
PHYSICAL REVIEW E 105, 064411 (2022)

Equivalence framework for an age-structured multistage representation of the cell cycle
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We develop theoretical equivalences between stochastic and deterministic models for populations of individual
cells stratified by age. Specifically, we develop a hierarchical system of equations describing the full dynamics
of an age-structured multistage Markov process for approximating cell cycle time distributions. We further
demonstrate that the resulting mean behavior is equivalent, over large timescales, to the classical McKendrick-
von Foerster integropartial differential equation. We conclude by extending this framework to a spatial context,
facilitating the modeling of traveling wave phenomena and cell-mediated pattern formation. More generally, this
methodology may be extended to myriad reaction-diffusion processes for which the age of individuals is relevant
to the dynamics.
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I. INTRODUCTION

Age structure is an important, but often overlooked, ele-
ment of models for proliferating cells. While a population of
cells, for example, might grow according to some Malthusian
law asymptotically [1], this observation gives no information
regarding important cellular characteristics such as cell cy-
cle time distributions (CCTDs) or cellular phase durations.
Age-structured modeling enjoys application in a wide range
of fields, including demography [2], cellular migration and
invasion [3], targeted therapeutics [4], and oncology [5].

The cell cycle is regulated according to various biological
processes, many of which depend not only on the present
moment in time, but on previous events and properties of the
cells. This is inconsistent with the much used [6–8] but incor-
rect assumption that the cell cycle is a memoryless process.
As such, the cell cycle is not easily adapted for simulation via
many of the most popular stochastic simulation algorithms for
Markov processes, such as the Gillespie direct method [9] or
the next reaction method [10], which rely on the assumption
that inter-event times are exponentially distributed. The mul-
tistage model (MSM) [11] circumvents this by representing
the cell cycle as a sequence of K independent, exponentially
distributed stages, which in general need not correspond to the
classic phases of the cell cycle.

Specifically, the MSM assigns each individual a stage k,
from which it can transition to stage k + 1 at a rate λk . Cy-
tokinesis is incorporated through the transition of individuals
in stage K into two new individuals in stage 1 at a rate λK .

*josh.c.kynaston@gmail.com

The K-stage MSM can then be represented by the following
reaction system,

X1
λ1−→ X2

λ2−→ · · · λK−1−−→ XK
λK−→ 2X1. (1)

The CCTD can then be derived from the convolution of wait-
ing time distributions for each of the K stages. In the simplest
case, where all rates λk = λ are equal, the resultant CCTD
is the Erlang distribution with shape parameter K and rate
parameter λ. More generally, in the case where the rates λk

are not necessarily equal, the CCTDs of the MSM are of
the hypoexponential family; this family is a good fit to many
experimentally derived CCTDs [12–15]. Figure 1 compares
an experimentally derived CCTD with best-fit CCTDs from
the hypoexponential family. As mentioned, the stages of the
MSM do not directly correspond to the classical phases of
the cell cycle; however, the choice of the number of stages
K and the rate parameters λi allows for the representation of
cell cycle phases as sequences of consecutive stages in the
MSM. This grouping of consecutive stages would result in
phase length distributions from the hypoexponential family.
Hypoexponential distributions have been demonstrated to be
a good fit for experimentally derived distributions of phase
length [13], motivating the use of the MSM in the present
work as a framework through which to analyze the age-
structure of cell cycle phases.

One of the most well-known methods for age-
structured modeling is the McKendrick-von Foerster
equation (MVFE) [16,17], which takes the form of a linear,
first-order integropartial differential equation describing the
evolution of a population’s age density. In its canonical form,
the density of individuals at any time t with ages in the
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FIG. 1. Experimentally determined CCTD in NIH 3T3 mouse
embryonic fibroblasts, grown in vitro (histogram). Red, green, and
blue curves depict the best-fit CCTDs from the exponential, Erlang,
and exponentially modified Erlang distributions, respectively. Repro-
duced with permission from Ref. [11].

interval [a, a + da) is defined to be ρ(a, t )da. It is assumed
that individuals may only leave the population via death,
which occurs with some rate μ(a) that depends on the age of
the individual. The MVFE is then

∂ρ

∂t
+ ∂ρ

∂a
= −μρ. (2)

Further, it is assumed that individuals may enter the popu-
lation only via birth, which occurs with some rate β(a) that
depends on the age of the parent individual. This gives rise
to the boundary condition, often referred to as the renewal
condition,

ρ(0, t ) =
∫ ∞

0
β(σ )ρ(σ, t ) dσ. (3)

For the purposes of modeling a cellular population undergoing
cytokinesis, one can interpret the death rate μ to be the rate
at which cytokinesis occurs. In this case, one can derive the
cytokinesis rate directly from the CCTD; specifically, if f (a)
is the probability density function of the CCTD, then

μ(a) = f (a)∫ ∞
a f (σ )dσ

.

The process of cells entering the population via mitotic divi-
sions is then represented via the renewal condition by setting
β(a) = 2μ(a), where any cell which “dies” is replaced by
two newborns. The MVFE forms the basis for a wide variety
of deterministic age- and/or size-structured models that have
seen extensive application in the literature; see, for example,
Refs. [18,19].

While equations for the evolution of the mean number of
cells in each stage of the MSM can be derived [11], these
equations give no information on the underlying age structure
of the system. In Sec. II, we develop a master equation de-
scribing the age and time evolution of the MSM. We then
demonstrate that, for large timescales, the mean age distri-
bution of the MSM obeys the MVFE with suitable birth

and death rates. Further, we construct the marginal densities
from the master equation, from which we derive the deter-
ministic mean-field description of the system; in particular,
we derive a system of MVFE-like partial differential equa-
tions that describes how the mean density of cells varies with
age and time. Similar multistage analogues of the MVFE
have been described in prior works; for example in Ref. [20],
which proposes a two-stage system of deterministic MVFE-
like equations to describe an initiation-adder model for the
regulation of bacterial cell size. Further, deterministic mean-
field descriptions yielding MVFE-like equations have been
derived for birth-death processes [21], binary fission-death
processes [22], and for stochastic sizer-timer models [23] that
track both the age- and size-structure of a growing cellular
population. None of these works, however, consider the mul-
tiphase structure of the cell cycle.

