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Universal catastrophe time distributions of dynamically unstable polymers
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Dynamic instability—the growth, catastrophe, and shrinkage of quasi-one-dimensional filaments—has been
observed in multiple biopolymers. Scientists have long understood the catastrophic cessation of growth and
subsequent depolymerization as arising from the interplay of hydrolysis and polymerization at the tip of the
polymer. Here we show that for a broad class of catastrophe models, the expected catastrophe time distribution
is exponential. We show that the distribution shape is insensitive to noise, but that depletion of monomers from a
finite pool can dramatically change the distribution shape by reducing the polymerization rate. We derive a form
for this finite-pool catastrophe time distribution and show that finite-pool effects can be important even when the
depletion of monomers does not greatly alter the polymerization rate.
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I. INTRODUCTION

Phenomena differing in their microscopic details can
nonetheless share common features. The discovery and de-
scription of such universal features is one of the central aims
of statistical physics. The identification of universal behaviors
is especially valuable in the modeling of living systems, where
many microscopic details are unknown or difficult to measure.
Amazingly, despite the variety and complexity of biology,
some phenomena are observed in many organisms or multiple
two domains of life.

One example is the growth of dynamically unstable poly-
mers, in which a quasi-one-dimensional polymer elongates,
suffers a catastrophic cessation of growth, depolymerizes, and
grows anew. This behavior has been observed in eukaryotic
tubulin and a prokaryotic actin homolog [1–5].

The pioneering experiments of Mitchison and Kirschner
were the first to demonstrate that the interplay of hydrolysis
and polymerization of monomers at the tip of a growing
polymer drives it toward catastrophe [2]. This observation has
been confirmed in several other experiments, as well as across
two domains of life [1,3,4,6–9].

Despite much experimental and theoretical work, precise
mathematical modeling of dynamic instability has proven
challenging, owing to the difficulty of probing the micro-
scopic scales of a growing polymer [10,11]. It is thus natural
to ask which aspects of these models are insensitive to the
details. Here, for a broad class of models, we show that the
distributions of times to catastrophe (henceforth called the
“catastrophe time distribution”) are universally exponential.

The shape of the distribution is insensitive to noise in poly-
merization and hydrolysis rates; it is, however, impacted by
the depletion of monomers from a finite pool (which has the
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effect of lowering the polymerization rate). We show that this
effect can drastically perturb the exponential catastrophe time
distribution, even if it does not greatly alter the polymerization
rate. For several models of dynamic instability, depletion of a
finite monomer pool results in a catastrophe time distribution
with a Gumbel-like form.

II. MODEL CONSTRUCTION

To model the stochastic growth and hydrolysis of a grow-
ing one-dimensional polymer, we first construct constant-rate
models of each process. In such models, monomers add to the
polymer at the tip at a rate, a; once added to the polymer, they
hydrolyze at a rate, b [see Figs. 1(a) and 2(a)]. These assump-
tions appear to be experimentally relevant, owing to the fact
that dynamically unstable polymers elongate and hydrolyze at
roughly constant rates [1,6,7,12–18].

To deduce the catastrophe time distribution for such mod-
els, we must first specify the states of a polymer that result
in catastrophic depolymerization. We will begin by ground-
ing our analysis in two specific models and then deduce the
universal aspects of all such constant-rate models.

A. Cap model dynamics

First, we consider so-called cap models, in which catas-
trophe is caused by the hydrolysis of at least m out of the n
monomers nearest the growing (see Fig. 1). We refer to these
n monomers the “cap region.” Once the polymer experiences a
catastrophe, it irrevocably depolymerizes back to length zero.
(We note that microtubules do not strictly display the latter
behavior, as they occasionally arrest their depolymerization
and regrow before reaching zero length. However, complete
depolymerization has been observed in bacterial actin ho-
mologs. By neglecting “recovery and regrowth,” we are in
effect studying a previously reported “bounded growth” phase
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FIG. 1. Cap model dynamics. (a) Schematic of the cap model.
Polymerization and hydrolysis proceed at constant rates, a and b,
respectively. The polymer has a cap region of size n. When m of
the cap region monomers hydrolyze, the polymer catastrophically
depolymerizes. Cap models can be described by a Markov pro-
cess with transition matrix M. (b) Eigenspectrum of the cap model
transition matrix, M, shown here for various cap sizes and b/a =
0.1. In all cases, the eigenspectrum shows a quiescent eigenvalue
with small negative real component (red dot). This small negative
real eigenvalue dominates the catastrophe dynamics. There is an
eigenvalue at zero which is not shown here. (c) Catastrophe time
distribution for the n, m = 2 cap model with b/a = 0.1. A very short
transient (which depends on the initial conditions) is followed by an
exponential distribution described by a characteristic timescale, T .
(d) Characteristic timescale, T , as a function of (b/a)m for various
cap sizes. In the limit of nb/a � 1, the timescale for all models goes
as aT ∼ (b/a)m.

