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Prediction and control of focal seizure spread: Random walk with restart
on heterogeneous brain networks
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Whole-brain models offer a promising method of predicting seizure spread, which is critical for successful
surgical treatment of focal epilepsy. Existing methods are largely based on structural connectome, which ignores
the effects of heterogeneity within the regional excitability of brains. In this study we used a whole-brain model
to show that heterogeneity in nodal excitability had a significant impact on seizure propagation in the networks
and compromised the prediction accuracy with structural connections. We then addressed this problem with an
algorithm based on random walk with restart on graphs. We demonstrated that by establishing a relationship
between the restarting probability and the excitability for each node, this algorithm could significantly improve
the seizure spread prediction accuracy in heterogeneous networks and was more robust against the extent of
heterogeneity. We also strategized surgical seizure control as a process to identify and remove the key nodes
(connections) responsible for the early spread of seizures from the focal region. Compared to strategies based
on structural connections, virtual surgery with a strategy based on a modified random walk with extended restart
generated outcomes with a high success rate while maintaining low damage to the brain by removing fewer
anatomical connections. These findings may have potential applications in developing personalized surgery
strategies for epilepsy.
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I. INTRODUCTION

Epilepsy is a common neurological disorder characterized
by unpredictable and recurrent incidents of seizures [1] that
are presumed to be related to the hypersynchrony of neurons
or abnormalities in neuronal network structure [2,3]. Focal
seizures, which are defined as seizures that develop in a par-
ticular area (seizure focus) of the brain but can spread to other
areas, are the most common type of seizure [4]. For patients
with drug-resistant focal epilepsy, in addition to focal resec-
tion, transecting the fibers that are postulated to be involved
in the spread of seizures is a common type of surgical treat-
ment [5–7]. However, the success of surgery depends largely
on the accurate prediction of seizure spread, which requires
increasing support from quantitative analysis methods [8].

Recent research has revealed that epilepsy is a brain net-
work disorder with widespread network effects [9–11]. For
example, the association of epilepsy with abnormal functional
and structural connections (SCs) among brain regions has
been widely observed with advanced brain imaging tech-
niques, such as magnetic resonance imaging (MRI) [12–16].
In addition, evidence suggests that the effects of focal epilepsy
may involve areas far from the epileptic focus [17,18]. There-
fore, larger-scale human brain network models constructed
based on simplified local dynamics and whole-brain anatomi-
cal connections usually obtained with diffusive tensor imaging
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(DTI) data have become a powerful tool to study epilepsy
as a brain network disorder [19]. For example, based on the
conjecture that nearly every brain region can be driven out of
the “healthy” subspace to produce seizures, Jirsa et al. con-
structed a phenomenological model called Epileptor, which
describes seizure onset with saddle-node bifurcation dynam-
ics and seizure offset with homoclinic bifurcation dynamics
[20]. Using the Epileptor model to represent the local dy-
namics, they constructed a personalized whole-brain model
to predict seizure spread that was consistent with the patient’s
clinical stereotactic electroencephalogram (SEEG) recording
[21]. An increasing number of studies have documented the
ability of personalized whole-brain network models to predict
seizure spread, develop efficient surgery strategies, forecast
surgical outcomes [22,23], and provide practical guidance for
clinical treatment of epilepsy [22,24–26].

While structural connectivity is generally accepted as a
vital determinant that influences the propagation of seizure
activities in brain networks, increasing evidence suggests
that regional excitability may exert substantial effects on
seizure onset and propagation. For example, most antiepilep-
tic drugs treat epilepsy by regulating cortical excitability
[27]. Similarly, neurostimulation therapies such as deep brain
stimulation inhibit the generation or spread of seizures by
modulating neuronal network excitability [28–30]. In addi-
tion, researchers have shown that whether the type of seizure
is focal or global depends on the interaction between the
network structure and nodal excitability [31]. Although signif-
icant progress has been achieved in predicting and controlling
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seizure spread in whole-brain models, most of these strategies
are based on personalized structural connectivity alone, and
few researchers have considered the effects of heterogeneity
in regional excitability on the prediction accuracy and con-
trol efficiency [23,24]. Obviously, given the important role of
regional excitability in seizure propagation, strategies consid-
ering heterogeneity should yield more accurate prediction and
efficient control of seizure spread.

Random walks simulate a particle that iteratively moves
from a node to a randomly selected neighboring node [32].
It lies at the core of many algorithms to elucidate various
types of structural properties of networks [33]. Among them,
the random walk with restart (RWR) algorithm mimics the
behavior of a particle that not only moves randomly from
one node to another, depending on the topological structure
of the network, but also restarts in the same node—called a
seed. These behaviors provide a measure of the proximity or
relevance between the seed and all other nodes in the network
[34]. Compared with RWR, the random walk with extended
restart (RWER) provides more effective relevance scores be-
tween nodes by allowing a distinct restart probability for each
node [35]. The advantages of RWER algorithms in dealing
with heterogeneous networks have been discussed in many
studies [36,37]. In the whole-brain networks with heteroge-
neous excitability, by combining information from both the
SCs of the network and the nodal excitability, relevance scores
obtained by RWER should achieve more precise measurement
of the nodal epileptogenicity than that given by SCs alone, and
so to provide more accurate prediction and efficient control
strategies for seizure spread.

In this study we used the structural connectome estimated
from human brain DTI data to construct whole-brain network
models and simulated the seizure spread from focal nodes.
By varying the location of the focal nodes, we showed that
the heterogeneity in nodal excitability exerts a substantial
effect on seizure spread for most of the focal locations and
subsequently jeopardizes the prediction accuracy and surgery
efficiency based on SCs. The relevance score of a particular
node obtained by the RWER algorithm proposed by Jin et
al. is dependent on the restart probability of its neighboring
nodes [35], whereas in our model the epileptogenicity of a
node is more decided by its excitability. To eliminate the inac-
curacy due to this mismatch, we modified the original RWER
model to allow the relevance score of each node to directly
correlate with their restart probability. We found this modified
algorithm was more precise and robust in predicting seizure
spread and identifying the key nodes responsible for the early
stage of seizure spread. We also showed that compared with
the strategy based on SCs, surgical outcomes of the strategy
based on the mRWER algorithm achieved a high success rate
with reduced damage to the brain. Meanwhile, the surgery
efficiency was robust against the extent of heterogeneity. Fi-
nally, we also discussed several issues that may bridge the gap
between this study and future clinical applications.

