which means
that there is no trapping throughout the process.

From the snapshots in Figs. 3(a)–3(e), we can see that
the coarsening process is more effective at the ends of the
chain, and small globules are absorbed towards the center.
Right before the process ends, two more giant globules are
formed containing two ends of the chain, and they merge
into a single deformed globule, which relaxes as a perfect
spherical globule. This indicates that the collapse is symmet-
ric, and any asymmetry can influence its dynamics. Pinning a
monomer at its position 1 � X � N breaks the symmetry, and
now one side has more entropy with respect to another. The
configurations of Figs. 3(f)–3(j) in the central panel rep-
resent a system where a monomer at X = N/4 is pinned,
and Figs. 3(k)–3(o) represent the same for an anchored
polymer.

Pinning an inner monomer dissects the chain into two parts
of unequal lengths. It is evident from Figs. 3(f)–3(j) that for
X = N/4, coarsening can start from both ends. In fact, at the
end, close to the pinned monomer, accumulation starts around
the fixed bead very fast. After the globule at the shorter end
is formed, it absorbs the monomer from the other segment,
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FIG. 5. Plots (a), (b), and (c) represents the dependency of
〈Rg(t )〉 on time t for the anchored case (X = 1), X = N/4, and
X = N/2, respectively, for different chain lengths. The dotted lines in
(c) represent data for a free polymer (same as shown in Fig. 4), which
indicates that kinetics are identical for both of the systems. Plots
(d)–(f) represent the same for fixed N and varying X . Variable n is
related with X by the relation X = n × N/10, and the corresponding
X values are given along with the n values in plot (d) for length
N = 40. Each curve is averaged over 200 samples.

away from the pinned monomer [see Fig. 3(g)]. Later, the
remaining two globules form a deformed globule far from
the pinned monomer, soon absorbed inside the perfect glob-
ule.The pinned monomer is represented as a relatively bigger
(red) bead for more explicit identification in Figs. 3(f)–3(o).

In the case of an anchored polymer, Figs. 3(k)–3(o), crum-
pling can happen anywhere along the chain, but coarsening is
now limited to the free end only. It is now visible that the stage
where two globules survive until the end vanishes, and a single
deformed globule is formed, which fluctuates away from the
pinned monomer. Later, the pinned monomer is also absorbed,
forming the final spherical globule. It is not surprising that
〈Rg〉 relaxes slowest for the anchored polymer in Fig. 5(a).

The effect of length can be seen in the plots of the first
column of Fig. 5, similar to Fig. 4. The timescales are longer
as the chain length increases, visible in all the figures as
the collapse of 〈Rg〉 is fastest for the minimum for N = 40
and is maximum for N = 160. In the second column of
Figs. 5(d)–5(f), the effect of pinning is included. It is apparent
from Figs. 5(a)–5(c) that folding kinetics is slowest for an
anchored polymer (X = 1 or N). As the pinned monomer
moves towards the center, the quenching happens faster for all
chain lengths. From Fig. 5, one can conclude that 〈Rg〉 relaxes
faster as the system becomes symmetric, and a comparison of

FIG. 6. Normalized average nearest-neighbor contacts per
monomer N̄c(t ) vs t [as defined in Eq. (3)] during collapse for various
chain lengths (a) N = 40, (b) N = 80, and (c) N = 120. Each panel
shows N̄c(t ) vs t plot for different pinning positions, X . X is related
with n as described in the caption of Fig. 5 (also refer to the text).

dynamical timescales can be drawn for continuous change in
the pinning position (X ). For example, in case of N = 160,
〈Rg〉 relaxes close to t = 1500, which is reduced down to
t = 1000 in the case of X = N/4 [Fig. 5(b)]. In Fig. 5(c),
we have plotted 〈Rg〉 values for a free polymer (dotted lines)
and X = N/2. By pinning a monomer at X = N/2, the system
remains symmetric, which resembles the free chain system;
the quenching in the two systems is identical and is the fastest.

