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Lattice model on the rate of DNA hybridization
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We develop a lattice model on the rate of hybridization of the complementary single-stranded DNAs (c-
ssDNAs). Upon translational diffusion mediated collisions, c-ssDNAs interpenetrate each other to form correct
(cc), incorrect (icc), and trap correct contacts (tcc) inside the reaction volume. Correct contacts are those with
exact registry matches, which leads to nucleation and zipping. Incorrect contacts are the mismatch contacts which
are less stable compared to tcc, which can occur in the repetitive c-ssDNAs. Although tcc possess registry match
within the repeating sequences, they are incorrect contacts in the view of the whole c-ssDNAs. The nucleation
rate (kN ) is directly proportional to the collision rate and the average number of correct contacts (〈ncc〉) formed
when both c-ssDNAs interpenetrate each other. Detailed lattice model simulations suggest that 〈ncc〉 ∝ L/V
where L is the length of c-ssDNAs and V is the reaction volume. Further numerical analysis revealed the scaling
for the average radius of gyration of c-ssDNAs (Rg) with their length as Rg ∝ √

L. Since the reaction space will
be approximately a sphere with radius equals to 2Rg and V ∝ L3/2, one obtains kN ∝ 1√

L
. When c-ssDNAs are

nonrepetitive, the overall renaturation rate becomes as kR ∝ kN L, and one finally obtains kR ∝ √
L in line with

the experimental observations. When c-ssDNAs are repetitive with a complexity of c, earlier models suggested
the scaling kR ∝

√
L

c , which breaks down at c = L. This clearly suggests the existence of at least two different
pathways of renaturation in the case of repetitive c-ssDNAs, viz., via incorrect contacts and trap correct contacts.
The trap correct contacts can lead to the formation of partial duplexes which can keep the complementary strands
in the close proximity for a prolonged timescale. This is essential for the extended 1D slithering, inchworm
movements, and internal displacement mechanisms which can accelerate the searching for the correct contacts.
Clearly, the extent of slithering dynamics will be inversely proportional to the complexity. When the complexity
is close to the length of c-ssDNAs, the pathway via incorrect contacts will dominate. When the complexity is
much less than the length of c-ssDNA, pathway via trap correct contacts would be the dominating one.

DOI: 10.1103/PhysRevE.105.064410

I. INTRODUCTION

The reversible unwind-rewind property of the double-
stranded helical structure of DNA is critical for its various
biological functions [1,2]. The double helical structure of
DNA (dsDNA) is stabilized by the hydrogen bonding network
and hydrophobic base stacking at the core [1]. Denaturation
is the process of melting of dsDNA into the corresponding
complementary single strands [2]. These single strands of
DNA (ssDNA) zip back spontaneously to form the original
dsDNA upon removal of the denaturant, which is known as
renaturation or hybridization [2–4]. Transcription, translation,
and replication of the gnomic DNA and several in vitro lab-
oratory techniques are based on the denaturation-renaturation
property of dsDNA [5]. Clear understanding on the mecha-
nism of DNA hybridization in solution is important to design
efficient primers for polymerase chain reaction (PCR), design
of oligonucleotide probes for microarray chips, design and
construction of versatile nanostructures over single-stranded
DNA scaffolds using the DNA origami method [6,7] and
various DNA fingerprinting technologies [5]. Detailed under-
standing of the mechanism of hybridization of ssDNAs at the
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microscopic level is a contemporary issue in the biological
physics field.

Several models of DNA renaturation have been developed
and experimentally tested [2,8–17]. There are two different
views, viz., one- and two-step models. Hybridization of the
complementary ssDNAs (c-ssDNAs) was initially described
as a one-step diffusion controlled bimolecular collision pro-
cess as in Scheme I of Fig. 1(a) [4,18–20]. Although this
scheme was simple enough to capture most of the under-
lying dynamics [8,14,17,19], it could not explain several
other polymer physics-related scaling relationships. Particu-
larly, Scheme I predicted a linear scaling of the bimolecular
collision rate with respect to the length of c-ssDNAs, whereas
the experimental data revealed approximately a square-root-
type scaling [8,14]. Further experiments revealed an inverse
scaling of the bimolecular collision rate with the sequence
complexity of ssDNA.