This paper is organized as described below. In Sec. II we
present the Epileptor model, which describes the nodal dy-
namics, the structural connectome derived from DTI data, and
the approach used to build the whole-brain network model. In
this section we also present the nodal epileptogenicity mea-
sured by either SC or the mRWER algorithm, and the method

to evaluate the accuracy of seizure spread prediction with
different measures of epileptogenicity. Section III is devoted
to investigating the effect of heterogeneous excitability on
seizure spread in the networks, comparing the ability of SC
and mRWER epileptogenicity to predict seizure spread and
identifying key nodes responsible for the early stage of seizure
spread. The efficiency of different surgical strategies is also
evaluated in this section. The discussion and conclusions are
presented in Secs. IV and V, respectively.

II. MODELS AND METHODS

A. The Epileptor model

We considered networks with n nodes whose dynamics
were described by the following version of the Epileptor
model [20]:

ẋ1 = y1 − f1(x1, x2) − z + I1,

ẏ1 = 1 − 5(x1)2 − y1,

ż = 1

τ0
(4(x1 − x0) − z), (1)

ẋ2 = −y2 + x2 − (x2)3 + I2 + 0.002g(x1) − 0.3(z − 3.5),

ẏ2 = 1

τ2
[−y2 + f2(x1, x2)],

where

f1(x1, x2) =
{

x3
1 − 3x2

1, if x1 < 0,

(x2 − 0.6(z − 4)2)x1, if x1 � 0,
(2)

f2(x1, x2) =
{

0, if x2 < −0.25,

6(x2 + 0.25), if x2 � −0.25,
(3)

and

g(x1) =
∫ t

t0

e−γ (t−τ )x1(τ )dt . (4)

The parameters used in this study were listed in Table I.
The Epileptor is a phenomenological model in which the
physiological mechanism of seizure generation is replaced
by the equivalent dynamic mechanism [20]. It comprises one
subsystem (subsystem 1) with two state variables (x1 & y1)
responsible for generating fast discharges and another sub-
system (subsystem 2) with two state variables (x2 & y2)
generating sharp-wave events. The function g(x1) is a low-
pass filtered excitatory coupling from subsystem 1 to 2 to
generate the SWE and interictal spikes. Note that the inte-
gral coupling function g(x1) can be rewritten as an ordinary
differential equation (see Ref. [20] for details). The function
f1(x1, x2) is a linear inhibitory coupling from subsystem 2 to
1. The two subsystems are linked to the so-called permittivity
variable z, which evolves on a very slow timescale. The per-
mittivity variable z is presumed to be related to the excitability
and dictates how close the system is to the seizure threshold
[38,39]. Therefore, in this study we adjusted x0 to determine
whether the node is a “healthy” node or not and to control the
excitability of the healthy node. In detail, there exists a thresh-
old value of x0c (x0c = −2.05 in the current set of parameters).
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TABLE I. Parameters of the whole-brain models used in this study.

x0,focal Excitability for the focal nodes U(−0.9, −1)a

x0,i Excitability for the healthy nodes b

I1 Passive current of subsystem 1 3.1
I2 Passive current of subsystem 2 0.45
τ0 Characteristic time scale of the permittivity variable 2857
τ2 Characteristic timescale of subsystem 2 10
μ Mean excitability of the healthy nodes −2.12
σ Extent of heterogeneity in nodal excitability [0, 0.04]
S The structural connectivity matrix b

γ Time constant in function g(x) 0.01

aU(a, b) stands for uniform distribution ranging from a to b.
bExplained in the context.

If x0 < x0c, the node is healthy because the system would stay
at a stable fixed point, and no seizure occurs. If we increased
x0 so that x0 > x0c, the system would undergo a transition
to the ictal periods through the saddle-node bifurcation; the
node becomes a focal node and generates seizure activities
constantly [Fig. 1(b)]. It is obvious that the excitability of a
healthy node is decided by the distance between x0 and x0c.
If x0 is closer to x0c, the node would more likely to cross the
seizure threshold under external interventions and become a
seizure-recruited node.

B. Anatomical connectivity matrix

Brain regions exchange information by sending and re-
ceiving signals through white matter fibers which also form
the seizure propagation pathways in the brains of epilepsy
patients. DTI is capable of providing a noninvasive estimation
of the whole-brain structural connections by tracking these
fibers. The fiber count derived from DTI data has been con-
firmed to provide a realistic estimate of white matter pathway
projection strength and has been widely used to construct
whole-brain models [40]. In this study we used diffusion MRI

FIG. 1. Construction of the whole-brain model for seizure onset and spread. (a) The normalized anatomical connectivity matrix derived
from DTI data. (b) Seizure activity generated by a single Epileptor model. In this plot, the signal is derived from the directed sum of discharges,
−x1 + x2, as the Epileptor model suggested. (c) Filtered signals of two independent nodes. The excitability of healthy node A is lower than the
threshold, i.e., x0,A = −2.1. The excitability of epileptic node B is higher than the threshold, i.e., x0,B = −2. (d) Filtered signal of two nodes
in the network with the same excitability in (c). Due to coupling, healthy node A is recruited after seizure onset at node B (the focal node). In
(b)–(d), the 256 time steps were set to 1 s to match the actual seizure frequency. In (c) and (d), the original signal, i.e., −x1 + x2, was filtered
by a fifth-order Butterworth bandpass filter with cutoff frequencies of 0.16 and 97 Hz at −3 dB [55].
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images of 284 healthy subjects from the HCP 1200-subject
release to determine the strength of internode structural con-
nections. See Ref. [41] for detailed information on this data.
The DTI data were processed with DSI Studio [42], and the
detailed processing procedure could be found in Ref. [43]. In
short, the whole brain was parcellated into n = 116 regions
with the Anatomical Automatic Labeling Atlas [44,45]. The
SC matrix S was calculated using the count of the connecting
tracks and was normalized by dividing by its maximum.