A key motivation for the present work is to provide a
foundation for the future development of spatially extended
hybrid methods, extended to incorporate age structure. Spa-
tially extended hybrid methods are techniques for accurate
and efficient simulation of stochastic biological systems that
exploit the inherent efficiency of numerical techniques such
as finite difference methods, by applying a deterministic de-
scription on regions of the domain where stochasticity is not
an important driver of the dynamics and coupling them with
Markovian simulations in regions where stochasticity domi-
nates. A critical step in the development of hybrid methods
is the establishment of an equivalence framework between the
underlying stochastic method of interest and any deterministic
approximations of said method.

In Sec. III, we analyze the mean behavior of the system
over long timescales. Specifically, we demonstrate that when
all rates λk are equal, the normalized mean density converges
to a distribution that obeys the steady-state MVFE. Since all
transitions and birth events in the MSM are first-order, that is,
they are initiated by only a single cell at an age-independent
rate, our derived deterministic equations for the mean age
distribution of the MSM are exact. In Sec. IV, we illustrate
our equivalence framework numerically via the presentation
of two simulated test cases: the first comparing a stochastic
simulation of the MSM with the numerically computed solu-
tions to the system of mean density equations, and the second
comparing a stochastic simulation of a spatially extended
MSM with the numerically computed solutions to a similarly
extended system of mean density equations. In Sec. V we
make some concluding remarks and discuss further avenues of
development and application of our theory. Several technical
derivations are contained in the Appendix.

II. DYNAMICS OF THE AGE-STRUCTURED
MULTISTAGE MODEL

In this section, we derive a master equation that de-
scribes the full age and time evolution of the age-structured
multistage model (aMSM). This equation can be used to
quantify the stochastic variations of the aMSM exactly. With-
out this, the variations can only be estimated numerically
using stochastic simulation techniques. The technique we em-
ploy was first used by Chou and Greenman [22] to quantify
the moments of a simple binary fission process; the present
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FIG. 2. Diagrammatic comparison of the MSM and aMSM with
2 (pseudo)stages, showing a single individual beginning in stage 1
(gray), transitioning to stage 2 (white) before undergoing a cytoki-
nesis event. One of the newborn individuals subsequently transitions
to stage 2. Left: Standard MSM. Right: aMSM, with the inclusion of
the auxiliary twin-pair stage, represented by two stage 1 individuals
enclosed within an ellipse. When one of the twin-pair increments its
stage, the twin-pair is removed and replaced by one stage 1 individual
and one stage 2 individual.

work generalises these techniques to include multiple cellular
species (in this case, the stages of the aMSM) undergoing
first-order reactions (transitions from one stage to the next)
that do not change the age of the cell.

To accomplish this, we make a slight modification to
the system of reactions (1), which ultimately simplifies the
boundary conditions of the system. Specifically, we include
an additional “stage” that keeps track of twin-pairs in the first
stage arising from cytokinesis. Notice that this does not alter
the dynamics of the reaction set, as each of a twin-pair of
newborn cells are indistinguishable from one another until one
advances to the next stage.

To make this precise, suppose that we have a K-stage
MSM, for a fixed positive integer K , where we keep track
of the continuous age of each individual. We introduce an
auxiliary “stage” consisting of twin-pairs that arise from cy-
tokinesis, which for convenience we will denote with the
subscript K + 1. Figure 2 depicts the conceptual difference,
for comparison, between the two-stage MSM and the two-
stage aMSM in the case of a cytokinesis event followed by
a stage transition. In contrast to the MSM, the governing
reactions of the aMSM are

Y1
λ1−→ · · · λK−1−−→ YK

λK−→ YK+1
2λ1−→ Y1 + Y2. (4)

Note that the “stages” Yk in the aMSM, which we call pseu-
dostages, are not all equivalent to the stages Xk in the MSM;

in particular, we have 2YK+1 + Y1 = X1 and Yk = Xk for k =
2, . . . , K . Further, a key component of the aMSM is that the
age of an individual is set to 0 at the instant of cytokinesis and
that subsequent stage transitions do not reset the age clock
of an individual to 0. This approach is similar to that used
in Refs. [21,22] in that we extend the dimensionality of the
state space to distinguish twin-pairs of individuals through
the inclusion of an additional stage YK+1. We additionally
adopt the pseudostage nomenclature to distinguish the MSM
from the aMSM, the latter of which is identical besides the
additional structure endowed by distinguishing twin-pairs.

Assume that at time t , for each k = 1, . . . , K , we have
nk individuals in the kth pseudostage, and nK+1 twin-pairs.
Denote by

n := (n1, . . . , nK+1)

the number of individuals in each pseudostage, and by

ank := [
(ak )1, . . . , (ak )nk

]
the vector containing the ages of the individuals in the kth
pseudostage, where (ak )i is the age of the ith individual in the
kth pseudostage. Further, define

ρn
{
an1 ; . . . ; anK+1 ; t

}
dan1 . . . danK+1

to be the probability that at time t , after randomly enumerating
each individual and twin-pair in the system, the ith individual
in the kth pseudostage has age in [(ak )i, (ak )i + d (ak )i]. No-
tice that this results in a convenient symmetry property for the
probability density function ρn. Namely, the reordering of any
age vector ank does not change the associated probability. For
brevity, define the following operators that modify the index
vector n,

Fkn = (. . . , nk + 1, nk+1 − 1, . . .), k = 1, . . . , K,

Gn = (n1 − 1, n2 − 1, . . . , nK+1 + 1), k = 1, . . . , K + 1,

H±
k n = (. . . , nk ± 1, . . .), k = 1, . . . , K + 1.