Wetmur and Davidson [8] suggested a detailed two-step
model with nucleation and zipping as in Scheme II of
Fig. 1(a). In their model, the overall renaturation rate was
directly proportional to the product of nucleation rate and
length of c-ssDNAs and inversely proportional to the sequence
complexity. The nucleation rate scales with the length of
c-ssDNA in an inverse square root manner. As a result, the
overall renaturation rate scales with the length of ssDNA in
a square root manner. They further argued that the renatura-
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FIG. 1. Models of DNA renaturation. (a) One- and two-step
models. In the one-step model described in Scheme I, the comple-
mentary strands form duplex with a second-order rate kRI directly by
diffusion-controlled 3D collisions. In the two-step model described
in Scheme II, the renaturation progress occurs by the formation of
stable nucleus with a rate kN via 3D diffusion- mediated collisions
and interpenetrations of c-ssDNAs and then subsequently by zipping
with a rate kZ . (b) The complementary ssDNA strands can be thought
as spherical-shaped and loosely packed nucleotide clusters with av-
erage radius of gyration Rg. Upon translational diffusion, they arrive
inside the reaction volume V with a rate kt and interpenetrate each
other. The reaction space is assumed to be a spherical one with radius
2Rg. When the complementary strands are confined inside V , there
may be contacts between them. (c) When the contact occurs with
exact registry match, it is a correct contact that can lead to nucleation
and zipping. When contacts occur between nonidentical registers,
they are all incorrect contacts. When c-ssDNAs contain repeats, there
may be contacts between identical registries of repeats placed at two
nonidentical locations. These are trap correct contacts which can lead
to the formation of partial duplexes with single-strand overhangs.
In the given example, there are six repeats. When position 1 of the
first repeat interacts with position 1 of the second repeat, it is a tcc.
Sequence complexity is defined as the number of bases in a unique
sequence. For example, the given sequence contains the repeats of
five bases. Therefore, its complexity is c = 5 where the total length
is L = 30.

tion was not a diffusion-controlled process, and the inverse
square root scaling of the nucleation rate with the length of
c-ssDNA must be due to either the excluded volume effects
associated with the intrastrand dynamics or steric hindrance
associated with the interpenetration of c-ssDNAs that is es-
sential for the nucleation [8]. However, this argument did not
explain the inverse scaling of the renaturation rate with the

viscosity of the medium. To overcome this issue, they further
assumed a diffusion-mediated growth of the nucleus with a
rate that is inversely related with the viscosity coefficient of
the medium [21]. This assumption ensured the inverse scal-
ing of the overall renaturation rate with the viscosity of the
medium.

The c-ssDNAs are random coils with average radius of
gyration Rg [Fig. 1(b)]. At coarse-grained level, one can think
both the complementary strands as loosely packed spherical
clusters of nucleotide monomers with radius Rg perform-
ing translational diffusion. The base clusters of c-ssDNAs
interpenetrate each other upon collision and subsequently nu-
cleation occurs inside the reaction volume. Clearly, there are
two distinct dynamical regimes in the process of renaturation,
viz., (1) translational diffusion mediated collision of base clus-
ters of c-ssDNAs and (2) their interpenetration. Translational
diffusion brings both strands within the reaction radius. Re-
action radius will be the sum of the radius of gyration of
c-ssDNAs. Subsequently, these c-ssDNA base clusters inter-
penetrate each other within the reaction volume to achieve the
nucleation and zipping. Therefore, the translational diffusion
component cannot be ignored. Further, the expression for the
reaction rate corresponding to the two-step model [Eq. (3) in
Ref. [8]] will be inconsistent whenever the sequence complex-
ity has the same magnitude as that of the length of c-ssDNAs.
Under such a scenario, the overall renaturation rate would
inversely scale with the length of c-ssDNAs in a square root
manner that is inconsistent with the experimental observations
[8]. The sequence complexity is defined as the length of DNA
with unique nucleotide sequence pattern [Fig. 1(c)]. Several
theoretical and computational models [13,22–28] were de-
veloped recently to explain the observed scaling behaviors
of the overall second-order renaturation rate on the size of
c-ssDNAs, temperature, ionic strength, and viscosity of the
reaction medium.