C. The whole-brain model

The whole-brain model was constructed by coupling the
116 Epileptors with the SC matrix S in the following diffusive
form [46]:

ẋ1,i = y1,i − f1(x1,i, x2,i ) − zi + I1,

ẏ1,i = 1 − 5(x1,i )
2 − y1,i,

żi = 1

τ0

(
4(x1,i − x0,i ) − zi −

n∑
j=1

Si j (x1, j − x1,i )

)
,

ẋ2,i = −y2,i + x2,i − (x2,i )
3 + I2 + 0.002g(x1,i )

−0.3(zi − 3.5),

ẏ2,i = 1

τ2
[−y2,i + f2(x1,i, x2,i )], (5)

where the subscript i of each variable indicates the ith node.
Si j is the element of the ith row and jth column of the normal-
ized anatomical connectivity matrix S, i.e., the SC strength
between brain regions i and j derived from DTI data. This
kind of slow coupling via permittivity variable z represents
the extracellular and intracellular effects of local and distant
discharges involved in the spread of the seizure and has been
shown to play a determinant role in seizure recruitment in
partial epilepsy [25]. It is noted that this is different from fast
couplings through synapses or gap junctions [47].

In this study, to test the generality of our method we created
virtual brain models with different locations of focal nodes,
which were randomly selected with equal probability from all
the 116 nodes in the network. We did not consider the case for
multiple focal nodes, so each brain model only had one focal
node. For a particular model with the ith node as the focal
node, we let x0,i > x0c to simulate the seizure onset on the ith
node and let other nodes be in the healthy state (i.e., x0, j < x0c,
j = 1, 2, . . . , n, j �= i). With this arrangement, if we chose
node B as the focal node and let other nodes in the network
remain in a healthy state, the seizure originating from node
B would cause seizure activity at other nodes (for example,
node A) with a time delay [Fig. 1(d)] if the coupling between
them was sufficiently large. Otherwise, the seizure would be
confined to the focal node and would not spread to node A
[Fig. 1(c)].

The heterogeneity in nodal excitability was simulated for
the nodes in the network other than the focal node:

x0,i ∼ N (μ, σ 2), x0,i < x0c, for i = 1, 2, . . . , n, i �= focal,
(6)

where N (μ, σ 2) is a normal distribution with mean μ and
variance σ 2. The network would be heterogeneous if σ > 0
and homogeneous if σ = 0. In subsequent simulations, we

set μ = −2.12, unless specified otherwise. The current study
was limited to the case in which only one focal node was
present in the network. So the standard deviation σ , which
indicates the extent of heterogeneity, should not be too large.
Otherwise, seizures could be generated on multiple nodes at
the same time, which is more analogous to the generalized
epilepsy. In the simulations, the Euler-Maruyama method with
an integration step of 0.05 was used to numerically solve the
whole-brain network models.

D. Measuring nodal epileptogenicity with SC/mRWER

Knowledge of the nodal epileptogenicity, i.e., the suscepti-
bility of each node in the network to the seizure, is important
to predict seizure spread from a particular focal node. In our
work, the high epileptogenicity of a node implies that this
node is easily recruited by seizure activity through inputs from
focal nodes. The SC epileptogenicity of a node considers the
contribution of SC strength between this node and the focal
node to its seizure onset. Therefore the SC epileptogenicity of
a node i can be measured by Si j , the SC strength between node
i and the focal node j. In this study we also introduced the
mRWER epileptogenicity, which combines the contribution of
both SC strength and nodal excitability. In the following part
of this section, we described the mRWER algorithm which
was modified from RWER algorithm, as well as the way
to link this algorithm to our whole-brain model so that the
mRWER epileptogenicity could be calculated.

As explained in the Introduction section, for heteroge-
neous whole-brain networks, in principle we can establish a
link between the restarting probability of the particles and
the excitability for each node and use the RWER algorithm
that combines information from both SCs and the nodal ex-
citability to have a more precise measurement of the nodal
epileptogenicity (with the stationary distribution of particles
on each node) than that given by SCs alone. However, the
relevance score of a particular node obtained by the RWER
is more dependent on the restart probability of its neighbor-
ing nodes rather than the restart probability of itself [35].
Therefore we modified the original RWER model to allow
the relevance score of each node to directly correlate with
their restart probability. As shown in Fig. 2(a), in the original
RWER, for a particular node j, the particles on the other nodes
would restart to the seed node k with their corresponding
restart probability (e.g., node i with restart probability ci)
and walk to node j with probability (1 − ci )Ai j . This process
leads to the recursive equation for RWER in the following
form:

rt+1
j =

∑
i

(1 − ci )Ai jr
t
i +

(∑
i

cir
t
i

)
q j, (7)

where rt
i is the RWER probability ri of node i at time t. Ai j

is the element of the weighted adjacency matrix, ci ∈ [0, 1]
is the restart probability of node i, and qj = 1 if node j is a
seed node; otherwise, q j = 0. In the modified RWER, for a
particular node j, the particles on the other nodes (e.g., node
i) would first walk to node j with a probability Ai j and then
restart to the seed node k with probability c j . The recursive
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FIG. 2. Schematic diagram of the original and modified RWER algorithms. (a) In the original RWER, for node j, the particles at the other
node, e.g., node i, would restart to the seed node k with a probability ci and walk to node j with probability (1 − ci )Ai j . (b) In the modified
RWER, the particles at the other nodes (e.g., node i) would first walk to node j with probability Ai j and then restart to seed node k with
probability c j .

equation for mRWER is then written as follows:

rt+1
j = (1 − c j )

∑
i

Ai jr
t
i +

[∑
i

(∑
k

ckAik

)
rt

i

]
q j . (8)

In Eq. (8), the first term on the right side corresponds to
the random-walk process, and the second term corresponds to
the restart process. Equation (8) can be expressed in its matrix
form:

r = [I − diag(c)]AT r + [(Ac)T r]q, (9)

or the closed form:

r = (I − B)−1q, (10)

where B = [I − diag(c)]AT + q(Ac − 1)T . In this study the
stationary solution r was calculated directly from Eq. (10).

For the mRWER, particles tend to stay at nodes with a
lower restart probability rather than nodes whose neighbors
have a lower restart probability. If the weighted adjacency
matrix A was decided by the SC matrix S, the seed node was
taken as the focal node, and the restart probability of other
nodes was set to be inversely proportional to their excitability;
the stationary probability ri for a particular node i can be
used as a measure of the epileptogenicity for node i. The

mRWER epileptogenicity is expected to perform better than
SC epileptogenicity in heterogeneous networks, because it
utilizes additional information from nodal excitability.