We adopt the convention that any unspecified entries remain
unchanged under these operators. These operators can be un-
derstood intuitively as backward operators on the given state.
Specifically, the Fk are backward operators corresponding
to transition events between pseudostages k and k + 1, G
is the backward operator corresponding to the breaking of
a twin-pair, and the H±

k are the operators corresponding to
either the addition or the removal of an individual in the
kth pseudostage. We will also introduce the notation a(−i)

nk
to

represent the vector ank with the ith entry removed. Then,
making explicit the assumption that ρn is differentiable, we
see that ρn obeys the following master equation:

∂ρn

∂t
+

K+1∑
k=1

nk∑
i=1

∂ρn

∂ (ak )i
=

K∑
k=1

λk

(
nk + 1

nk+1

) nk+1∑
i=1

ρFkn
{
. . . ; ank , (ak+1)i ; a(−i)

nk+1
; . . . ; t

}
+ 2λ1

(
nK+1 + 1

n1n2

) n1∑
i=1

n2∑
j=1

ρGn
{
a(−i)

n1
; a(− j)

n2
; . . . ; anK+1 , ωi, j ; t

} −
(

2λ1nK+1 +
K∑

k=1

λknk

)
ρn, (5)

where ωi, j = (a1)i = (a2) j when (a1)i and (a2) j are equal, and ωi, j = ∞ if not; note that our model makes the implicit
assumption that no individuals can have infinite age, and therefore ωi, j = ∞ forces ρn = 0.
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The meaning of the terms in Eq. (5) can be understood by considering the mechanisms through which one can enter or leave
the state ρn. The first term on the right represents the gain in probability from the transition of a pseudostage k individual into
pseudostage k + 1; a transition Yk → Yk+1 for k = 1, . . . , K , where the transition YK → YK+1 represents a cytokinesis event. The
second term represents the gain in probability from the splitting of a twin-pair in pseudostage 1 into both a pseudostage 1 and
pseudostage 2 individual; the reaction YK+1 → Y1 + Y2. Finally, the last term on the right represents the loss of probability from
leaving the given state via any process in the reaction set; namely, a pseudostage k individual transitioning into pseudostage
k + 1 for k = 1, . . . , K , the occurrence of a cytokinesis event, or the splitting of a twin-pair. The boundary conditions can then
be stated as follows:

ρn{. . . ; ank−1, 0 ; . . . ; t} =
{
λK

( nK +1
nK+1

) ∫ ∞
0 ρFK n{. . . ; anK , σ ; . . . ; t} dσ k = K + 1,

0 k = 1, . . . , K.
(6)

The first case, k = K + 1, represents the birth of new age-zero twin-pairs into the first pseudostage via cytokinesis. The remaining
boundary conditions reflect the fact that no individuals outside of a twin-pair can have an age of zero.

The marginal densities of ρn are constructed by integrating out specified ages. To this end, we define the family of marginal
densities via a given vector, m = (m1, . . . , mK+1), as follows:

ρm
n :=

∫ ∞

0
. . .

∫ ∞

0
ρn da′

n1−m1
. . . da′

nK+1−mK+1
, (7)

where a′
nk−mk

= [(ak )mk+1, . . . , (ak )nk ] denotes the vector containing the final nk − mk entries of ank . For example, observe that
when m = 0 is the zero vector, we can interpret ρ0

n{. . . ; t} as the probability that at time t , we find nk individuals in the kth
pseudostage and nK+1 twin-pairs, irrespective of the ages of the individuals. The general equation for the family of marginal
densities can then be found by integrating Eq. (5) as indicated in Eq. (7), giving

∂ρm
n

∂t
+

K+1∑
k=1

mk∑
i=1

∂ρm
n

∂ (ak )i
= λK

(nK + 1)(nK+1 − mK+1)

nK+1
ρm
FK n −

(
2λ1nK+1 +

K∑
k=1

λknk

)
ρm

n +
K∑

k=1

λk
(nk + 1)(nk+1 − mk+1)

nk+1
ρm
Fkn

+
K∑

k=1

λk
nk + 1

mk+1

nk+1∑
i=1

ρ
Fkm
Fkn

{
. . . ; amk , (ak+1)i ; a(−i)

mk+1
; . . . ; t

} + 2λ1
(nK+1 + 1)(n1 − m1)(n2 − m2)

n1n2
ρm
Gn

+ 2λ1
(nK+1 + 1)(n2 − m2)

n1n2

m1∑
i=1

ρ
H+

K+1H−
1 m

Gn

{
a(−i)

m1
; . . . ; t

}
+ 2λ1

(nK+1 + 1)(n1 − m1)

n1n2

m2∑
j=1

ρ
H+

K+1H−
2 m

Gn

{
. . . ; a(− j)

m2
; . . . ; t

}
+ 2λ1

(nK+1 + 1)

n1n2

m1∑
i=1

m2∑
j=1

ρGm
Gn

{
a(−i)

m1
; a(− j)

m2
; . . . ; amK+1 , ωi, j ; t

}
. (8)

The boundary conditions are obtained by integrating Eq. (6) in the same manner, yielding

ρm
n

{
an1 ; . . . ; ank−1, 0 ; . . . ; anK+1 ; t

} =
{
λK

( nK +1
nK+1

)
ρ
H−

K m
FK n k = K + 1,

0 k = 1, . . . , K.
(9)