In Fig. 6, we have plotted the normalized average number
of contacts per monomer [N̄c(t )] as a function of time t for (a)
N = 40, (b) N = 80, and (c) N = 120. The monomer creates
a contact with the surrounding monomer during collapse when
the distance between them, di j , is less than the cutoff distance
dc. We set the cutoff distance dc = 1.50. Normalization is
obtained using the following relation:

N̄c(t ) = [Nc(t ) − Nc(0)]/[Nc(∞) − Nc(0)]. (3)

In the case of a free polymer and a central pinned system
n = 5 (X = N/2), a sharp and monotonic rise in the N̄c versus
t curve is obtained, showing an all-or-none cluster formation
in the system. When X is shifted towards the end of the chain,
the steep-rise behavior vanishes. Instead, effective two-step
kinetics is observed, and thus the associated two characteristic
rates of the reaction can be defined. For n = 1, 2, and 3, one
can notice an apparent plateau in N̄c(t ) plots, separating the
two-time regimes. For these n values, the pinned monomer
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FIG. 7. Scaling behavior of collapse times (a) τX
c (N ) vs N for fixed X , and (c) τN

c (X ) vs X for fixed N [see Eq. (5)]. In plots (b) and (d), we
show data collapse corresponding to (a) and (c), respectively, by plotting rescaled times τN

R (X ) and τX
R (N ) as defined in Eq. (5). Markers show

the data point, and solid lines represent the fit τc ∼ N1.60±0.03 [in (a)] and a linear fit [in (c)]. The multiplying factors φX and φN [see Eq. (6)]
are shown in the inset of (b) and (d). In inset (b), solid lines represent a linear fit φX = a0(X/N ) + b0, a0 = ±5.1.

divides the chain into two parts with unequal entropy. The
initial rise indicates a fast accumulation of beads around the
pinned monomer from the shorter end. The initial rise is
followed by a wide plateau. After a certain time, a second—
relatively faster—rise is obtained, representing the region
where clusters of various sizes are activated along with both
segments. The wide plateau shows that once a compact glob-
ule consisting of all the monomers from the shorter end is
formed [the stage shown in Fig. 3(g)], the system waits until
the longer segment overcomes the crumpling process. After
that, the final coarsening starts [the stage shown in Fig. 3(h)],
and a compact globule structure is formed.

V. COLLAPSE TIME τc

The total collapse time τc is defined as the time required for
the 〈Rg〉 to reach 99% of its initial value during the transition
from a coil state to the compact globule. Operationally, the
duration of the collapse transition τc can be calculated from
the equation [15,18,55]

Rg(τc) = 1
100 [Rg(t = 0) − 〈Rg〉eq] + 〈Rg〉eq. (4)

From 〈Rg〉eq and 〈Rg(t )〉 values given in Figs. 2, 4, and
5, we analyzed the collapsed time τc as a function of both
parameters, i.e., the chain length N and the pinning index
X . First we calculated τc(N ) for a free polymer, presented in
the inset of Fig. 4. The τc versus N curve for a free polymer
satisfies a power law, and a relation τc ∼ N1.60±0.03 is obtained
by numerically fitting the calculated data shown in Fig. 4

(inset). For a free polymer, the value of the exponent is lower
than the value predicted by Flory (τc ∼ N2) and higher than
τc ∼ N1.01 obtained by Pham et al. [15] using Brownian dy-
namics simulations similar to ours. It is pertinent to note here
that in the earlier studies, the initial configuration of a chain
(at t = 0) was prepared by equilibrating it for a sufficiently
long time in swollen state conditions; however, in our case we
are starting from a stretched state configuration to avoid any
crumple formation earlier than t = 0, which yields a larger
timescale than the previous studies.