Notably, matrix A in mRWER must be row-normalized to
ensure that the iteration in Eq. (8) converges [35]. Meanwhile,
matrix A must be proportional to the SC matrix S such that
mRWER is able to generate predictions about our whole-brain
model. For these purposes, matrix A in our work was deter-
mined from the SC matrix S as follows: (1) normalization of
the SC matrix: S′

i j = Si j/max(Dii ), where Dii = ∑
j Si j , and

(2) construction of row-normalized matrix A according to S′
i j :

Ai j = S′
i j, i �= j; Aii = 1− ∑

j S′
i j . The corresponding restart

probability ci for node i in the RWER was determined by its
excitability parameter x0,i as follows:

ci = sigmoid[−b(x′
0,i − x0c)], for i = 1, 2, . . . , n, i �= focal,

(11)
where b is a positive scale factor allowing mRWER to match
seizure propagation in the network, and b = 22. The sigmoid
function sigmoid(x) = 1

1+e−x ensures that the mapped values
of ci are in the interval of [0, 1], and x′

0,i is the effective hetero-
geneity after node i, with x0,i introduced into our whole-brain
network with diffusive coupling:

x′
0,i = x0,i + 0.1

n∑
j=1

Si j (x0, j − x0,i ), for i = 1, 2, . . . , n, i �= focal. (12)

By incorporating the SC matrix S and nodal excitability
x0,i (i = 1, 2, . . . , n, i �= focal) of our whole-brain model into
the mRWER algorithm, the stationary solution r would be a
measure of epileptogenicity for all the healthy nodes in the
network with a given focal node. However, it is impossible to
compare the epileptogenicity measured for networks with dif-
ferent focal nodes, because the stationary solution r obtained
with the mRWER algorithm was a normalized vector, and it
did not reflect the overall effects on epileptogenicity of the
network brought by different focal nodes through SCs. There-
fore, to compare the nodal epileptogenicity of networks with

different choices of focal nodes, the mRWER epileptogenicity
for node i was determined as the value ri of the steady-state
distribution r multiplied by the degree of the focal node in
the SC matrix, i.e., the summarized SC strength between
the focal node and other nodes. For simplicity, the mRWER
epileptogenicity of the focal node was always set to 0.

E. Measuring the accuracy of seizure spread prediction

One aim of this study is to investigate whether the nodal
epileptogenicity measured by either SC or mRWER could
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accurately predict the seizure spread patterns characterized by
nodal onset delay time. In this study the prediction accuracy
was evaluated by the normalized discounted cumulative gain
(nDCG), which calculated the similarity between nodal rank-
ings based on their epileptogenicity and nodal rankings based
on their onset delay time [48].

In detail, the discounted cumulative gain calculates the gain
for each recruited node based on its position in the nodal onset
delay list O sorted from largest to smallest, and multiplied by
the discount based on its position in the nodal epileptogenicity
list E sorted from largest to smallest. Supposing oi is the posi-
tion of node i in the nodal onset delay list O, the gain of node
i was calculated by 2oi − 1, which implied that nodes with
shorter onset delay time would have higher gain. For simplic-
ity, the position oi was set to zero if node i was not recruited
or it was the focal node, so that their gain was zero. With this
arrangement, oi ranges from zero to m, where m is the total
number of recruited nodes. Supposing ei is the position (from
1 to 116) of recruited node i in the nodal epileptogenicity list
E , the discount of node i was calculated by 1

log2(ei+1) , which
implied that nodes with higher epileptogenicity would have a
larger discount. Then the discounted gains were summarized
across all the nodes in the network to provide a measure of
similarity between the above two sorted lists:

DCGm =
116∑
i=1

2oi − 1

log2(ei + 1)
. (13)

It is noted that the value of DCGm depends on the total
number of recruited nodes m, which varies in simulations. To
compare the DCGm values with different m, we normalized
the DCGm values obtained from a particular m by DCGmax

m ,
the maximal value that measured similarity between a list with
length m and a list with the same length but reverse order:

nDCG = DCGm

DCGmax
m

=
116∑
i=1

2oi − 1

log2(ei + 1)

/
m∑

i=1

2i − 1

log2(m − i + 2)
.

(14)

Theoretically, the values of nDCG lie in the range between
0 and 1.

III. RESULTS

A. Prediction of seizure spread in the heterogeneous
whole-brain networks

We first investigated how the heterogeneous distribution of
nodal excitability influences seizure spread in the whole-brain
networks. For this purpose, we simulated seizure spread in
both homogeneous and heterogeneous whole-brain networks
and compared the corresponding propagation patterns charac-
terized by sequences of nodal onset delay times. Figure 3(a)
presents an example of seizure spread in homogeneous net-
works. The seizure activity originating from the focal node
would spread to the other nodes with different delay times. To
investigate whether seizure spread patterns could be predicted
by SCs, we measured the SC epileptogenicity of each node
with the SC strength between them and the focal node, and
tested whether there was a significant correlation between the

SC epileptogenicity of each node and their onset delay time.
Since the early stage of seizure spread in the homogeneous
network is decided only by the SCs between the recruited
nodes and the focal node, we observed a significant correla-
tion between the onset delay time of these nodes and their
SC epileptogenicity [Fig. 3(b)]. Next, we set the focal node
as the seed node and obtained the mRWER epileptogenicity
for each node by solving Eq. (10) for the stationary solutions
of the particle distribution probability across all other nodes.
Since the excitability was the same for all the nodes in the
homogeneous networks, the mRWER epileptogenicity was
decided only by matrix A, i.e., the SCs. Therefore, similar
to the SC epileptogenicity, there existed a significant correla-
tion between mRWER epileptogenicity and onset delay time
[Fig. 3(c)].

For the heterogeneous networks, we observed a signifi-
cantly altered seizure propagation pattern though the seizure
was initiated at the same focal node [Fig. 3(d)]. Because the
seizure spread in heterogeneous networks was not determined
by SCs alone but was a result of interaction between SCs and
nodal excitability, the correlation between onset delay and SC
epileptogenicity was no longer significant [Fig. 3(e)]. How-
ever, in this case, mRWER epileptogenicity, which considered
not only the effects of SCs but also the nodal excitability on
the seizure spread, still maintained a significant correlation
with the onset delay time [Fig. 3(f)].