Full details of the derivation of the system (8)–(9) can be
found in Appendix A. The system (8)–(9) forms a hierarchy
of equations which is likely intractable to solve analytically;
however, significant cancellation occurs when one investi-
gates only the mean behavior of the system. Specifically, let
us define the mean age density for the kth stage,

fk (a, t ) :=
∑

n

nkρ
ek
n , (10)

for k = 2, . . . , K , where ek is the kth standard unit vector in
RK+1. Since the first stage is made up of both individuals and
twin-pairs, we define

f1(a, t ) :=
∑

n

n1ρ
e1
n + 2

∑
n

nK+1ρ
eK+1
n (11)

as the mean age density of the first stage. Then, applying the
definitions (10) and (11) to Eqs. (8) and (9) yields the follow-
ing system of linear first-order partial differential equations,

∂ fk

∂t
+ ∂ fk

∂a
=

{−λ1 f1 k = 1,

−λk fk + λk−1 fk−1 k = 2, . . . , K + 1,

(12)

with boundary conditions

fk (0, t ) =
{

2λK
∫ ∞

0 fK (σ, t ) dσ k = 1,

0 k = 2, . . . , K + 1,
(13)

for k = 1, . . . , K , yielding a multistage analog of (2)–(3).
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III. ASYMPTOTIC AGE DISTRIBUTION

We now turn our attention to the combined age distribution
of the aMSM. Throughout this section we will use a caret
grapheme to denote probability density functions, such as ζ̂ ,
as opposed to density functions, such as fk . We will also use
a superscript asterisk to denote limiting quantities.

We wish to determine the time-asymptotic behavior of
ζ̂ (a, t ), defined such that the quantity ζ̂ (a, t )da is the proba-
bility that at time t we find an individual, in any pseudostage,
with age in [a, a + da). For simplicity, we will henceforth
take λk = λ for k = 1, . . . , K + 1, for some fixed λ > 0. This
will ultimately lead to asymptotic agreement between the
combined age distribution of the aMSM and the solution
to (2)-(3) with a cytokinesis rate derived from the Erlang
distribution, and thereby an Erlang CCTD. We explore this
equivalence numerically in Sec. IV. In general, different val-
ues for the λk result in a cytokinesis rate derived from the
hypoexponential family; however, a full derivation of this is
beyond the scope of the present work.

Define

Mk (t ) :=
∫ ∞

0
fk (σ, t ) dσ (14)

to be the mean number of individuals in the kth pseudostage
at time t , and

Pk (t ) := Mk (t )∑K
k=1 Mk (t )

(15)

to be the mean proportion of individuals in the kth stage at
time t . Note that this can be interpreted as the probability that
a randomly selected individual from the population at time t is
in the kth stage. The combined age distribution ζ̂ (a, t ) is more
naturally written in terms of stage-wise age distributions; to
this end, we define

f̂k (a, t ) := fk (a, t )∫ ∞
0 fk (σ, t ) dσ

, (16)

where f̂k (a, t )da gives the probability that, at time t , the age of
a randomly selected individual in the kth stage lies in [a, a +
da). Since the total population can be partitioned according to
stage, it follows from the law of total probability that

ζ̂ (a, t ) =
K∑

k=1

Pk (t ) f̂k (a, t ). (17)

It remains then to characterise the asymptotic evolution of the
f̂k by applying definition (16) to (12)-(13), giving

∂ f̂k

∂t
+ ∂ f̂k

∂a
=

{
−λ f̂1− 1

M1

dM1
dt f̂1 k = 1,

−λ f̂1 − 1
Mk

dMk
dt + λ

Mk−1

Mk
f̂k−1 k = 2, . . . , K,

with boundary conditions

f̂k (0, t ) =
{

2λMK
M1

k = 1,

0 k = 2, . . . , K.

We now consider the behavior of f̂k over large timescales,
making the assumption that f̂k (a, t ) converges to some steady-
state distribution as t → ∞. Specifically, we define

f̂ ∗
k (a) := lim

t→∞ f̂k (a, t ). (18)

The steady-state behavior of the population means and pro-
portions can be shown to satisfy the following identities [11],

lim
t→∞ Pk (t ) = (21/N )N−k (21/N − 1), (19)

lim
t→∞

Mk−1

Mk
= 21/N , (20)

lim
t→∞

MK

M1
= 21/N−1, (21)

and

lim
t→∞

1

Mk

dM1

dt
= λ(21/N − 1). (22)

Equations (19)–(22), when combined with the definition of
f̂ ∗
k , yield the following system of ordinary differential equa-

tions for the age distribution of each pseudostage,

d f̂ ∗
k

da
=

{−λ∗ f̂ ∗
1 k = 1,

−λ∗ f̂ ∗
k + λ∗ f̂ ∗

k−1 k = 2, . . . , K,
(23)

with boundary conditions

f̂ ∗
k (0) =

{
λ∗ k = 1,

0 k = 2, . . . , K,
(24)

where λ∗ = λ21/K . The system (23)–(24) can be solved ex-
actly in this case, giving

f̂ ∗
k (a) = λ∗kak−1eλ∗a

(k − 1)!
, (25)

which is the probability density function of the Erlang distri-
bution with shape parameter k and rate parameter λ∗. It can
then be demonstrated, by inserting expressions (25) and (19)
into Eq. (17), that

ζ̂ ∗(a) := lim
t→∞ ζ̂ (a, t ) = 2re−ra

∫ ∞

a
p(σ ) dσ, (26)

where r := λ∗ − λ and p is the probability density function
of the Erlang distribution with shape parameter K and rate
parameter λ and, in particular, the CCTD of the MSM.