The nucleation step can be modeled as Kramer’s escape
problem over a free energy barrier [24]. However, the na-
ture of the reaction coordinate and the entropic component
of potential energy barrier associated with the renaturation
process is unclear. According to the recently proposed three-
step model [15] (Scheme III in Fig. 2), the renaturation
process comprises (1) formation of nonspecific contact, (2)
nucleation or correct contact formation, and (3) zipping.
In the first step, c-ssDNAs perform three-dimensional colli-
sions which result in the formation of Watson-Crick (WC)
base pairs at random nonspecific contacts. Such nonspecific
contacts randomly translocate along c-ssDNAs via either
thermally driven one-dimensional (1D) slithering, inchworm
movements, or internal displacement [25] mechanisms until
finding the correct contact to initiate the nucleation process.
Nucleation will be followed by spontaneous zippering of c-
ssDNAs. In this model, the square root dependency of the
renaturation rate on the length of c-ssDNAs mainly originates
from the nonspecific contact formation step. However, it is
still not clear whether the mode of nucleation is via 1D or
3D diffusion. It is also not clear how the inverse scaling
on the sequence complexity arises in the case of repetitive
c-ssDNAs. Further, the retardation effects of the repeti-
tive DNA sequences were not considered in Scheme III of
Ref. [15].
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FIG. 2. Three-step models on DNA renaturation. S and S′ rep-
resent ssDNA1 and ssDNA2, respectively, Xicc = ssDNA [1, 2]icc,
Xtcc = ssDNA [1, 2]tcc, YN represents the nucleus with N nucleotides.
In the three-step model given by Scheme III, c-ssDNAs renature via
a combination of 3D and 1D diffusions. Here ktcc and kicc are the
number of incorrect and trap correct contacts formed per second,
kr and krt are respective dissociation rate constants, kN and kNR are
the respective nucleation rates, and k+ an k− are the forward and
reverse microscopic rate constants associated with the zipping steps.
In Scheme III, 3D collisions result in the formation of incorrect
contacts which bring the strands into the close proximity. Nucleation
occurs via various 1D diffusion dynamics such as slithering, inch-
worm movements, and internal displacement mechanisms. When
c-ssDNAs are repetitive, there are always chances for the formation
of partial duplexes with single-strand overhangs. This in turn will
retain the c-ssDNAs in the close proximity for prolonged amount of
time that results in kr > krt and long slithering lengths. This will be a
parallel pathway along with Scheme III as demonstrated in Scheme
IV in the case of repetitive c-ssDNAs.

Understanding the role of the conformational state of DNA
on the rate of hybridization is critical to unravel the underlying
mechanism. To understand the equilibrium thermodynamic
properties of the DNA hybridization, several course-grained
lattice models were developed and investigated using Monte
Carlo simulation methods [28]. However, simulation of such
systems with detailed base-pairing and base-stacking inter-
actions were limited to very short DNA sequences [25,28].
Recently, Qu et al. [29] have simulated up to around 85
nucleotides using the oxDNA GPU-enabled standalone code.