Next, we used the nDCG to measure the accuracy of
seizure spread prediction with SC and mRWER epilep-
togenicity for different choices of the focal node. As
demonstrated in Fig. 4(a), the prediction accuracy of both
methods varied, as different nodes were chosen as the focal
nodes. The prediction accuracy of SC epileptogenicity de-
creased significantly when heterogeneity was introduced [the
third panel from top to bottom in Fig. 4(a)]. However, the
prediction accuracy of mRWER epileptogenicity remained
approximately the same as that of SC epileptogenicity for
the homogeneous networks [Fig. 4(b)] and was significantly
higher than that of SC epileptogenicity for the heterogeneous
networks [Fig. 4(c)]. Furthermore, we calculated the mean
nDCG value (averaged across the realizations with different
choices of focal nodes) for networks with different extent
of heterogeneity σ defined in Eq. (6) to test how the ex-
tent of heterogeneity affects the prediction accuracy of these
two methods in heterogeneous networks. As illustrated in
Fig. 4(d), as the extent of heterogeneity increased, the av-
eraged prediction accuracy decreased significantly for SC
epileptogenicity (the left-pointing triangles filled with blue in
the violin plots), especially for some network configurations
involving focal nodes and nodal excitability (the lower thin
dashed lines indicating the quartiles on the left side of the
violin plots). However, the averaged prediction accuracy with
mRWER epileptogenicity was robust to the extent of hetero-
geneity (the right-pointing triangles filled with orange in the
violin plots), with less of a decrease for different network
configurations involving focal nodes and nodal excitability
(the lower thin dashed lines indicating the quartiles on the
right side of the violin plots). Therefore we concluded that for
the heterogeneous brain networks, the seizure spread could be
predicted more accurately and robustly by mRWER epilepto-
genicity rather than SC epileptogenicity.
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FIG. 3. Seizure spread in the homogeneous and heterogeneous whole-brain networks with arbitrarily selected focal node (in this case, node
2). (a) Seizure spread in a homogeneous network (μ = −2.12, σ = 0). In the plot, each dot represents a node of the network. The color of
the dots represents the excitability of each node (indicated by the horizontal color bar at the bottom right). The lines represent the SCs among
nodes derived from the DTI data, and their width represents the SC strength. The SCs between seizure-recruited nodes and the focal nodes are
marked with dashed lines, and their color represent the onset delay time of nodes (indicated by the horizontal color bar at the bottom left). The
focal node is indicated by the filled yellow dot. (b), (c) The correlations between the nodal onset delay time and SC/mRWER epileptogenicity
for seizure spread in homogeneous networks. The dots are collected from ten simulations of the same network. (d) The same as in (a) but for a
heterogeneous network (μ = −2.12, σ = 0.04). (e), (f) The correlations between the nodal onset delay time and SC/mRWER epileptogenicity
for seizure spread in heterogeneous networks. The dots are collected from the simulation of ten networks as in (d) but with a different allocation
of nodal excitability. In (b), (c), (e), and (f), the overlapped dots are marked with darker colors.

B. Identification of key nodes for seizure spread

Based on the discussion above, nodes with direct SCs
to the focal node are the nodes firstly recruited by seizure
activity in the early stage of seizure spread. Among these
nodes, there exists a minimal set of nodes that play a crucial
role in seizure spread. Disconnecting the SCs between these
nodes and the focal node will completely block the seizure
spread. We defined this minimal set of nodes with respect to
the focal node as the key nodes to block the seizure spread.
The key nodes were identified in our whole-brain model by
progressively removing the SCs between other nodes and the
focal node according to their onset delay times. For example,
as shown in Fig. 5(a), in the original network (network 1)
we first simulated seizure spread from the focal node (node
2) to find that node 58 has the shortest onset delay time. We
then removed the SCs between this node and the focal node
to generate network 2. Again, we simulated seizure spread in
network 2 and found that it had a different seizure propaga-

tion pattern and significantly prolonged onset delay time than
network 1 [middle panel in Fig. 5(a)]. Then we removed the
SCs between the focal node and the node with the shortest
onset delay time (node 8 in this case) to generate network 3.
By simulating seizure spread in network 3, we did not detect
seizure activity that spread from the focal node [right panel in
Fig. 5 (a)]. Therefore node 58 and node 8 were determined as
the key nodes responsible for seizure spread in network 1.

Although ideally the key nodes for seizure spread could be
identified using the approach described above through simu-
lations of whole-brain networks, this approach is usually not
practical in the clinic. On the other hand, the key nodes may be
identified from the difference in the onset delay time of each
node in the original networks. In the aforementioned example,
the key nodes have significant shorter onset delay time in the
original network than other nodes [nonkey nodes, Fig. 5(b)].
However, this property is not always true, because we also
observed cases in which the key nodes were those with
longer onset delay times than other nodes (as observed for the
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FIG. 4. The prediction accuracy of SC and mRWER epileptogenicity measured with nDCG for homogeneous and heterogeneous networks
with different choices of focal nodes. (a) The prediction accuracy of SC and mRWER epileptogenicity measured with nDCG for networks with
different locations of focal nodes. From top to bottom, Homo/Hete: homogeneous (μ = −2.12, σ = 0)/heterogeneous (μ = −2.12, σ =
0.04) networks. The red dashed lines represent the nDCG value averaged across the 116 possible locations of focal nodes, which are 0.9127,
0.9309, 0.8455, and 0.9361, respectively, from top to bottom. The red solid lines are the medians of nDCG values, which are 0.9754, 0.9802,
0.9032, and 0.9774, respectively, from top to bottom. (b), (c) Comparison of the prediction ability of SC and mRWER epileptogenicity in the
homogeneous (b) and heterogeneous (c) networks. The grayscale of the dots represents the number of overlapping dots. The darker the dots
are, the more overlapping dots are observed at this position. (d) The dependence of the prediction accuracy of SC and mRWER epileptogenicity
on the extent of heterogeneity (i.e., σ ) in the networks. Here, the nDCG values were calculated from the results of 4800 realizations with the
randomly selected focal node in each realization. Thick dashed lines in the plot are the medians, and thin dashed lines are the quartiles. The
triangle violin plots indicate the mean values of nDCG (blue left-pointing triangles for SC and orange right-pointing triangles for mRWER).

outliers in Fig. 5(c) for the homogeneous network and
Fig. 5(d) for the heterogeneous network). Anyway, the aver-
age onset delay time of the key nodes is always significantly
shorter than that of other nodes, regardless of whether the

network is homogeneous or heterogeneous [Figs. 5(b) and
5(c)].