The parameter r can be viewed as the intrinsic growth rate
of the population. In particular, it can be demonstrated (see
Appendix B) that the mean individual counts Mk (t ) satisfy

lim
t→∞

K∑
k=1

Mk (t )e−rt = C,

for some constant C as t → ∞. This demonstrates that asymp-
totically, the mean age distribution of the aMSM converges
to some steady-state combined age distribution. Indeed, this
limiting behavior of the aMSM is captured by the MVFE.
Specifically, the method of similarity solutions can be used
to demonstrate that ζ ∗(a) is a solution to the steady-state
MVFE (2)–(3):

d ζ̂ ∗

da
= −

(
p∫ ∞

a p(σ )dσ

)
ζ̂ ∗,

ζ̂ ∗(0) = 2
∫ ∞

0
ζ̂ ∗(σ )p(σ ) dσ.
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FIG. 3. Age densities in test problem 1, simulated with 	α = 1
300 and a time step of 	t = 1

300 on the age domain [0, 25]. The displayed
densities are plotted only on the domain [0, 6] for ease of comparison. (a) Initially, at time t = 0, all cells are in pseudostage 1 with ages
uniformly distributed in the interval [0, 1]. The black, dotted lines represent the corresponding numerical approximations to the densities of
each stage. The remaining three panels (b), (c), and (d) display the propagation of the initial condition at (nondimensional) times t = 2, 4, 8,
respectively. The colored lines (described in the legend) correspond to the stochastic approximations to the densities of each of the four stages.
Simulation results are averaged over 1000 repeats.

IV. SIMULATION RESULTS

This section contains, for illustrative purposes, a numerical
demonstration of our model behavior as described in Sec. II
through two simulated test cases. We demonstrate that the
asymptotic behavior of the combined age distribution of the
deterministic aMSM (17) agrees with the stochastic aMSM,
and heuristically quantify how rapidly the stochastic aMSM
converges to its deterministic limit (26). Further, we showcase
the utility of our theory by applying it to a spatial context
where cells are permitted to diffuse throughout some finite
domain and identify a spatial extension of the MVFE that
provides good agreement with the stochastic, spatial aMSM.

A. Uniform-age initial condition

In this first test problem, we compare the deterministic
densities of the aMSM (12)-(13) as approximated via a finite
difference method, with the results of a stochastic simulation
of the aMSM (4) with trajectories generated via the Gille-
spie algorithm [9]. In our simulations, we take αi = i	α, for
i = 0, . . . , N , to be our age discretization with grid spacing
	α, on which the numerical solutions are computed and the
stochastic trajectories are discretized.

The system (12)-(13), which we are approximating numer-
ically, admits solutions on the unbounded domain [0,∞) ×
[0,∞). Since fk (a, t ) → 0 as a → ∞ for all t , we must
therefore select N and 	α such that the truncation point αN

yields a vanishingly small fk (α, t ) for all α > αN . We denote
our numerical approximation to the system (12)-(13) by f̃k ,
and the mean age density of the aMSM as approximated via

the Gillespie algorithm by g̃k . We also denote by

ζ̃ (αi, t ) :=
∑K

k=1 g̃k (αi, t )∑K
k=1

∑N
j=0 g̃k (α j, t )

(27)

the stochastic approximation to the combined age distribution
ζ̂ as defined in Eq. (17), with the goal of demonstrating
heuristically that

lim
t→∞ ζ̃ (ai, t ) = ζ̂ ∗(ai ). (28)

To be specific, consider a four-stage aMSM with equal
transition rates λ = 1. We take the initial condition

f̃k (αi, 0) = g̃k (αi, 0) =
{

1000 αi � 1 and k = 1,

0 otherwise, (29)

as illustrated in Fig. 3(a), corresponding to an initial popu-
lation of 1000 individuals in stage 1; we note the fact that
this initial condition is incompatible with the boundary con-
ditions (13); nevertheless, our deterministic system clearly
approximates the mean of the stochastic system, as we now
demonstrate.

In the first example, shown in Fig. 3, we present a simple
comparison of the stochastic and deterministic age densities in
each stage at time points t = 0, 2, 4, 8. To the eye, these plots
demonstrate excellent agreement between the stochastic and
deterministic age densities. A more thorough investigation of
this agreement is presented in Fig. 4. Here, we calculate and
compare the integral over age of each curve f̃k (t ) and g̃k (t )
for k = 1, . . . , 4. Since both functions are strictly positive,
this can be interpreted as the number of cells present in each
pseudostage. We also calculate the relative mass-error in each
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FIG. 4. Plots of the 1-norm of the f̃k and g̃k . Panel (a) shows the numerical approximation for the number of cells in pseudostage 1 (black,
dashed line) and the stochastic approximation (red, solid line). The inset plot shows the relative error over time; that is, (g̃1(t ) − f̃1(t ))/g̃1(t ).
Panels (b), (c), and (d) present the equivalent quantities for pseudostages 2, 3, and 4, respectively. Simulation results are averaged over 1000
repeats.

pseudostage, defining

εmass(t ) :=
∫ ∞

0 g̃k (σ, t ) − f̃k (σ, t ) dσ∫ ∞
0 g̃k (σ, t ) dσ

≈
∑N

i=0[g̃k (αi, t ) − f̃k (αi, t )]∑N
i=0 g̃k (αi, t )

. (30)

The panels in Fig. 4 exhibit good agreement and no dis-
cernible systemic bias over large timescales (insets).

To examine the effect of initial population size na on model
agreement, we consider the f̃k as predictors of g̃k to calcu-
late the root mean squared error (RMSE) associated with the
stochastic solution. We define the RMSE at time t for stage k
via

RMSEk (t )2 = 1∑N
i=0 g̃k (αi, t )

N∑
i=0

[g̃k (αi, t ) − f̃k (αi, t )]2.

As demonstrated in a log-log plot (Fig. 5), we find strong
evidence that the RMSE associated with our stochastic model
decays with the reciprocal root of the initial population size.
This is precisely the result one would expect from the central

limit theorem for an unbiased predictor f̃k , providing evidence
of a lack of bias in our Monte Carlo simulation.