In Figs. 7(a) and 7(c), we have plotted τX
c (N ) and τN

c (X ),
respectively. τX

c (N ) represents the collapse time as a function
of N when X is held fixed and τN

c (X ) shows the collapse time
as a function of X with fixed N . In Fig. 7(a), the τc versus N
plot for the anchored polymer (X = 1) lies at the top, followed
by the plots for n = 2, 3, and 4 with n = 5 (X = N/2) at the
bottom. Interestingly, the collapse time follows the same scal-
ing law as τc ∼ N1.6 with the chain length N , independent of
the pinning position X . In Fig. 7(c), the effect of pinning can
be seen as τc decreases linearly with X . Again, for N = 160,
time is maximum and minimum for N = 40 for all X values.
In Figs. 7(b) and 7(d), we show a data collapse by rescaling
the collapse times plotted in Figs. 7(a) and 7(c) using the
following equations:

τX
R (N ) = τX

c (N )/τX
c (40),

(5)
τN

R (X ) = τN
c (X )/τN

c (free),
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where τX
c (40) is the collapse time of a chain length of N =

40 for each pinning position X . Similarly in Fig. 7(c), τN
free

denotes the collapse time of a free polymer chain of corre-
sponding length.

The nonsaturating trend in τc plots [see Fig. 7(c)] with X
while reaching the center of the chain is not something that
has been anticipated. It implies that the slightest shift in X
(from the center) can influence τc and yield a timescale larger
than the free polymer. We define this multiplying factor by the
dimensionless quantities φX and φN , which measure the shift
in timescales relative to the reference timescales. φX and φN

are calculated as

φX = τX
c (40)/τ free

c (40),
(6)

φN = τN
c (free)/τ 40

c (free),

where τ free
c (40) is the collapse time of a free chain of length

N = 40, however φX does not change if calculated using
different N values (other than N = 40). φX quantifies the
difference in timescales for different pinning positions quite
adequately in Fig. 7(b) (inset). Interestingly, the plot suggests
that irrespective of the chain length, τc for the anchored poly-
mer remains nearly four times larger than the τc for the central
pinned polymer.

Similarly, φN is plotted against N in Fig. 7(d) (inset) to
measure the difference in timescales between different chain
lengths as a constant value of X . As expected, φN follows
the same scaling ∼N1.6 as the τc. The observed data col-
lapse is pretty good, which implies that for every pinning
position X , τc will follow the same scaling law as the free
polymer.

Using τc(N ) values, we show data collapse for N̄c(t ) of
different lengths as a function of re-scaled time t/τc on a
log-log plot [see Fig. 8(a)]. As reported in Refs. [12,15,18],
the log-log plots show power-law behavior for the aver-
age cluster size Nc growth with time as t z, where z is
defined as the collapse exponent. For a free or central
pinned monomer, we obtain scaling exponents z = 1.00 ±
0.04, which is identical to the value of z reported in Ref. [18].
Similar results were also obtained in the work of Pham et al.
[15], however Byrne et al. [12] found an exponent value
of z = 0.66.

In Figs. 8(b)–8(d), we show that z deviates from its value
for the free polymer [Fig. 8(a)] significantly in the early
time regime, while at longer times, it again scales with the
same z value. These two regimes are separated with a clear
plateau in all three cases, i.e., for the anchored case and the
n = 2 and 3 cases (n is as defined in Figs. 5 and 6). We
find z = 0.75 ± 0.04, 0.88 ± 0.04, and 0.97 ± 0.03 for the
anchored, n = 2, and n = 3 case, respectively, which shows
that pinning a monomer close to the center drives the process
faster, and vice versa. The difference in z values at early times
corresponds to the fast accumulation of monomers from the
shorter segment close to the pinned monomer; therefore, a
first rise in N̄c(t ) plots is seen, whereas in the longer segment,
crumpling is relatively slower. This time difference in the dy-
namics of both segments yields a plateau between the two time
regimes. After the coarsening starts in the longer segments,
N̄c(t ) plots register a second sharp rise with exponent value
z = 1 independent of the X value. Notably, in the case of a

FIG. 8. Normalized N̄c(t ) vs t/τc on a log-log plot for (a) free
polymer, (b) n = 3 (X = 12 for N = 40), (c) n = 2 (X = 8 for
N = 40), and (d) anchored (X = 1). From plot (a), we obtained the
value of collapse exponent z = 1.00 ± 0.04, while after pinning a
monomer [shown in plots (b)–(d)], we identified two different time
regimes. The initial rise at early times corresponds to z < 1 values
(z = 0.97 ± 0.03 for n = 3, z = 0.88 ± 0.04 and 0.75 ± 0.04 for
anchor), while at longer times, we obtained z = 1. The errors bars
are obtained using the method of least squares.

free polymer, similar to a central pinned system, there is no
entropy difference in both of the divided segments, thus the
plateau vanishes.

