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Organized states arising from compression of single semiflexible polymer chains in nanochannels
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We use molecular dynamics simulation to probe the nonequilibrium physics of single nanochannel-confined
semiflexible polymers in a homogeneous flow field. The flow field compresses the polymer against the end of
the nanochannel, simulating an experiment of a nanochannel confined chain compressed against a slit barrier.
The flow-based compression gives rise to a packing of the chain against the channel end that possesses a striking
organization, consisting of interweaving of folds and circular coils. For stiff chains at low flow, we find that the
organization is dominated by repeated hairpin folds. For stiff chains at higher flow, we observe that circular coils
arise along with the folds, with folding and coiling domains becoming interwoven at the highest flow speeds.
Chain organization is retained even when the chain persistence length is on order of the channel width. We show
that the global polymer organization, consisting of a number of defined folds and coiled loops, arises from the
minimization of the total chain free energy.
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I. INTRODUCTION

Highly organized states can arise in confined systems of
single semiflexible macromolecules. For example, a single
semiflexible polymer chain confined in a spherical cavity at
high enough density organizes itself into layers of stacked per-
pendicular spools [1–3]. This spooling phenomenon is highly
significant biologically, arising when ∼10–100 kbp of phage
dsDNA is packaged inside viral capsids ∼100 nm in diame-
ter. Concentric spools are observed at low densities, while at
higher densities additional morphologies emerge, resembling
topological links [1].

Nanofluidic systems based on nanochannels have emerged
that model experimentally the behavior of DNA at high
compression. Nanochannels are well-defined, simple systems
where all parameters can be controlled. Studying polymers
in nanochannels is a fruitful method to understand complex
behaviors seen in vivo. In the nanochannel experiments, com-
pression is induced in a nonequilibrium process via either
an optically trapped sliding bead piston or hydrodynamic
flow against a barrier which blocks the polymer but lets the
fluid flow through via a very thin slit. Recent studies using
nanochannels have shown that a simple partial differential
equation model can capture the time-dependent concentration
profile along the channel axis [4,5]. In addition, knots are
generated at high compression; the knot-factory technique is
now used to produce knots for further study of knot dynamics,
diffusion, and interactions in confinement [6–9].

One intriguing question is whether, at sufficiently high
compression, the organized states found in phages can be
artificially produced in the nanochannel system. Previous sim-
ulation work has shown that nonequilibrium compression in
the presence of confinement can give rise to organized states
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of single semiflexible macromolecules. In the limit of very
high chain rigidity, where the persistence length P is compara-
ble to the contour length L, a symmetrically compressed chain
transitions from a regime of disordered Odijk deflections to a
structured helical state. Upon further compression, the chain
folds over itself and transitions from a disordered deflection
state containing two parallel polymer strands to a double heli-
cal state [10]. At lower chain rigidity, but with P still greater
than the channel diameter D, a chain compressed from one end
via a sliding piston forms repeated hairpin folds. The number
of folds increases with the sliding velocity v [11]. Scaling
relations have also been studied for semiflexible polymers in
nanochannel confinement under compression [12].

A full picture has yet to emerge, however, regarding the
full spectrum of possible organized states of a compressed
semiflexible chain, as well as an understanding of how these
states arise in a nonequilibrium compression process. So far,
while chain organization has been observed via simulation for
the regime where P > D, evidence is lacking that organization
might arise as well in the regime P � D, which is easier
to reach in experiments. Here we use molecular dynamics
(MD) simulations to probe the nonequilibrium physics of sin-
gle nanochannel confined semiflexible polymers compressed
against a barrier in a homogeneous flow field. We approximate
the barrier as perfectly porous to the fluid flow so that flow
can be assumed uniform up to the barrier, an idealization of
the experimental slit geometry. Note that, in this case, a chain
pushed against the (stationary) barrier by a homogeneous
steady flow field is equivalent to a chain pushed at constant
speed by a moving (piston) barrier in an immobile fluid (such
as performed in Bernier et al.). The latter case (moving piston
barrier, immobile fluid) can be converted to the former case
(stationary barrier, uniform flow) by changing the frame of
reference from a frame where the fluid is at rest (and piston
moving) to one comoving with the piston. For high enough P,
we observe two distinct types of structures: folds, as observed
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FIG. 1. (a)–(c) Snapshot of a P = 0 configuration. (d)–(f) Snap-
shot of a high P, low v configuration. (g)–(i) Snapshot of a high P,
high v configuration. Panels (a), (d), and (g) show the 3D representa-
tion of the chain, with (b), (e), and (h) being a longitudinal projection
and (c), (f), and (i) a transverse projection.