FIG. 5. Plot of the RMSE between the f̃k and g̃k for a range of
initial population sizes na between 101 and 104 for each of the K = 4
stages. MSE sampled at time t = 8 and averaged over 1000 repeats.
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FIG. 6. (a) Plot of the combined age distribution for three time points t = 0, 6, 12 as approximated via a stochastic simulation of Eq. (4)
versus the deterministic asymptotic distribution (26) (black, dashed). (b) Evolution of the histogram distance error between the stochastic
approximation of the combined age distribution and the deterministic asymptotic distribution over time. Simulation results are averaged over
1000 repeats.

Finally, we examine the convergence of the approximate
combined age distribution (27) to its theoretical limit (26).
To this end, we employ the histogram distance error (HDE)
metric [24], here defined to be

εH (t ) := 1

2

N∑
i=0

∣∣∣∣∣ ζ̃ (αi, t )∑N
j=0 ζ̂ (α j, t )

− ζ̂ ∗(αi )∑N
j=0 ζ̂ ∗(α j )

∣∣∣∣∣. (31)

The HDE takes values in [0, 1], where 0 corresponds to the
two distributions being equal almost everywhere, and a value
of 1 indicates that the supports of the two distributions are
disjoint. We plot the HDE in Fig. 6, observing a rapid conver-
gence of the combined age distribution to its theoretical limit.

B. Age and space structure

We now extend the results of the previous sections to a spa-
tial context. Incorporating spatial effects into the aMSM could
be accomplished in several ways; however, in this test problem
we consider a one-dimensional “mesoscopic” representation,
where the spatial location of individuals is discretized into
fixed-sized compartments. This approach has the advantage
that it can be simulated quickly, and is easily implemented via
the Gillespie algorithm through the introduction of compart-
ments to the well-mixed version of the aMSM. This approach
is also amenable to hybridisation via approaches such as
the pseudocompartment method [25] or the method of Spill
et al. [26].

The (mesoscopic) spatial k-stage aMSM is a continuous-
time agent-based method on a finite domain, which we will
take without loss of generality to be �C = [0, 1], partitioned
into Nc compartments of uniform width h, with central points
x j = (2 j − 1)h/2 for j = 1, ..., Nc. Individuals within each
compartment have an associated stage, k. As in the well-
mixed model (i.e., the model without spatial structure), stage
k individuals can transition to stage k + 1 at a rate λ. If
an individual is in stage K , then at rate λ it undergoes a
cytokinesis event, where it transitions back to stage 1 and pro-
duces another individual in stage 1 in the same compartment.
Diffusion is simulated by permitting individuals to move to
adjacent compartments at a rate D/h2, where D is the Fickian
diffusion coefficient. Various boundary behaviours can be re-
alised by suitably modifying transition rates within boundary

compartments, such as adsorbing boundaries [27]. The sim-
plest, however, is the zero-flux boundary, where individuals
attempting to jump out of the domain are simply reflected
back into their originating compartment, which is what we
shall consider here.

A full derivation, from first principles, of the mean age
and space structure of the spatial aMSM is unnecessary since
(pseudo)stage transition events are entirely decoupled from
diffusive jump events between compartments. The approxi-
mate age and space density of the spatial aMSM takes the
form

∂qk

∂t
+ ∂qk

∂a
− D

∂2qk

∂x2
=

{−λqk k = 1,

−λqk + λqk−1 k = 2, . . . , K,

(32)

qk (0, x, t ) =
{

2λ
∫ ∞

0 qk (σ, x, t ) dσ k = 1,

0 k = 2, . . . , K,
(33)

∂qk

∂x
(a, 0, t ) = ∂qk

∂x
(a, 1, t ) = 0, (34)

where qk (a, x, t ) gives the density of individuals with age a ∈
[a + da) in x ∈ [x + dx) at time t . From this, we can define
the combined age density

ξ (a, x, t ) =
K∑

i=1

qk (a, x, t ). (35)

In particular, when the initial conditions qk (a, x, 0) satisfy
Eqs. (32) and (33), then ξ is a solution to the following initial
boundary value problem,

∂ξ

∂t
+ ∂ξ

∂a
= D

∂2ξ

∂x2
− λξ,

ξ (0, x, t ) = 2λ

∫ ∞

0
ξ (σ, x, t ) dσ,

∂

∂x
ξ (a, 0, t ) = ∂

∂x
ξ (a, 1, t ) = 0. (36)

Note that this problem can be viewed as a spatial extension
of the MVFE [28]. Since Eq. (36) can be written as a linear
combination of differential operators, we can calculate ana-
lytical solutions to Eq. (36) by taking the product of solutions
to the canonical diffusion equation with zero-flux boundaries
and the MVFE. Specifically, it is easily verified that if ρ(a, t )
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FIG. 7. A presentation of the age and space distribution of the spatial aMSM with transition rate λ = 2 and diffusion coefficient D = 1
20 .

Top row: Initial condition specified by Eq. (37). Bottom row: propagation of the initial condition over 5 units of (nondimensional) time. Left
column: The plotted histograms represent the density of cells in each compartment of the domain and in each age interval, with compartment
width h = 1

40 and age step 	α = 1
40 . Right column: Surface plot of the analytical solution for the age and space density, with 	x = 1

200 ,
	α = 1

40 , and time step 	t = 1
100 . Simulation results are averaged over 100 repeats.

is a solution to Eqs. (2) and (3), and ψ (x, t ) is a solution to

∂ψ

∂x
= D

∂2ψ

∂x2
,

∂

∂x
(0, t ) = ∂

∂x
(1, t ) = 0,

then their product ξ (a, x, t ) = ρ(a, t )ψ (x, t ) is a solution to
Eq. (36).