[19,20].) Such cap models have been explored in several
previous works, which have calculated some of the model
dynamics when n = m [14,21].

To discover the catastrophe time distribution in such mod-
els, we begin by enumerating the allowed states of the cap
of the polymer [Fig. 1(a)]. An individual monomer is either
hydrolyzed (•) or unhydrolyzed (◦), so that, e.g., the state
space for n, m = 2 is {◦◦, ◦•, •◦, ••}. Within the constant rate
models we consider here, the state ◦◦ transitions to the states
•◦ or ◦• by hydrolyzing at rate b; the state •◦ transitions to
◦◦ by polymerizing at rate a. The flow between these states is
thus governed by a transition matrix, M, so that the probability

FIG. 2. Growth-and-shrinkage model dynamics. (a) Schematic
of the growth-and-shrinkage model. Polymerization and hydrolysis
proceed at constant rates of a and b, respectively. If m out of the
first n monomers become hydrolyzed, then the filament becomes
unstable and depolymerizes until it either finds a stable state (at
which point it arrests depolymerization and regrows) or catastroph-
ically depolymerizes. (b) Numerically simulated histogram of 5000
catastrophe events for n, m = 2 and a/b = 5. As with cap models,
growth-and-shrinkage models are governed by an exponential catas-
trophe time distribution. (c) Numerically simulated elongation rate,
r/b, as a function of the normalized polymerization rate, a/b. For
the small n, m growth-and-shrinkage models we tested, the effective
elongation rate goes as r/b = a/b − x. The black line of r/b = a/b
is a guide to the eye. (d) Numerically simulated catastrophe time,
bT , as a function of the normalized polymerization rate a/b. Colors
are the same as in panel (c). Dashed black lines are exponential fits.
The solid black line is the calculated mean catastrophe time using
Markov chains, (5). The mean catastrophe time grows exponentially
in a/b for every small n, m model we tested.

of being in each state, p = (p◦◦, p•◦, p◦•, p••)T , obeys the
dynamical equation

dp
dt

= Mp ⇒ p(t ) = eMt p0, (1)

with p0 the initial probability state vector. Henceforth, we will
refer to the last entry in the state vector as the absorbing state
(with m out of n monomers hydrolyzed) by index N .

To find the catastrophe time distribution, pc(t ), we may
find the transition rate into the absorbing N th state (in which
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TABLE I. Model parameters. Extracted model parameters of Acap

for the cap model and Ags, s, and x for the growth-and-shrinkage
model.

(n, m) (1,1) (2,1) (2,2) (3,1) (3,2) (3,3)

Acap 1 0.5 0.33 0.33 0.086 0.079
Ags 1.59 1.86 1.61 2.52 1.50 1.54
s 0.96 0.37 0.96 0.19 0.48 0.96
x 1.20 3.54 0.53 0.81 1.33 0.30

m out of n of the cap monomers are hydrolyzed):

pc(t ) = (MeMt p0)N . (2)

By numerically solving Eq. (2) we observe [see Fig. 1(c)]
that for polymers that grow to lengths l � 1, pc(t ) is well
described by an exponential distribution with timescale T �
1/a, 1/b (plus some transient behavior at times t ≈ 1/b that
depends on the initial condition). This is true except in the
case of m = 1, for which the distribution is exactly expo-
nential with timescale 1/b, corresponding to the waiting time
of a single Poisson event, namely the hydrolysis of a single
monomer in the cap region.