by Bernier et al. [11], and coils, a phenomenon distinct from
helices observed by Hayase et al. [10] and also distinct from
the spools observed by Curk et al. [1] (Fig. 1). A fold refers
to when a strand of polymer folds over itself into a hairpin,
exactly as described in [11] [see Figs. 1(d)–1(f)]. A coil is
formed when a strand of polymer forms a loop guided by
the circular side walls of the cylindrical nanochannel. The
plane of the loop is typically perpendicular to the channel
axis. When multiple loops are adjacent along the channel axis,
they stack compactly side by side, rather than forming a true
helix as in Hayase et al. [10], or a thick spool with loops
inside loops within the same spool layer, as in Curk et al. [1]
and Petrov et al. [3] [see Figs. 1(g)–1(i)]. We find that folds
dominate in the low v regime, while coils dominate in the high
v regime. Interestingly, coils often coexist alongside folds;
the coils wrap around the folds, similar to a two-layer spool
observed by Curk et al. [1]. Notably, we also find that coils
and folds arise even for P < D.

Transient analysis reveals that for a sufficiently stiff chain
at high enough flow, folds and coils form as soon as the chain
end touches the barrier, but for stiff chains at high flow the
initial mixture of folds and coils can be slanted relative to the

channel axis. A distinct timescale then exists for the chain
configuration to decay into an organized series of coils and
folds.

We believe that the global polymer organization, consisting
of a number of defined folds and coiled loops, arises from the
minimization of the total chain free energy, which consists of
a bending energy component and a flow potential component.
Our theoretical model, based on a simplified chain configu-
ration with idealized folds and coils, predicts the simulation
results with good agreement for sufficiently high chain rigid-
ity.

A note about terminology: we use the term “loop” to refer
to single circular loops perpendicular to the channel axis; we
use “coil” to refer to the whole aggregate of loops.

II. MODEL AND SIMULATION DETAILS

Our simulations are performed using the MD package
ESPRESSO [13]. Our implementation consists of a bead-spring
model of a polymer with the monomers interacting via ex-
cluded volume (EV), a finite extension nonlinear elastic
(FENE) spring potential, and a bond-bending potential en-
abling variation of P. We tested our MD system for chains
in bulk and confined in open channels. In particular, we repro-
duced the scalings for the Flory radius in bulk as a function
of polymer size, as well as the chain extension in cylindri-
cal channels as a function of channel diameter (including de
Gennes/extended de Gennes regime, P < D and Odijk regime
P > D). We also computed the steady-state density profile for
flow-compressed chains in closed channels and found them
comparable with experiment, showing the applicability of the
MD simulation method to study nonequilibrium dynamics of
confined polymers.

We keep the channel width D, the monomer size σ , and
the number of monomers N fixed, but allow P and v to
vary, so as to explore chains of different stiffness subject to
different flow velocities. The EV interaction between any two
monomers separated by a distance of r is given by a short-
range truncated Lennard-Jones (LJ) potential, also called the
Weeks-Chandler-Andersen (WCA) potential [14]:

UWCA(r) = 4ε
[(

σ
r

)12 − (
σ
r

)6 + 1
4

]
if r < 21/6σ

= 0 otherwise,
(1)

where ε is the interaction strength. The successive monomers
are connected by a finite extension nonlinear elastic (FENE)
spring potential [15]:

UFENE(r) = −1

2
kR2

0 ln

(
1 − r2

R2
0

)
, (2)

where k is the interaction strength and R0 is the maximum
allowed bond length. The parameters k, R0, ε, and σ determine
the bond length. The chain stiffness is controlled by a three
body bond-bending potential:

Ubend = κ[1 − cos(θ − θ0)], (3)

where θ , shown in Fig. 2(a), is the angle between two suc-
cessive bonds, κ is the interaction strength, and θ0 is the
equilibrium bond angle. In three dimensions, for κ �= 0, the
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FIG. 2. (a) Diagram showing a bead-spring model chain with the
angle between bonds θ , from which the bending energy is calculated.
(b) Diagram showing a bead-spring model chain with the angle
between each bond and the channel axis φ which we use in our
analysis.

persistence length P of the chain is related to κ via [16]

P = κσ

kBT
, (4)

where kBT is the thermal energy. The confining walls of the
cylindrical nanochannel, including its ends, interact with the
monomers also via the WCA potential, but with interaction
strength εwalls = 20ε and interaction length σwalls = 0.2σ . The
applied flow field is defined by a force on each monomer

�F = −γv (�v − �u), (5)

where γv = γ is a friction factor, �v is the flow velocity, and �u is
the monomer velocity. Following [11], we chose not to include
hydrodynamics due to computational cost; hydrodynamics
likely have the effect of simply renormalizing the friction
factor.

The MD simulation propagates forward using the Langevin
dynamics equation of motion. For monomer i,

mr̈i = −∇(UWCA + UFENE + Ubend + UWCAwall )

+ �F − γ ṙi +
√

6γ kBT ηi(t ), (6)

where m is the monomer mass, ri is the monomer position, γ

is the friction coefficient, kBT is the thermal energy, and ηi(t )
is a Gaussian random force with zero mean and variance of
one.

For all our simulations, we set σ = 1, N = 150, D = 6,
m = 1, γ = 1, and kBT = 0.2. For the WCA potential, we set
ε = 1; for the FENE potential, we set k = 10 and R0 = 2; and
for the bending potential, we set θ0 = π . We vary κ between
0.24 and 3.2, corresponding to persistence lengths of 1.2 and
16. We also perform simulation with no bending energy, or
P = 0. Finally, we vary v [�v = (v, 0, 0)] by two orders of
magnitude, between 0.002 and 0.2.

For a given simulation run, we initialize our polymer in
a straight line in the center, along the axis of the cylindri-
cal channel. We set a fixed amount of time for the system

to reach equilibrium (t = 1×106, corresponding to 5×108

iterations of 
t = 0.002 each). We ensure that equilibrium
is reached by observing when the chain extension stabilizes
(which usually happens within half of the fixed preset time).
We then apply the homogeneous flow field to compress the
chain (for another t = 1×106). We save the polymer config-
uration (x, y, and z positions for each monomer) every time
interval 
t = 50. We run such simulations over a range of
six bending energies and 12 flow velocities, with three inde-
pendent simulations run for each set of parameters v and κ ,
for a total of 216 runs of about 15–20 hr each. These simu-
lations were run on Compute Canada’s supercomputer cluster
Beluga.

III. SIMULATION RESULTS

In order to better visualize the chain conformation, we
introduce two representations in addition to simple 2D or
3D position plots. These include longitudinal position plots,
or monomer position along the channel axis x vs monomer
number s, and angular plots, or bond angle with respect to the
channel axis φ vs bond number s′. Examples of longitudinal
position plots are shown in Figs. 3(d), 3(i), and 3(n) for a
completely disordered regime, a folded regime, and a regime
containing coexisting coils and folds. Figure 3(d) shows an
example longitudinal position plot for a chain with zero bend-
ing energy, giving rise to the disordered behavior expected for
a confined self-avoiding chain. Figure 3(i) shows an example
longitudinal position plot for a chain with high bending energy
and low flow velocity; zigzag-like structures are observed in
the plot, indicative of hairpin folds and comparable to those
observed by Bernier et al. [11]. The line segments on either
side of the zigzag’s v-shaped edge represent chain portions
undergoing Odijk deflections with no backfolding, i.e., that
basically propagate in a directed fashion down the channel
axis. Finally, Fig. 3(n) shows an example longitudinal position
plot for a chain with high bending energy and high flow
velocity. This plot contains staircase-like structures along with
the zigzags folds. Examining the 3D configuration plot for this
chain [Fig. 3(k)] suggests that these staircase-like structures
are indicative of repeated loops around the cylindrical confin-
ing surfaces.