The shorter average onset delay time for the key nodes
compared with other nodes implies that the key nodes can
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FIG. 5. Identification of the key nodes for seizure spread by progressively removing SCs between nodes with the shortest onset delay time
and the focal node. (a) An example of identifying key nodes by progressively disconnecting the SCs between nodes with the shortest delay
time and the focal node. Left panel: the original network (focal node: node 2 marked by dot with yellow color). After the simulation of seizure
spread in this network, the onset delay time of each node was recorded, and node 58 was determined as the key node because it had the shortest
onset delay time. Middle panel: the network with disconnected SCs between node 58 and node 2. After the computer simulation of seizure
spread in this network, the onset delay time of each node was recorded again; node 8 was determined as the key node in this case because it
had the shortest onset delay time. Right panel: the network with disconnected SCs between node 58 and node 2, as well as node 8 and node
2. Computer simulation of this network did not find any healthy node that was recruited by seizure activity. (b) Comparison of the onset delay
time in the original network for key nodes and nonkey nodes, for example, in (a). (c) Comparison of the onset delay time in the original network
for key nodes and nonkey nodes for homogeneous networks (μ = −2.12, σ = 0, 800 realizations). (d) Comparison of the onset delay time
in the original network for key nodes and nonkey nodes for heterogeneous networks (μ = −2.12, σ = 0.04, 800 realizations). In (b)–(d), the
thick dashed lines indicate the medians, and the thin dashed lines indicate the quartiles.

be distinguished from other nodes through their SC/mRWER
epileptogenicity. To this end, we evaluated the performance
of SC/mRWER epileptogenicity in the classification of the
key nodes by constructing receiver operating characteristic
(ROC) curves. For a particular network we calculated the
corresponding SC/mRWER epileptogenicity for each node
and chose the nodes with SC/mRWER epileptogenicity larger
than a threshold as the predicted key nodes. We then ob-
tained the ROC curve by calculating the true positive rate
(the ratio of the number of correctly predicted key nodes
to the number of key nodes that were identified using the
aforementioned progressive cutting procedure) and the false
positive rate (the ratio of the number of falsely reported key
nodes to the total number of nonkey nodes) for different
thresholds. Particularly, we excluded the nodes that had no
or very weak structural connections to the focal node (less
than 0.05 in this study) before classification, because these
nodes were unlikely to be recruited directly by seizure activity

from the focal node. We performed the classification with
the same threshold for SC/mRWER epileptogenicity on a set
of networks with different choices of focal nodes. Figure 6
shows the classification performance of SC and mRWER
epileptogenicity for networks with different extent of hetero-
geneity. The SC epileptogenicity yields the best classification
performance in the homogeneous networks [ROC curve cor-
responding to σ = 0 in Fig. 6(a)]. However, the significantly
dropped ROC curves as σ increases imply the classification
performance of SC epileptogenicity is jeopardized by het-
erogeneity [Fig. 6(a)]. On the contrary, the ROC curves for
mRWER epileptogenicity stay the same for different values
of σ , implying its classification performance is unaffected by
heterogeneity [Fig. 6(b)]. As σ is increased from 0 to 0.04,
classification performance measured by the area under the
ROC curve drops from 0.979 to 0.919 for SC epileptogenic-
ity, but it remains almost unchanged (from 0.983 to 0.980)
for mRWER epileptogenicity. These results suggest that the
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FIG. 6. Performances of key node classification for networks with different extents of heterogeneity. (a) ROC curves for classification with
SC epileptogenicity. (b) ROC curves for classification with mRWER epileptogenicity. (c) The classification performance measured by the area
under the ROC curves for different methods.

mRWER epileptogenicity outperformed SC epileptogenicity
in the robust classification of key nodes that are responsible
for seizure spread in heterogeneous networks.

C. The efficiency of virtual surgery

It is seen that the seizure spread might be suppressed in
patients with focal seizures by disconnecting the SCs between
focal nodes and the key nodes classified by SC/RWER epilep-
togenicity. Therefore it is interesting to investigate how the
surgical outcomes depend on different classification methods
and network heterogeneity. First, we described an example of
virtual surgery on a virtual patient for whom node 37 is the fo-
cal node in his/her personalized whole-brain network model.
Figure 7(a) depicts the results of classification for key nodes
with both SC and mRWER epileptogenicity, supposing the
brain network of this patient was homogeneous. Four nodes
(nodes 39, 41, 77, and 89) were identified as key nodes with a
threshold of 0.19 for SC epileptogenicity [blue filled triangles
that were larger than others in Fig. 7(a)]. The same four nodes
were identified as key nodes with a threshold of 0.05 for
RWER epileptogenicity [orange filled squares that have larger
sizes than others in Fig. 7(a)]. Simulation of the whole-brain
network model after removing the SCs between these four key
nodes and the focal node showed that the seizure spread was
blocked [Fig. 7(b)]. Unlike the homogeneous network, the
different classification methods yielded different numbers of
key nodes in the heterogeneous network with the same thresh-
old as in the homogeneous network. As shown in Fig. 7(c),
nodes 39, 41, 77, and 89 were again identified as key nodes
with SC epileptogenicity [threshold: 0.19, blue filled triangles
with a larger size than others in Fig. 7(c)], whereas only node
55 and node 89 were identified as key nodes with mRWER
epileptogenicity [threshold: 0.05, orange filled squares with
a larger size than others in Fig. 7(c)]. We performed virtual
surgery on this heterogeneous whole-brain network model
and found that either removing the SCs between the four
key nodes identified by SC epileptogenicity and the focal
node [Fig. 7(d)] or removing the SCs between the two key
nodes identified by mRWER epileptogenicity and the focal
node [Fig. 7(e)] can block the seizure spread. However, re-
moving the SCs between the two nodes with the highest SC
epileptogenicity (i.e., node 77 and node 89) and the focal
node failed to block the seizure spread [Fig. 7(f)]. Therefore,
although seizure spread in heterogeneous networks could be

controlled by both surgical strategies, the strategy based on SC
epileptogenicity caused more damage to the brain networks.