To understand the nature of this nearly exponential distri-
bution, we characterize the eigenspectrum of the transition
matrix, M. We observe [see Fig. 1(b)] a constellation of
eigenvalues in the complex plane. The negative real compo-
nents of all but one of these eigenvalues are far from zero;
it is this solitary small negative real eigenvalue that sets the
timescale of the exponential distribution that dominates the
catastrophe time distribution. This single eigenvalue is well
separated from the rest whenever the cap “refreshes” itself on
a timescale that is fast compared to the mean catastrophe time,
T . The former process takes a time given by n/a, so that the
catastrophe time distribution is well approximated by an ex-
ponential when T � n/a, which can be rewritten as aT � n.
As aT is the mean length of the polymer at catastrophe, we
can see that the condition for an exponential distribution (and
a solitary eigenvalue) is merely that the mean polymer length
at catastrophe greatly exceeds the cap size.

By plotting the catastrophe timescale, T , as a function of
(b/a)m, we see [Fig. 1(d)] that

b/ma � 1 ⇒ T ≈ Acap

a

(a

b

)m
, (3)

where Acap is an n, m-dependent constant (see Table I).
This relationship has been previously noted by Brun et al. for
the case of n = m [14]. Here we provide some intuition for
how it comes about in general. Consider a process by which
a monomer is added to the filament in every time interval of
length 1/a. At each time step, we draw a random configuration
of the n monomers in the cap; the monomer k away from
the tip has thus been in the filament for a time k/a; corre-
spondingly, the probability that it has been hydrolyzed since
its addition is ph(k) = 1 − e−kb/a. If we focus on k � n with
nb/a � 1, then ph(k) ≈ kb/a. The probability of encounter-
ing m hydrolyzed monomers in the cap region thus scales as
(b/a)m and the mean catastrophe time scales as in Eq. (3). This
intuition is not strictly rigorous because it treats the polymer
state at each time step as independent from previous time

steps. However, the state of the cap is completely erased after
n polymerization events and thus the assumption of indepen-
dence should be accurate when the mean catastrophe time, T ,
greatly exceeds na.

B. Growth-and-shrinkage model dynamics

As appealing as cap models are for their conceptual sim-
plicity, they fail to explain why a depolymerizing filament
that encounters a stable cap region (say, ◦•, in the case of
n, m = 2) does not arrest its depolymerization and regrow.
To that end, Antal et al. have proposed a different class of
growth-and-shrinkage models, in which a polymer tip may
transition to a catastrophe state, depolymerize until it finds
a stable cap region within the bulk of the polymer, arrest its
depolymerization, and regrow [Fig. 2(a)] [22,23].

We assume that a filament is stable when a cap region of
length n has at most m − 1 hydrolyzed monomers within it. In
this state, the filament polymerizes at rate a. Each monomer
in the filament hydrolyzes irreversibly at rate b. And when m
of the cap monomers hydrolyze, the polymer is destabilized.
This instability causes depolymerization, which ceases only if
the polymer depolymerizes into a stable cap region; if it fails
to find such a stable region, then it catastrophically shrinks
to zero length. We assume, for mathematical convenience and
in line with experiments in microtubules and actin homologs,
that the depolymerization rate greatly exceeds the polymer-
ization rate and that the depolymerization process can thus be
regarded as instantaneous.

This cycle of constant growth and shrinkage changes the
dynamics of the polymer as compared to the cap model.
First, the apparent elongation rate of the polymer is no
longer the polymerization rate, a, but some complex function
r(a, b, n, m). Second, the mean catastrophe time (the mean
time from the beginning of growth to catastrophic depoly-
merization) is dramatically extended, owing to the fact that
a depolymerizing filament can arrest the process by finding a
stable cap region buried in the bulk.

To characterize the catastrophe time distribution, the mean
catastrophe time, and the effective elongation rate, r, we per-
formed simulations of the polymer growth and catastrophe
process for various n, m using the Gillespie algorithm. Our
findings are summarized in Fig. 2. We show that the catas-
trophe time distribution of growth-and-shrinkage models also
follows an exponential distribution, that the mean catastrophe
time grows exponentially as aT = Ags exp(sa/b) with s and
Ags both n, m-dependent constants [see Fig. 2 and Eq. (5)],
and that r ≈ a − bx with x an n, m-dependent constant. See
Table I for various values of Ags, s, and x. All of these de-
pendencies deviate strongly from the corresponding dynamics
within the cap model.