To add further insight into the chain configuration, we
introduce angular plots, depicted in Figs. 3(e), 3(j), and 3(o)
[a schematic defining the angle φ is shown in Fig. 2(b)]. The
angular plots are generated by calculating the bond vector
between consecutive monomers, and then finding the angle
the bond vector makes with the channel axis [there are 150
monomers, and therefore 149 bonds, each at position s′

i =
(si + si+1)/2]. The angles range between 0 and π , with a value
of π/2 indicating a bond perpendicular to the channel axis.
For the disordered chain configuration in Fig. 3(e), the values
of φ are distributed randomly as expected. In Fig. 3(j) the φ

values alternate between values close to 0 and values close to
π ; this arises because the straight edges flanking the v-shaped
edge in the corresponding longitudinal position plot [Fig. 3(i)]
represent polymer segments directed in opposite directions
along the channel axis (corresponding to φ = 0 and φ = π ).
Finally, in Fig. 3(o), the coiled part of the chain [staircase
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FIG. 3. (a)–(e) Snapshot of a P = 0 configuration. (f)–(j) Snapshot of a high P, low v configuration. (k)–(o) Snapshot of a high P, high v

configuration. Panels (a), (f), and (k) show the 3D representation of the chain, with (b), (g), and (l) being a longitudinal projection and (c), (h),
and (m) a transverse projection. Panels (d), (i), and (n) show the monomer number s vs the channel axis position x (barrier position at dashed
line), while (e), (j), and (o) show the bond number s′ vs bond angle φ.

FIG. 4. Diagrams showing the transient chain history, with the formation of folds in (a), and formation of coils and folds in (b). Each line in
a subplot shows a single snapshot of the monomer number s vs monomer channel axis position x. Lines from left to right represent snapshots at
increasing time. An increasing x shift is added to the lines for increasing time for better visualization. (c)–(f) Snapshots of chain configuration
at different times in transient chain history, with (g), (i), (k), and (m) showing expanded longitudinal position plots and (h), (j), (l), and (n)
showing angular plots for each snapshot.
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FIG. 5. (a)–(e) Histories for P > D from low v to high v. (f)–(j) Histories for P = D from low v to high v. (k)–(m) Histories for P < D
from low v to high v. (n)–(o) Histories for P = 0 for low v and high v. Each line in a subplot shows a single snapshot of the monomer number
s vs monomer channel axis position x. Lines from left to right represent snapshots at increasing time. An increasing x shift is added to the lines
for increasing time for better visualization.

section in Fig. 3(i)] have values close to π/2 as loops are
perpendicular to the channel axis.

These longitudinal position and angular plots give infor-
mation on the configuration of the chain in two ways. As
they are more compact, they can be plotted for consecutive
snapshots to understand the history of the chain configurations
(which will be investigated further in the next subsection).
Moreover, as coils and folds take different angular values in
the angular plots, these values can be extracted to calculate an
order parameter, which indicates the level and type of ordering
of each steady-state configuration (this will be investigated
further in the following subsection).

A. Chain history

Chain histories are represented by plotting longitudinal
positions snapshots taken at incrementally increasing times.
Each line in Figs. 4 and 5 represents a snapshot, and con-
secutive snapshots over time are shifted by a small horizontal
distance for better visualization.

Transient chain histories show us that configurations with
folds form exactly the same way as described by Bernier
et al [11], with repeated folds arising as v-shaped kinks in

the longitudinal position plot [see Fig. 4(a)]. For higher flow
values, coils can form in addition to folds. Figures 4(b)–
4(n) show an example compression event where folds and
coils both form, including longitudinal position plots over
the compression history [Fig. 4(b)], configuration snapshots
[Figs. 4(c)–4(f)], and angular plots [Figs. 4(h), 4(j), 4(l), 4(n)].
Note that the coils form early in the compression process and
arise close to the barrier, corresponding to the portion of the
chain feeling the greatest compressive force. Also, note that
the coils are initially slanted [Figs. 4(d)–4(e)], yet eventually
in a sudden fashion get pulled flat [Fig. 4(f)], suggesting that
the slanted coil configuration represents an intermediate in the
compression process. Note that the slanted coil intermediate
lasts <10% of the total simulation run. For the rest of the pa-
per we choose to focus on the long-time steady-state behavior
[shown as dashed boxes in Figs. 4(a) and 4(b)], leaving the
details of the transient behavior involving combined folds and
coils for a future study.