Denote by q̃k the age density of the kth stage of the spatial
aMSM as approximated via stochastic simulation, and define
ξ̃ = ∑K

k=1 q̃k . We take the initial condition

q̃k (αi, x j, 0) =
{

100 limt→∞{Pk (t )} f̂ ∗
k (αi ) x j � 0.5,

0 x j > 0.5,
(37)

recalling the definitions of Pk (t ) and f̂ ∗
k from Eqs. (15)

and (18), respectively. This initial condition can be interpreted
as each (nonempty) compartment containing 100 cells which
have already reached a persistent distribution of ages. This
type of initial condition is a common experimental setup;
for example, in proliferation assays, where the spread of an
established cellular population is observed, and in so-called
scratch assays, where a “wound” is made in a cell monolayer,
and the migration of cells into the empty region is observed
(see Refs. [29–31], for example).

Figure 7 illustrates the evolution of the spatial aMSM
alongside its continuum approximation. For the purposes of
evaluating the degree to which ξ approximates ξ̃ , the HDE
is no longer a suitable metric. Since neither ξ nor ξ̃ are
normalized, to compare them as probability distributions over
age and space could be misleading, since we expect the popu-
lation to grow exponentially over time. Instead, we consider

the approximate difference in the 1-norm between the two
surfaces,

ε1(t ) =
N∑

i=0

Nc∑
j=1

|ξ̃ (αi, x j, t ) − ξ (αi, x j, t )|	α	x, (38)

which we present in Fig. 8. Our results demonstrate good
agreement between the stochastic spatial aMSM and its coun-
terpart; indeed, this agreement tends to improve over time.
We observe a worsening of the error toward the beginning
of the simulation run due to numerical discrepancies between
the two approximations. In particular, the initial step function
in space is instantaneously smoothed by the diffusion oper-
ator in the partial differential equations after t = 0, whereas

FIG. 8. Distance in the 1-norm between the combined age den-
sity of the spatial aMSM as approximated via stochastic simulation
and the analytical density. Simulation results are averaged over 100
repeats.

064411-9



KYNASTON, GUIVER, AND YATES PHYSICAL REVIEW E 105, 064411 (2022)

individuals in the stochastic method have finite velocity in
space, and therefore we find more density near x = 1 in the
deterministic versus the stochastic method. This discrepancy,
however, improves over time.

V. DISCUSSION

The present work describes the complete age and time
evolution of the multistage model [11]. The key mathematical
results of this work, namely, Eqs. (8) and (9), describe the full
age-structured dynamics of the multistage model and can be
simplified to extract key statistics such as the mean age density
Eqs. (12) and (13). The power of the multistage model is its
ability to model nonexponential cell cycle time distributions
via the Gillespie algorithm [9] by breaking down the cell cycle
into a series of independent, exponentially distributed, stages.
We have shown how the limiting age distribution of the mul-
tistage model is related to the CCTD (26), and qualitatively
evaluated the accuracy of the continuum description through
two test cases that directly compare the mean of stochastic
simulations of the age-structured multistage model with nu-
merical approximations of the mean age density, in both a
nonspatial and spatial context. We find, in both cases, that our
continuum theory is an excellent predictor for the underlying
stochastic process.

The are several natural extensions to our theory. The first is
the incorporation of population-level effects including volume
exclusion and cell-to-cell adhesion. These processes form a
critical element for understanding and constructing effective
models for tumour growth and metastatic potential in breast
carcinomas [32,33] and melanomas [34], as well as for un-
derstanding chemotherapeutic resistance [35], for example. A

further extension is for the incorporation of a more diverse
reaction set into the aMSM. An individual cell does not exist
independently of its neighbors, and may transmit chemical
signals in response to local environmental conditions [36].
For example, Pseudomonas aeruginosa are known to trans-
mit cell-to-cell signals in the formation of biofilms, resulting
in populations that are morphologically distinct from other
bacterial colonies which do not interact in this manner [37].
Further, while the aMSM can resolve the age-structure of
individual phases of the cell cycle, there are other important
variables through which one can study cellular populations,
such as via size or concentration metrics [23]. Whether the
conceptual framework of the aMSM as a series of memory-
less stages is equipped to incorporate size warrants further
inquiry. Finally, the inclusion of multiple species into the
model would be of great benefit to its utility. One natural
application of this would be for modeling stem cell popula-
tions undergoing differentiation in the development of stem
cell therapies, for which age structure is an important ele-
ment [38]. Further, a deterministic multispecies age-structured
approach has been used for modeling phenotypic plasticity
in tumour growth [39], representing a potential extension
and subsequent application for our single-species equivalence
framework.
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APPENDIX A: DERIVATION OF THE MARGINAL DENSITIES

In this Appendix we demonstrate the techniques for deriving the marginal density Eqs. (8) and (9). Consider the following
master equation:

∂ρn

∂t
+

K+1∑
k=1

nk∑
i=1

∂ρn

∂ (ak )i
=

K∑
k=1

λk

(
nk + 1

nk+1

) nk+1∑
i=1

ρFkn
{
. . . ; ank , (ak+1)i ; a(−i)

nk+1
; . . . ; t

}
+ 2λ1

(
nK+1 + 1

n1n2

) n1∑
i=1

n2∑
j=1

ρGn
{
a(−i)

n1
; a(− j)

n2
; . . . ; anK+1 , ωi, j ; t

} −
(

2λ1nK+1 +
K∑

k=1

λknk

)
ρn, (A1)

with boundary conditions

ρn
{
. . . ; ank−1, 0 ; . . . ; t

} =
{
λK

( nK +1
nK+1

) ∫ ∞
0 ρFK n

{
. . . ; anK , σ ; . . . ; t

}
dσ k = K + 1,

0 k = 1, . . . , K.
(A2)

Define the following multi-integral operator

Im :=
∫ ∞

0
. . .

∫ ∞

0
da′

n1−m1
. . . da′

nK+1−mK+1
,

recalling that

ρm
n = Im(ρn).