We note that the mean catastrophe time of all models with
n = m is the same; this is because the catastrophe condi-
tion within these models is the same: Every monomer must
be hydrolyzed. We can calculate the relevant timescale by
considering the probability of the polymer having j unhy-
drolyzed monomers at a given time t , pj (t ). States with j
unhydrolyzed monomers can make one of two transitions:
(1) a monomer hydrolyzes and the polymer transitions into
a state with j − 1 unhydrolyzed monomers (this happens at
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rate jb) or (2) the polymer transitions to a state with j + 1
unhydrolyzed monomers by polymerizing (at rate a). Thus,
the dynamics are given by:

d p0/dt = bp1, (4a)

d p1/dt = 2bp2 − (a + b)p1, (4b)

j � 2 : d p j/dt = ( j + 1)bpj+1 + ap j−1 − (a + jb)p j . (4c)

These dynamics again yield a transition matrix, M, with
a unique small negative real eigenvalue whose inverse is the
exact mean catastrophe time. We can analytically calculate an
approximate timescale by considering the mean time to the
absorbing ( j = 0) state when starting from a singly unhy-
drolyzed ( j = 1) state. This timescale, T1, can be calculated
using properties of Markov chains [24] and is given by

aT1 =
∞∑

k=1

k∏
j=1

a

jb
=

∞∑
k=1

(a/b)k

k!
= ea/b − 1 ≈ ea/b, (5)

which closely tracks the results from numerical simulation
[see Fig. 2(d)] and the fit values of s in Table I.

Antal et al. have previously calculated the mean catas-
trophe time and polymerization rate for the n = m = 1
growth-and-shrinkage model by considering the probability
that every monomer ever added to a given filament becomes
hydrolyzed (a necessary condition for complete depolymer-
ization when n = m = 1) [22]. Their relationship, aT ≈√ a

2πbeπ2a/6b, is roughly exponential in its functional form
but treats the polymer state at each time step as independent
from the previous time steps and thus overestimates the mean
catastrophe time.

C. The universal distribution of constant-rate models

The two models we have considered so far differ greatly
in their mean catastrophe times and effective elongation rates.
They rely on different underlying assumptions about the con-
ditions that cause catastrophe. And yet, they display the same
shape of the catastrophe time distribution. Why?

As we will now show, the shape of the catastrophe time
distribution for models with constant polymerization and hy-
drolysis rates is universally exponential so long as the mean
length of the polymer at catastrophe greatly exceeds the cap
size. Thus, the precise catastrophe condition is irrelevant; for
long polymers, we ought always to expect an exponential
distribution.

The reason for this universal behavior can be gleaned by
considering a polymer that adds a monomer every 1/a time
interval and has some catastrophe condition within a cap
of size n. Suppose we happen upon the polymer and see it
growing but do not know its state. It has some probability
pc of undergoing catastrophe prior to the next polymerization
event. After n polymerization events, the initial state of the
cap is totally erased and its catastrophe probability prior to
the next polymerization event is still pc; the same thing is
true after n + 1 polymerization events. Thus, the catastrophe
time distribution of the filament is simply the waiting time
distribution of a single Poisson event and is thus exponential
for times t > n/a. (The condition t > n/a is necessary to
erase the polymer’s “memory” of the initial condition.) That

this phenomenon is universal within a broad class of models
justifies previous phenomenological theories, which assumed
a constant catastrophe rate [19,25,26].

In Appendix A, we show that this prediction is robust even
to noise in the ratio of a/b, so that experiments that construct
a catastrophe time distribution by binning events in slightly
varying experimental conditions should still observe a roughly
exponential distribution.

III. FINITE-POOL MODELS

So far we have treated the polymerization rate, a, as a
constant. This seems a natural assumption given the roughly
constant polymerization rate seen in experiments. However,
as we have seen, the catastrophe timescale within certain
models can be very sensitive to the ratio of b/a. Thus, it is
natural to ask how the catastrophe time distribution is altered
when monomers are depleted from a finite pool, thus lowering
the polymerization rate. We should expect—and will shortly
demonstrate—that alterations to the catastrophe distribution
will be substantial when the initial pool size of N monomers is
roughly of order the mean catastrophe time of a polymer. Sev-
eral previous works have also used numerical simulation and
analytics to show qualitative changes to catastrophe dynamics
within a different set of phenomenological models [27,28].