Figure 5 shows the long-time steady-state behaviors for
different P and v values. For the highest P and lowest v value
[Fig. 5(a)], only a single fold forms and the fold position
shows only a small degree of fluctuation along the chain
contour. For a slightly higher v [Fig. 5(b)], three folds form,
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FIG. 6. (a) Order parameter η as defined by Eq. (7) plotted for different v and D/P values. Error bars give error on the mean for three
independent runs. (b) Order parameter η vs bending energy κ and vs v visualized as a 3D plot.

with the same degree of fluctuation in fold position. For inter-
mediate v values [Figs. 5(c) and 5(d)], one or more loops form
originating from the chain end that is closest to the barrier and
feels the greatest compressive force. Finally, for high v values
[Fig. 5(e)], loops form interspersed with folds. For different
equivalent runs in this parameter regime, the total numbers
of loops and folds remain constant, but their relative position
along the chain contour vary.

For D = P [Figs. 5(f)–5(j)], the same trend holds, but we
can see that the position of the folds and coils along the chain
contour fluctuates to a greater degree. For D > P [Figs. 5(k)–
5(m)], folds and coils continually form, dissolve, and move
along the chain contour. However, the total numbers of loops
and folds remain more or less constant over time. Finally, for
P = 0 [Figs. 5(n) and 5(o)], as expected the configurations
become completely disordered.

These observations suggest that the chain adopts a fixed
number of folds and loops for a given set of parameters
(P �= 0).

B. Order parameter

We can use our angle plots to introduce an order-like
variable η to quantify the type and degree of organization ex-
perienced by the compressed chain (i.e., folded or coiled). We
define the order parameter by averaging the angle φ relative
to π/2 for all bonds:

η = 1

N − 1

N−1∑
i=1

|φi − π/2|. (7)

We expect η to be close to 0 for coiled configuration and close
to π/2 when folds dominate. For a random configuration or
for a combination of folds and coils, η should be somewhere
between 0 and π/2.

We plotted η for variable v and D/P values in Fig. 6(a).
We observe that for P = 0, η is roughly constant as a function
of v and has a value of approximately 0.6. As P increases, the
slopes of each η vs v plot become steeper and more negative.

In particular, we observe that lower v values have correspond-
ing η values that are higher than 0.6, while higher v values
have η’s below 0.6. Evidently, as we expect low P values
correspond to more disordered states (constant η ≈ 0.6) while
higher P values have folded configurations at low v (high η)
and coiled configurations at high v (low η). The critical η

value η = 0.6 acts as a natural boundary between pure folded
and coiled regimes. In addition, notice that organization starts
appearing even for D/P > 1 [corresponding to κ < 1.2 in
Fig. 6(b)]. While chain organization can be readily quanti-
fied as consisting of a certain number of folds and loops for
D/P � 1, which will be explored in the next section, such
methods break down for D/P > 1 where the number of folds
and coils are not well defined due to high chain fluctuations.
In this case, the order parameter still reveals a small degree of
residual organization.

IV. FREE ENERGY MODEL TO QUANTIFY
CHAIN ORGANIZATION

Global chain organization can be inferred from the lon-
gitudinal position plot. Folds show as sharp bends in the
plot, while loops show as staircase-like segments [Figs. 7(a)
and 7(b)]. We have been able to directly extract the number
of folds and loops for all simulation runs for which D/P � 1.
The clear trend is that both the number of folds and loops
increase for increasing v and decreasing P. Note that the
number of loops grows abruptly at a critical v.

We then develop a model for determining theoretically
the number of folds and loops for a given set of param-
eters v and P. The model relies on calculating the free
energy of idealized chains with different numbers of folds and
loops. The theoretical number of folds and loops associated
with a set of v and P are the ones that minimize the free
energy.