Next, to validate our conclusions for arbitrarily chosen
focal nodes, we tested the surgical outcomes in a group of
patients with different locations of the seizure focus. The
focal node of each patient was selected randomly with equal
probability from the 116 nodes in the network. We performed
the aforementioned virtual surgery procedure to evaluate the
success rate and surgical damage for different surgical strate-
gies. Here, the success rate refers to the proportion of patients
whose seizure spread is successfully blocked after surgery,
and the damage rate refers to the average ratio of the number
of SCs that must be removed to the maximal possible number
of SCs between the focal node and other nodes (i.e., 116)
to successfully control seizure spread. We used the success-
damage curve to describe the surgical outcomes of different
surgical strategies. Similar to the ROC curve analysis, these
two measures critically depend on the threshold of SC or
mRWER epileptogenicity. If the threshold is too large, no
node would be classified as a key node so that both the success
rate and damage rate would be zero. If the threshold is too low,
all nodes would be classified as key nodes so that the damage
rate is that all connections must be removed, though in this
case the success rate would be 100%.

Figures 8(a) and 8(b) show the success-damage curve for
virtual surgery on a group of patients with strategies based
on SC/mRWER epileptogenicity. If the surgical strategy is
based on SC epileptogenicity, the curves drop significantly as
the extent of heterogeneity increases in networks [Fig. 8(a)].
However, if the surgical strategy is based on mRWER epilep-
togenicity, the curves remained almost the same [Fig. 8(b)].
We also obtained the ideal surgical outcomes by identifying
and removing the key nodes with the procedures described
in Fig. 5(a). It is noted that neither strategy achieved ideal
surgical outcomes (markers at the top-left of the plots, en-
larged in the inserts for better view). We then measured the
surgical efficiency by calculating the areas under the success-
damage curves. A larger area under the success-damage curve
indicates a higher success rate with a lower damage rate and
thus corresponded to higher surgical efficiency. As shown in
Fig. 8(c), the surgical efficiency for the strategy based on
SC epileptogenicity decreased significantly as the extent of
heterogeneity increased, whereas the surgical efficiency for
the strategy based on mRWER epileptogenicity was more
robust against changes in the extent of heterogeneity. On the
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FIG. 7. Examples of virtual surgery on virtual patients using
different strategies. (a) The classification of key nodes with both SC
and mRWER epileptogenicity in virtual patients whose network is
homogeneous (μ = −2.12, σ = 0) and node 37 is the focal node.
The horizontal lines represent the threshold to classify key nodes
(blue dashed line for SCs and orange dotted line for mRWER). The
identified key nodes are marked with the same icons but are larger
in size. In this case, the same four nodes (nodes 41, 39, 77, and
89) were identified as key nodes using different methods. (b) The
seizure activity was blocked after virtual surgery was performed to
remove SCs between the four nodes identified in (a) and the focal
node. The plot is the same as above, but the four identified key
nodes are marked with larger black dots. (c) The same as in (a),
but the network is heterogeneous (μ = −2.12, σ = 0.03). In this
case, four nodes (nodes 41, 39, 77, and 89) were identified as key
nodes by SC epileptogenicity, but only two nodes (nodes 55 and 89)
were identified as key nodes by mRWER epileptogenicity. (d) The
seizure activity was blocked in a heterogeneous network after virtual
surgery was performed to remove SCs between four nodes identified
by SC epileptogenicity in (c) and the focal node. The plot is the same
as in (b). (e) The seizure activity was blocked in a heterogeneous
network after virtual surgery was performed to remove SCs between
the two nodes identified by mRWER epileptogenicity in (c) and the
focal node. The plot is the same as in (b). (f) Seizure activity was
not blocked in a heterogeneous network after virtual surgery was
performed to remove SCs between two of the four nodes (nodes 77
and 89) identified by SC epileptogenicity in (c) and the focal node.
The plot is the same as in (b).

other hand, the damage rate corresponding to the 95% success
rate [marked with horizontal dashed lines in Figs. 8(a) and
8(b)] caused by surgery with mRWER epileptogenicity was
limited to around 0.04, which meant, on average, 4–5 SCs
must be removed for each patient to block the seizure spread.
It changed slightly as the extent of heterogeneity increased
and remained at almost the same level as in the homogeneous
networks. However, the damage caused by surgery with SC
epileptogenicity increased quickly as the extent of hetero-
geneity increased, and exceeded twice that of homogeneous
networks when σ was increased to 0.04 [Fig. 8(d)]. These
results imply that surgical strategy based on mRWER epilep-
togenicity might achieve a higher success rate with lower
damage to the brain, and it is quite robust against changes in
heterogeneity.

IV. DISCUSSION

Accurate prediction and efficient control of seizure spread
are vital for the clinical treatment of epilepsy. In the present
study, to achieve a more accurate prediction and efficient
control of seizure spread in the heterogeneous whole-brain
networks, instead of using nodal epileptogenicity derived
from SCs alone, we proposed the mRWER algorithm, a
random-walk based measure of the nodal epileptogenicity that
combines the information of both SCs and nodal excitabil-
ity. We demonstrated that the mRWER epileptogenicity was
superior to SC epileptogenicity in predicting seizure spread
and classifying key nodes responsible for seizure spread. Fur-
thermore, the outcomes of virtual surgery with the strategy
based on mRWER epileptogenicity achieved a high success
rate while maintaining rather low damage (i.e., requiring
fewer SCs to be removed to block seizure spread). More
importantly, while the performance of SC epileptogenicity
deteriorated as the extent of network heterogeneity increased,
mRWER epileptogenicity exhibited better and more robust
performance.