Here we will treat polymerization as a first-order process in
which the polymerization rate, a, is proportional to the local
concentration of monomers in the pool. This is valid in the
limit that monomers attach by simply “running into” the tip
of the growing polymer, which is thought to be the case for
tubulin. This assumption appears to hold for microtubules,
which show a linear dependence of elongation rate on tubulin
concentration [16]. We will further assume that the finite pool
is well mixed, so that the polymerization rate is proportional to
the total number of monomers in the pool, N . Protein diffusion
constants are of order D ∼ 10−12–10−11 m2/s [29], so that
for a typical polymerization rate of order a ∼ 1/s, a monomer
can diffuse a length l ∼ √

D/a ≈ 1 μm of order the size of
the cell; we thus expect the well-mixed assumption to hold.
Finally, we will assume that the monomer pool is relatively
large, so that each polymerization event only slightly changes
the pool size.

We will first work out the general dynamics of such sys-
tems, then we will probe the specific dynamics for both the
cap model and the growth-and-shrinkage model.

Once we specify a polymerization rate, a hydrolysis rate,
and the polymer states that result in catastrophe, we can
calculate the rate, R(a, b), at which the polymer experiences
catastrophes, which for the models we have studied here is
given by the inverse of the mean catastrophe time: R(a, b) =
1/T (a, b). The catastrophe rate acquires a time dependence
through the ever-changing polymerization rate, a(t ). The
probability that the filament survives without catastrophe until
time t , Ps(t ), is thus governed by the following differential
equation:

dPs

dt
= −R(a(t ), b)Ps. (6)

By formally integrating this equation and taking its time
derivative, we can construct the catastrophe time distribution,
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FIG. 3. Finite-pool model dynamics. (a) Dynamics of finite-pool cap models. Left: Catastrophe time distributions with changing pool size,
N0. The histograms are numerical simulations of 5000 catastrophe events and the black line is Eq. (11). The theory is expected to hold when
nb/a � 1, which is roughly the case here (n, m = 3, b/a0 ≈ 0.043). For pool sizes much larger than a0/R0, the catastrophe time distribution is
approximately exponential. As the pool size shrinks, the catastrophe time distribution becomes distinctly nonexponential. Right: Kymograph
showing the filament length as a function of time with an initial pool size of N0 = 1500. In these conditions, we can see a slowing down of
the polymerization rate along with a change to the catastrophe time distribution. (b) Dynamics of finite-pool growth-and-shrinkage models.
Right: Catastrophe time distributions with changing pool size, N0. The histograms are numerical simulations of 5000 catastrophe events; the
solid black line is the nearly exact distribution, Eq. (15); and the dashed black line is the Gumbel-like approximate distribution, Eq. (16). Here
we omit catastrophe events at times t < b/a0 as these depend sensitively on the initial condition of the polymer. Again, we observe distinctly
nonexponential catastrophe time distributions as the pool size, N0, shrinks and becomes comparable with a0/R0. Left: Kymograph showing
the filament length as a function of time with an initial pool size of N0 = 1000. The deviation from an exponential distribution is large, despite
little apparent slowdown in the polymerization rate: In the conditions of the plot, a polymer of 250 monomers will polymerize at 75% of the
initial rate and undergo catastrophes at approximately 3.5 times the initial rate.

pc(t ) = −dPs/dt :

pc(t ) = R(a(t ), b) exp

[
−

∫ t

0
dt̃ R(a(t̃ ), b)

]
. (7)

To find pc(t ), we must therefore specify a catastrophe con-
dition, which will determine the catastrophe rate, R. We must
also determine the time dependence of the polymerization
rate, a. Because a is proportional to the monomer pool size,
N , it suffices to specify an equation for dN/dt—how the pool
size depletes over time. Both of these calculations are tractable
within the models we have studied so far.