We assume the chain free energy has two components:
the bending energy component and the flow potential com-
ponent. In the P � D regime, the entropy makes a minimal
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FIG. 7. (a), (b) Example configurations where folds are marked in red and loops are marked in blue. In (a), there are three folds and zero
loops; in (b), there are six folds and four loops. (c)–(e) Number of folds vs v, for increasing P; (f)–(h) number of loops vs v, for increasing P.
In panels (c)–(h), simulation results averaged over 3–12 runs shown in black, with error bars representing the standard error on the mean and
fitted theoretical model shown in red.

contribution to the total free energy, and we believe it can
be safely ignored. The total chain bending energy is the sum
over all bonds of the bending energy per bond [Eq. (3)]. In the
steady-state configuration, a chain segment will be immobile
(on average). The force exerted by the flow on the segment
will then be given by Eq. (5) with �u = 0, so that the segment
will experience a constant flow force �Fflow = −γv�v. This sit-
uation is analogous to a particle in a constant gravitational
potential. The potential energy per monomer will be simply
Uflow = �Fflow · �x where �x is the longitudinal vector between
the monomer and the closed end of the cylindrical channel.
The total flow potential is therefore the potential energy per
monomer summed over all monomers.

We calculate the chain free energy using an idealized
chain configuration. We first note that a loop consists of
∼16 monomers, given our channel dimensions (D = 6)
and monomer size (σ = 1). We assume each of these 16
monomers has about the same bond angle on average, which
we call φavg. Therefore, the contribution due to bending en-
ergy of a loop is 16κ[1 − cos(φavg − φ0)]. Since each loop is
in a plane perpendicular to the flow [our simulations show that
the coiled region is not a 3D helix, and each loop is really in
a 2D plane, as seen in Fig. 3(l)], each monomer of the loop
has the same potential energy. Therefore, the contribution to
the flow potential of a loop is 16γvvxloop where xloop is the
longitudinal position of the loop with reference to the end
of the channel. We set xloop = 0, 1σ, 2σ, 3σ, . . . for the first,
second, third loop, and so on, as each loop is assumed to be
stacked on top of the previous one.

Once the free energy contribution of the loops have been
calculated, we calculate the free energy of the rest of the chain,
which is in folded configuration. We calculate the number of
monomers in folded configuration Nfold = N − Ncoil where N

is the number of monomers of the whole chain, and Ncoil is the
number of the monomers in coil configuration. We then ap-
proximate a configuration of n f folds as having n f sections of
half-loops (eight monomers at the same angle φavg) and n f + 1
straight sections in the longitudinal direction. The bending en-
ergy contribution per fold is therefore 8κ[1 − cos(φavg − φ0)]
while the potential energy of each segment of length Lseg =
Nfoldσ/(n f + 1) is γvv(Lsegσ + 1)Lsegσ/2, using the formula
for the sum of consecutive integers.

Using these approximate formulas, we can calculate the
total free energy for different numbers of loops and folds if
parameters v, P, and φavg are known. The theoretical numbers
of loops and folds for a set of parameters are the numbers that
minimize the total free energy. Notice that these numbers of
loops and folds are discrete in our model. In practice, we set
φavg as a fitting parameter as we fit the 2D curves for loop and
fold numbers to the simulation results. We also tried using two
other fitting parameters: γv and εpen, which adds an increasing
penalty to the bending energy of a fold for increasing numbers
of folds. The rationale of the penalty term is that the larger the
number of folds, the tighter the space that each fold occupies,
hence the angle of each bond inside the fold becomes sharper
and the bending energy per fold increases. However, fitting
the model to simulation data revealed that the two additional
fitting parameters were not necessary to capture the chain
behavior.