We wish to determine the result of applying the operator Im to the master Eq. (A1) and boundary conditions (A2). Beginning
with the boundary conditions, observe that

Im(
ρn

{
. . . ; ank−1, σ ; . . . ; t

}) = 0 for k = 1, . . . , K,
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leaving the case where k = K + 1, for which

Im(
ρn

{
. . . ; anK+1−1, σ ; t

}) = λK

(
nK + 1

nK+1

) ∫ ∞

0
Im[

ρFK n{. . . ; anK , σ ; . . . ; t}]
= λK

(
nK + 1

nK+1

) ∫ ∞

0
ρm
FK n

{
. . . ; amK , σ ; . . . ; t

}
dσ

= λK

(
nK + 1

nK+1

)
ρ
H−

K m
FK n .

Next we deal with the partial derivatives in age. Assign the labels ((A1).1) and ((A1).2) to the two terms on the left-hand side
of Eq. (A1), respectively; likewise, assign labels ((A1).3), ((A1).4), and ((A1).5) to the three terms on the right-hand side. We
begin with ((A1).1), for which it trivially holds that

((A1).1) = Im
n

(
∂ρn

∂t

)
= ∂ρm

n

∂t
.

The integration of ((A1).2) requires more care. Specifically, we split the inner sum into two parts, first summing over variables
which are not integrated out by Im, and then summing over those that are

Im

(
K+1∑
k=1

nk∑
i=1

∂ρn

∂ (ak )i

)
= Im

{
K+1∑
k=1

[
mk∑
i=1

∂ρn

∂ (ak )i
+

nk∑
j=mk+1

∂ρn

∂ (ak ) j

]}

=
K+1∑
k=1

mk∑
i=1

Im
[

∂ρn

∂ (ak )i

]
+

K+1∑
k=1

nk∑
j=mk+1

Im
[

∂ρn

∂ (ak ) j

]

=
K+1∑
k=1

mk∑
i=1

∂ρm
n

∂ (ak )i
+

K+1∑
k=1

nk∑
j=mk+1

Im
[

∂ρn

∂ (ak ) j

]
,

where the second step follows from linearity, and the final step follows from the fundamental theorem of calculus. It remains
then to calculate the integrals of the partial age derivatives of ρn. We have, for j = mk + 1, . . . , nk and k = 1, . . . , K + 1,

Im
[

∂ρn

∂ (ak ) j

]
=

∫ ∞

0

∂

∂ (ak ) j
IH+

k m(ρn) d (ak ) j =
∫ ∞

0

∂

∂ (ak ) j
ρ
H+

k m
n d (ak ) j = −ρ

H+
k m

n
{
. . . ; amk , 0; . . . ; t

}
,

where the first step arises from multiple applications of Leibniz’ rule for integration, and the third step follows from an
application of the fundamental theorem of calculus, making note that no cells can have infinite age and therefore

lim
y→∞ ρ

H+
k m

n
{
. . . ; amk , y; . . . ; t

} = 0.

Finally, note that

−ρ
H+

k m
n

{
. . . ; amk , 0; . . . ; t

} =
{
λK

( nK +1
nK+1

)
ρm
FK n k = K + 1,

0 k = 1, . . . , K,

which follows from the boundary conditions. Therefore,

((A1).2) = Im

[
K+1∑
k=1

nk∑
i=1

∂ρn

∂ (ak )i

]
=

K+1∑
k=1

mk∑
i=1

∂ρm
n

∂ (ak )i
− λK (nK+1 − mK+1)

(
nK + 1

nK+1

)
ρm
FK n.

Applying similar splitting procedures to ((A1).3)–((A1).5) yields the full marginal master Eq. (8).

APPENDIX B: LONG-TERM EXPONENTIAL GROWTH

Consider the system of linear ordinary differential equations

dM1

dt
= −λM1 + 2λMK ,

dMk

dt
= −λMk + λMk−1, for k = 2, . . . , K, (B1)

with some initial condition M(0) = [M1(0), . . . , MK (0)]. Setting

A :=

⎛⎜⎜⎜⎝
−λ 0 · · · 2λ

λ −λ
. . .

...
. . .

. . . 0
0 λ −λ

⎞⎟⎟⎟⎠ and M :=
⎛⎝M1

...

MK

⎞⎠,
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the system of differential Eqs. (B1) can be written in first-
order form,

Ṁ(t ) = AM(t ).

The matrix A is Metzler, as all off-diagonal entries are non-
negative. It is a standard exercise to verify that the spectral
abscissa of A equals

r := λ
(
2

1
K − 1

)
.

As the matrix A is additionally irreducible, it follows from, for
example, Ref. [40, Lemma 3.1], that provided at least one of
the Mk (0) is positive, then

Mk (t ) > 0 for all t > 0, for all k = 1, . . . , K .

Moreover, an application of Ref. [40, Theorem 3.4] gives the
existence of vectors v,w ∈ RK such that

vT A = rvT , Aw = rw,

and v and w may chosen with every component positive.
Further, by the same result it follows that

M(t )e−rt → 1

vT w
wvT M(0) as t → ∞.

In particular, the limit on the left-hand side of the above as
t → ∞ exists and is constant. Summing the components of
M gives that

K∑
k=1

Mk (t )e−rt → 1

vT w

K∑
k=1

wk

K∑
j=1

v jMj (0) as t → ∞.

Routine calculations give that the components of w and v,

respectively, satisfy

wk−1 = 2
1
K wk for k = 2, . . . , K,

and

vk+1 = 2
1
K vk for k = 1, . . . , K − 1.

If we take wK = 1 and v1 = 1, then, in light of the above,

vT w =
K∑

j=1

w jv j = K2
K−1

K .

Moreover, as the components of w comprise a geometric
series with first term equal to one, we have that

K∑
k=1

wk = (2
1
K )K − 1

2
1
K − 1

= 1

2
1
K − 1

.

Thus,

lim
t→∞

K∑
k=1

Mk (t )e−rt = 1

K2
K−1

K (2
1
K − 1)

K∑
j=1

2
j−1
K Mj (0),

as required.
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