Using advanced personalized whole-brain modeling tech-
niques, accurate prediction and efficient control of focal
seizure spread become possible [22,24–26]. To improve the
accuracy of prediction, it is vital to incorporate into these
models more biological factors that have substantial in-
fluences on seizure spread. Besides SCs, heterogeneity in
regional excitability is the prominent factor that has been
argued to affect seizure spread. First, although many previous
studies used identical parameters for nodal dynamics to con-
struct whole-brain network models [23,24,49], an increasing
number of studies showed that including heterogeneity in the
model would yield a more realistic simulation of network
dynamics in the brain [50,51]. Recent studies have shown that
incorporating heterogeneity inferred from the MRI-derived
T1- to T2-weighted (T1w/T2w) index generates more realistic
resting-state functional connectivity measured by functional
MRI (fMRI) [50,51]. Second, as we argued in the Introduction
section, the critical role of regional excitability in seizure
onset and propagation has been gradually revealed [27,31].
Third, various techniques have been developed to infer re-
gional cortical excitability, such as Bayesian inference based
on SEEG recording [21,52,53] or noninvasive transcranial
magnetic stimulation (TMS) [54]. However, few studies have
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FIG. 8. The efficiency of virtual surgery based on different strategies. (a) The success-damage curves of the surgical strategy based on
SC epileptogenicity with different extents of heterogeneity. Insert: The ideal success rate vs damage rate of surgery obtained by identifying
the key nodes with the procedures described in Fig. 5(a). The horizontal gray dashed line indicates the 95% success rate. (b) The same as in
(a), but for mRWER epileptogenicity. (c) The dependence of surgical efficiency evaluated based on the area under the success-damage curves
for the extent of heterogeneity of different surgical strategies. (d) The dependence of damage rate at the 95% success rate on the extent of
heterogeneity of different surgical strategies. The results were calculated with 800 virtual patients for each value of the extent of heterogeneity.

investigated the effects of heterogeneity in regional excitabil-
ity on seizure spread and subsequent prediction and control
strategies [22,25,26]. Therefore, our work filled this gap by
first determining the effect of heterogeneity on seizure spread
in a whole-brain model and then proposing a random-walk
based method that yielded more accurate prediction and ef-
ficient control of seizure spread than methods based on SCs
alone.

In the present study, we showed that the nodal epilepto-
genicity measured by mRWER is more accurate than that of
SC in predicting seizure spread in heterogeneous networks.
The underlying mechanism can be understood as follows. The
onset of seizures can be considered a threshold crossing event
[20]. Therefore seizure onset at one particular node depends
on two factors. The first one is the summarized inputs from
other nodes via SCs. The larger this summarized input, the
easier subsystem 1 reaches the threshold. The second one is
the excitability of this node, which is decided by the distance
between x0 and x0c. With the same amount of inputs, the node
with higher excitability (short distance between x0 and x0c)
would be easier to generate seizure activity by crossing the
threshold. The prediction of seizure spread with SC epilep-
togenicity works well for homogeneous networks because
only the first factor needs to be considered in this case. It
is not a surprise that its performance becomes worse once
the heterogeneity is included in the model. On the contrary,
the mRWER epileptogenicity not only includes the first factor
through the SC matrix but also includes the second factor by
linking the nodal restart probability with their excitability.

The lack of clinical trials to support our results is one
major limitation of this study. However, we would like to note
several issues that would help to bridge the gap between our
work and future clinical applications. First, the SC matrix used
in this study was derived from a DTI dataset of 286 healthy
subjects. Although this matrix would not affect the general
conclusions of our study, this SC matrix is not the same as
that used for clinical purposes. In the clinic, since the focal
node and SCs are patient-specific, the SC matrix of patients
would generate more accurate predictions through the use of
the personal SC matrix [22,24]. Second, in this study, regional
excitability was set randomly, whereas recent studies on brain
imaging techniques suggested that although large intersubject
variability in regional excitability occurs, certain patterns of
regional excitability exist across brain regions [50,51]. Thus
those details could be incorporated into the patient’s person-
alized brain models to yield better predictions. Third, in the
present study we removed all connections from the focal node
to the key nodes. However, in practice, removing a portion of
the connections is also an optional strategy to control seizures.
Therefore it is interesting to investigate whether the mRWER
algorithm still produces results in this case.

V. CONCLUSIONS

In conclusion, brain networks are heterogeneous, and
seizure propagation in brain networks is significantly af-
fected by heterogeneity in regional excitability. Therefore
the accuracy of the prediction for seizure propagation based
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on structural connections alone is reduced by heterogene-
ity. However, the mRWER algorithm proposed in this study
mimics the essential dynamics of seizure onset in heteroge-
neous networks, thus providing better predictions of seizure
propagation. The outcomes of virtual surgery suggest that the
strategy based on the mRWER algorithm would have a high
success rate while maintaining a low level of brain damage
by removing fewer structural connections (i.e., fewer lesions
in white matter fibers). These findings may have potential

applications in the field of personalized brain modeling and
personalized surgery strategy for patients with epilepsy.
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[50] M. Demirtaş, J. B. Burt, M. Helmer, J. L. Ji, B. D. Adkinson, M.
F. Glasser, D. C. Van Essen, S. N. Sotiropoulos, A. Anticevic,
and J. D. Murray, Neuron 101, 1181 (2019).

[51] X. Kong, R. Kong, C. Orban, P. Wang, S. Zhang, K. Anderson,
A. Holmes, J. D. Murray, G. Deco, M. van den Heuvel et al.,
Nat. Commun. 12, 6373 (2021).

[52] M. Hashemi, A. N. Vattikonda, V. Sip, S. Diaz-Pier, A. Peyser,
H. Wang, M. Guye, F. Bartolomei, M. M. Woodman, and V. K.
Jirsa, PLoS Comput. Biol. 17, e1009129 (2021).

[53] V. Sip, M. Hashemi, A. N. Vattikonda, M. M. Woodman, H.
Wang, J. Scholly, S. M. Villalon, M. Guye, F. Bartolomei,
and V. K. Jirsa, PLoS Comput. Biol. 17, e1008689
(2021).

[54] E. Raffin, S. Harquel, B. Passera, A. Chauvin, T. Bougerol, and
O. David, Hum. Brain Mapp. 41, 2741 (2020).

[55] F. Bartolomei, P. Chauvel, and F. Wendling, Brain 131, 1818
(2008).

064412-14

https://doi.org/10.1006/nimg.2001.0978
https://doi.org/10.1523/JNEUROSCI.1570-14.2014
https://doi.org/10.1371/journal.pcbi.1004209
https://doi.org/10.1371/journal.pone.0128570
https://doi.org/10.1038/srep29215
https://doi.org/10.1016/j.neuron.2019.01.017
https://doi.org/10.1038/s41467-021-26704-y
https://doi.org/10.1371/journal.pcbi.1009129
https://doi.org/10.1371/journal.pcbi.1008689
https://doi.org/10.1002/hbm.24975
https://doi.org/10.1093/brain/awn111