VI. CONCLUSION

In this paper, we present the kinetics of a collapsing pinned
homopolymer using the Langevin dynamics simulation. At
first, a free polymer chain of variable length (N = 40, 60,
80, 120, 160, and 240) is equilibrated for a sufficiently long
time, and the temperature dependency of 〈Rg〉 is recorded. A
crossover in 〈R2

g〉/N plot is used to locate the Tθ point (T =
3.4, as obtained), below which the polymer is considered in a
collapsed state irrespective of the chain length N . The kinetics
of a free polymer is explained through the “pearl necklace”
mechanism, which predominately involves an early, rapid for-
mation of small clusters followed by the straightening of chain
sections between the clusters and, lastly, the cluster coarsen-
ing, which creates the final globule structure. The growth of
clusters in size satisfies N̄c(t ) ∼ t z, where z = 1.00 ± 0.04,
and the collapse timescale as τc ∼ N1.60±0.03, where N is
the degree of polymerization. The scaling laws we obtained
for a free polymer show good agreement with the previous
studies.

In the next part, the collapse pathway of a polymer with
a pinned monomer at a position 1 � X � N is investigated.
We showed that the collapse time τc is sensitive to the change
in pinning position, except for the case in which the central
monomer is pinned (X = N/2). The calculated τc for the
central pinned system is minimum and identical to the τc of a
free polymer. Moving X from the center (X = N/2) to the end
(X = 1 or N) of the chain causes the process to be delayed and
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the total collapse time increases linearly with X . The reason
for different timescales is the symmetry breaking caused by
the frozen monomer, which divides the chain into two parts of
unequal entropy.

We investigated the dependency of τc on X for various
chain lengths. We found that the linear relation between τc

and X values is novel and unaffected by any change in the
polymer length. Interestingly, for every X , the same scaling
law τc ∼ N1.6 is obtained, as in the case of a free polymer.
We define two dimensionless factors φX and φN , which quan-
tify the joint effect of pinning position X and the degree of
polymerization N on the collapse time τc. The total collapse
time scales as τc ∼ φX N1.6 in pinned polymers, where φX

incorporates the pinning effect on the dynamical timescales.
In our simulation, we found that the time involved in the
collapse of an anchored polymer is fourfold that of the free
polymer, independent of the chain length N . The second factor
scales with N as φN ∼ N1.6, showing that the τc dependency
on N is system-invariant.

By showing the cluster growth N̄c as a function of rescale
time t/τc, we argue that a stronger effect of pinning, in the
form of two-step growth in cluster size, appears for certain
X values. For these X values, a plateau separates an initial
rise at early times from a second steep rise at longer times.
At longer times, cluster growth follows the same scaling

law for the pinned and free system N̄c(t ) ∼ t z, where z =
1.00 ± 0.04; however, the collapse coefficient z 	= 1 during
the early times and attains a value depending on X . We ob-
tained z = 0.97 ± 0.03 for n = 3, z = 0.88 ± 0.04 for n = 2,
and z = 0.75 ± 0.04 for an anchored polymer (X = 1 or N).
We explain that the reason for different regimes is the fast
aggregation of monomers from the shorter segment around
the pinned monomer, while the longer chain is limited to slow
crumpling at these times, and the system waits for the final
coarsening to start. For the symmetric cases X = N/2 and the
free polymer, there is no lag present between the folding of the
two segments, the plateau vanishes, and a single step growth
is obtained.
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