A. Finite-pool cap models

Let us assume that the initial pool size is N0 and that the
initial polymerization rate is a0. Thereafter, the polymeriza-
tion rate a will be given by a(t ) = a0N (t )/N0. Within the cap
model, the number of free monomers in solution decreases as

dN

dt
= −a(t ) = −a0N (t )/N0 ⇒ N (t ) = N0e−a0t/N0 . (8)

It follows that the polymerization rate, a(t ), is given by

a(t ) = a0N (t )/N0 = a0e−a0t/N0 . (9)

We have previously seen that when a/b � n for cap mod-
els with cap size, n, and critical damage number, m, the
catastrophe rate is given by R = 1/T = a(b/a)m/Acap with
Acap a constant depending on (n, m) (see Table I). Thus, setting
R0 = a0(b/a0)m/Acap and R1 = (m − 1)a0/N0, we have

R(t ) = R0eR1t . (10)

We can therefore see that the catastrophe rate grows ex-
ponentially for cap models of m > 1 within this limit. We
can determine the catastrophe time distribution directly by
plugging Eq. (10) into Eq. (7):

p(t ) = R0eR0/R1 eR1t− R0
R1

eR1t

. (11)

As we will see, this distribution (which takes on a Gumbel-
like form) also governs the dynamics of some growth-and-
shrinkage models. We emphasize that for cap models, it only
applies when a/b � n; however, it captures some qualitative
features of the actual catastrophe time distribution even when
the agreement is not perfect [see Fig. 3(a)].

We have already noted that cap models have a catastrophe
rate, R, that depends on the polymerization rate as R ∼ a1−m.
The polymerization rate depends linearly on the pool size,
N , so that R ∼ N1−m. For large m, R can therefore depend
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very sensitively on N—much more sensitively than the linear
dependence of a ∼ N—and we can have large changes to the
catastrophe time distribution with relatively small changes to
the polymerization rate (see Fig. 3).

B. Finite-pool growth-and-shrinkage models

The processes underlying growth-and-shrinkage models
deplete monomers from the pool at the effective elongation
rate, r. As noted previously, this rate can differ from the poly-
merization rate, a, and is well approximated by r = a − bx
with x set by the cap parameters, n and m (see Table I and
Fig. 2). Thus, we have that

dN

dt
= −r(t ) = −a(t ) + bx

⇒ N (t ) = N0

a0
[bx + (a0 − bx)e−a0t/N0 ], (12)

while

a(t ) = a0N (t )/N0 = bx + (a0 − bx)e−a0t/N0 . (13)

From our analysis of growth-and-shrinkage models we
know that AgsR = ae−sa/b with Ags and s both n, m-dependent
constants (see Table I). Because R depends so sensitively on
a/b, a small decrease in a/b due to depletion of the finite pool
will cause a large increase in R and quick catastrophe. We may
therefore derive a nearly exact catastrophe time distribution
by writing a/b ≈ a0/b + δ with δ � a0/b, which allows us to
conclude that

AgsR = ae−sa/b = be−sa/b+log a
b

≈ a0e− a
b (s−b/a0 )−1. (14)

Setting s̃ = s − b/a0, Ã = eAgsb/a0, Ri = be−s̃x/Ã, R1 =
a0/N0, y = s̃

b (a0 − bx), and R0 = Rie−y and following the
mechanics of the previous section yields the catastrophe time
distribution

pc(t ) ≈ Ri exp

{
−ye−R1t − Ri

R1
[Ei(−y) − Ei(−ye−R1t )]

}
,

(15)
with Ei(.) the exponential integral function. We interpret

R0 as the initial catastrophe rate of the growing filament and
R1 as a reparameterized initial pool size.

At first glance, Eqs. (11) and (15) appear unrelated. How-
ever, when the initial polymerization rate divided by the initial
catastrophe rate is much less than the initial pool size, we have
R0 � R1. In this limit, catastrophes occur overwhelmingly at
times t ∼ 1/R0 � 1/R1 and the catastrophe rate simplifies
to R(t ) ≈ R0eyR1t so that the catastrophe time distribution is
given by

R0 � R1 : pc(t ) ≈ R0eR0/yR1 eyR1t− R0
yR1

eyR1t

, (16)

exactly the same form as Eq. (11). Thus, within certain
limits, the finite-pool distributions of these models obey a
common Gumbel-like shape. We explore the dynamics of the
finite-pool catastrophe time distribution in Fig. 3(b), where
we benchmark the dynamics of Eqs. (15) and (16) against
simulations. As with finite-pool cap models, we observe that

the removal of monomers from a finite pool can dramatically
affect the catastrophe time distribution even when the poly-
merization rate is relatively unchanged. Actually, the effect is
even stronger than for cap models, owing to the fact that while
the polymerization rate goes like the pool size, the catastrophe
rate is exponential in the polymerization rate (and hence the
pool size).