We find that our free energy model captures the observed
trends in fold and loop number from simulations [Figs. 7(c)–
7(h)]. The detailed shape of the curves for simulation and
theory do differ at lower P and higher v, for which there are
the highest numbers of folds and loops, and the larger the
numbers of folds and loops, the larger the error in our free
energy estimate, which is calculated using approximations.
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FIG. 8. (a)–(e) Snapshot of a square prism nanochannel configuration. (f)–(j) Snapshot of a half-cylinder nanochannel configuration.
(k)–(o) Snapshot of a cylinder nanochannel configuration [identical to Figs. 3(k)–3(o), reproduced for comparison purposes]. Panels (a), (f),
and (k) show the 3D representation of the chain, with (b), (g), and (l) indicating a longitudinal projection and (c), (h), and (m) a transverse
projection. Panels (d), (i), and (n) show the monomer number s vs the channel axis position x (barrier position at dashed line), while (e), (j),
and (o) show the bond number s′ vs bond angle φ.

However, for high P and low v, the model follows the
simulation values quite well. In particular, note that the model
captures the abrupt onset of coil formation at a critical flow
velocity. Note that the theoretical free energy calculation takes
only integer numbers of folds and loops, hence the discrete
output of the theoretical model in Figs. 7(c)–7(h).

As for the fitting parameters, we recover φavg = 139 ± 2◦
or 2.42 ± 0.04 rad. In comparison, a regular nonagon has
interior angles of 140◦, while a regular 16-sided polygon has
interior angles of 157.5◦. We believe the discrepancy is small,
and due to the fact that the actual average configurations of the
chains in the simulations are tighter than the largest allowed
loop in the channel, a fact that was also reported by Odijk and
ascribed to entropic depletion effect [17].

V. DISCUSSION AND CONCLUSION

In summary, we have established that under nonequilib-
rium compression in a cylindrical nanochannel, a semiflexible
chain will self-organize into a complex interweaving of folds
and coils. In particular, we have shown that such organiza-
tion arises even in the case of mildly stiff chains (P < D),
in contrast to previous findings [11]. Our simulation results
take place at an intermediate position in parameter space
compared to previous studies. Studies of stiffer chains at
lower compression obtained hairpin folds configurations [11],
which we have also found. As we increase the compressive
flow, however, we observe coiling. These coiled configura-
tions, where loops form along the side walls of the cylindrical
channel wrapping around folds in the center of the channel,

start resembling the layers of spools observed in high-density
spherical cavities [1,3]. Preliminary data indicate that increas-
ing compression further in our simulations could reproduce
the multidomain spools observed by Curk et al. [1] and Petrov
and Harvey [3].

One interesting question is why Bernier et al. [11] did
not observe coiled organization. Note that Bernier et al.
performed their simulations using nanochannels with square
cross-section for similar values of stiffness and flow. We
find that compression in a square nanochannel does not
produce a configuration consisting of multiple stacked coils
as does compression in circular cross-section channels
[Figs. 8(a)–8(e)]. Interestingly, simulations in half-cylindrical
nanochannels (cross-section is a half-disk) yield half-loops
on the curved side of the channel instead of full loops as
in cylindrical nanochannels [Figs. 8(f)–8(j)]. These results
suggest that configurations are geometry-dependent. While
having the chain conform roughly to the outer boundary of
the channel minimizes the total free energy in every geometry,
local regions of high curvature (i.e., sharp corners), give rise
to an energy barrier for coil formation. This energy barrier
prevents the formation of complete coils for channel cross-
sections that possess distinct corners (such as square and
half-cylinder channels). Note that cylindrical nanochannels
can be made experimentally from silica or other materials,
either using a laser-assisted mechanical pulling process [18]
or by using a polymeric fiber as a template around which a
deposited coating forms a tube [19].

We believe that folds and coils configurations emerge in
stiffer chains because they lower the total free energy. We
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have shown using a simplified model that this explanation
is plausible. However, a more detailed free energy model,
including the fluctuation of configurations around the energy
minimum, more realistic modeling of folds and coils, and the
entropic wall-depletion effects, could yield further insights.
Moreover, including the energy barrier to coil formation in
the model would be necessary to understand configurations
in square and semicircular cross-section channels. There is
rich physics in transient behaviors as well, e.g., how coils
form and evolve over time; this could be explored in a future
study. Finally, future work could more comprehensively map

out the compression phase space of where folds, coils, and
other possible configurations appear.
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