IV. DISCUSSION

In this work, we have elucidated universal features of one-
dimensional models of dynamic instability. Such universal
features are important for studies of biophysical phenomenon
because they offer predictions that are largely independent of
microscopic details.

In particular, we have shown that models within a broad
class always yield a constant catastrophe rate and an ex-
ponential catastrophe time distribution. The assumption of
a constant catastrophe rate underlies several well-known
phenomenological models of dynamic instability [19,25,26].
However, this assumption does not always hold in practice.
Experiments probing the catastrophe time distributions of mi-
crotubules have discovered that dynamic instability on the
minus end is governed by an exponential distribution while
the plus end is distinctly nonexponential [6,15,30]. The latter
fact is striking. It implies that the dynamics governing the plus
end of microtubules are not well described by the broad class
of models we have studied here.

The question then becomes the following: What models
can give nonexponential distributions? We have described
one such model by considering the dynamics of polymers
growing in a finite pool. Another possibility is considered
by Odde et al. among others—that several protofilaments
of a microtubule must fail prior to catastrophe [6,30]. If
each protofilament has an exponential failure time distribution
and if multiple protofilament failures are needed to trigger
a microtubule catastrophe, then the catastrophe time of the
microtubule will be gamma distributed. In essence, a nonex-
ponential catastrophe time distribution requires a nonconstant
catastrophe rate, which in turn requires a long-term memory.
Catastrophe must be predicated on a long-term change in the
environment or a long-term “memory” of prior damage—not
just the momentary state of a constantly refreshing cap.

Other experimental observations—including the adjust-
ment of catastrophe times post-dilution—have also been
understood as arising from interactions between the one-
dimensional protofilaments that comprise the microtubule
[14,21]. These interactions can be complicated by mechanical
and chemical couplings [10,11,31,32]. It would be interesting
to study whether the universal dynamics we have discussed
survive in the presence of such couplings. It would also
be interesting to study the nucleation properties of dynami-
cally unstable polymers [33,34] and the finite-pool effects of
many dynamically unstable polymers growing simultaneously
[35,36].

The complex geometrical structure of the microtubule
makes it a difficult object to model. Direct application of
our models may be more plausible for quasi-one-dimensional
actin homologs [1,37]. By cultivating a deep understanding—
bridging theory and experiment—of these simple polymers,
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we may begin to understand the precise details of the universal
phenomena we have detailed here.
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APPENDIX: SENSITIVITY ANALYSIS OF THE
EXPONENTIAL DISTRIBUTION

Here we show that our main finding—the ubiquity of the
exponential catastrophe time distribution within constant-rate
models—is insensitive to noise. Imagine that you would like
to observe the exponential catastrophe time distribution but
that the polymerization rate, a, changes between experiments.
We will show that the exponential catastrophe time distribu-
tion is robust to such noise.

To do so, we assume that the polymerization rate in each
experiment is drawn at random from some distribution, q(a′)
with mean a and standard deviation σa. With fixed b, the mean
catastrophe time becomes a function of the particular value of
a′ drawn from the distribution. Each a′ will correspond to an
exponential distribution with mean catastrophe time T (a′, b),
so that the empirical catastrophe time distribution will be
given by

pc(t ) =
∫ ∞

0
da′ q(a′)

e−t/T (a′,b)

T (a′, b)
. (A1)

To check whether pc(t ) is indeed well approximated by the
noise-free distribution e−t/T (a,b)/T (a, b), we must make some
assumptions about q(a′). For mathematical convenience, we
pick q(a′) as a gamma distribution with mean a = kθ and
variance σ 2

a = kθ2. In Fig. 4, we show that under these as-
sumptions, the noisy catastrophe time distribution differs only
very slightly from the noise-free distribution for noise at the
level of σa/a = 0.1.

FIG. 4. Sensitivity analysis of the exponential distribution.
(a) Catastrophe time distribution—on linear (top) and semilog (bot-
tom) scales—of a cap model with interexperimental variation in
the polymerization rate, a. We assume the polymerization rate is
drawn from a gamma distribution with mean value, a, and stan-
dard deviation σa = 0.1a. Even with added noise, the catastrophe
time distribution (solid gray line) is almost exactly the same as the
zero-variability distribution (dashed black line). (b) Same as (a) but
with the growth-and-shrinkage model. The distribution with noisy
a is given by the solid blue line while the dashed black line is the
distribution with fixed a.
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