Their simulated time-dependent system energy profile exhib-
ited a four-state hybridization mechanism in line with earlier
theoretical models [15]. Using similar codes, Snodin et al.
[30] simulated the hybridization kinetics of DNA origami
for a system of 384 nucleotides. Such studies are useful to
obtain the equilibrium thermodynamic properties rather than
the nonequilibrium kinetic scaling aspects. In this context,
short strands have been studied using nonequilibrium meth-
ods for enhanced forward-flux sampling at much reduced
computational requirements. Particularly, Schreck et al. [31]
have studied 25-nucleotide oxDNA, Gravina et al. [32] have
studied 42-nucleotide 3SPN.2 DNA, and Jones et al. [33] have
studied a DNA with 10 nucleotides AT repeats. Apart from
these, Sidky et al. [34] have created a Software Suite for
Advanced General Ensemble Simulation (SSAGES) which
can use the parallel computational workflows for forward-flux
sampling. Clearly, all these computational methods assume
that the interacting c-ssDNAs already arrived at the reaction
volume through translational diffusion, whereas the kinetic
scaling laws with respect to varying lengths of DNA, sequence
complexity, and viscosity of the reaction medium associated
with the hybridization are mainly dependent on the transla-
tional diffusion of c-ssDNAs along with their interpenetration
dynamics rather than the fine details of base-pairing and
base-stacking interactions, which are the main focus of all
the coarse-grained Monte Carlo simulation methods. Further,
though such computational studies revealed several interest-
ing qualitative aspects of hybridization [29,33], derivation
of scaling laws through a computational route requires the
simulation of very large lengths of ssDNAs with different
levels of sequence complexities that still limits the applica-
tion of molecular dynamics methods. In this background, we
model c-ssDNAs as self-avoiding random walks (SARWs)
confined in a cubic lattice box which represents the reaction
volume under in vitro conditions. Using this lattice model
along with the observations from the computational studies
[29,33], we will unravel the origin of various kinetic scaling
relationships associated with the renaturation dynamics in
detail.

II. THEORETICAL METHODS

A. Translational diffusion of c-ssDNAs

We model c-ssDNAs [we denote them as ssDNA 1 and 2 as
in Fig. 1(a)] as loosely packed and approximately spherical-
shaped nucleotide clusters with a radius of gyration Rg. The
3D collisions between these c-ssDNAs are mediated via their
translational diffusion. When the length of both these strands
are equal to L, one can approximately assume equal radius of
gyration Rg for both strands. In this situation, the maximum
possible steady-state Smolochowski rate of 3D diffusion-
controlled collisions between these c-ssDNAs will be kt =
8kBT

3η
φ [35] [Fig. 1(b)]. Here kB is the Boltzmann constant,

η is the viscosity coefficient of the medium, T is the abso-
lute temperature in degrees K , and φ ∼= | (κ/2Rg)

exp(κ/2Rg)−1 |exp( κ
λ

)
[15,36] is the multiplication factor associated with the elec-
trostatic repulsions between the negatively charged phosphate
backbones of c-ssDNAs along with the shielding effects of
solvent molecules and other ions present at the DNA-DNA
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interface under dilute conditions. Here κ = ξ1ξ2e2

�kBT is the On-
sager radius, which is defined as the distance between the
colliding c-ssDNA strands at which the overall electrostatic
interaction energy will be equal to that of the background
thermal energy (1kBT ), ξ1, ξ2 are the overall charge num-
bers on the base clusters of strand 1 and 2, and λ is the
thickness of the ionic shell present over the charged groups
of c-ssDNAs. Here κ will be a positive quantity since there
is a charge-charge repulsion between c-ssDNAs. Since the
electrostatic interactions act only at short ranges, in general
one finds that |κ| � 2Rg where the reaction radius is 2Rg.
As a result, | (κ/2Rg)

exp (κ/2Rg)−1 | ∼= 1 and therefore the multiplication
factor φ ∼= exp( κ

λ
) will be independent of the radius of gy-

ration of c-ssDNAs. One also should note that κ < 0 in the
case of site-specific DNA-protein interactions since the DNA
binding domains of the DNA binding proteins are usually rich
in positively charged amino acids. Under such conditions, φ

will be dependent on Rg [37].
In the calculation of kt , we have assumed an absorbing

boundary condition for the associated diffusion equation at
the reaction radius that is approximately equals 2Rg. By
definition, this is the rate of arrival of the base clusters of
c-ssDNAs within the reaction radius. Here kt does not enu-
merate the number of contacts formed upon such collisions
and subsequent interpenetrations. We will show in the later
sections that there is always a nonzero probability for the
occurrence of zero contacts upon collision and interpenetra-
tion of c-ssDNAs. Clearly, the translational diffusion brings
c-ssDNAs inside the reaction volume, and there is no phys-
ical confinement of the polymer within a closed space here.
The reacting c-ssDNAs enter and exit the reaction volume
freely by diffusion. We will show in the later sections that
this assumption is essential since the radius of gyration of
c-ssDNAs will be strongly dependent on the confinement
volume.

B. Interpenetration dynamics of c-ssDNAs

With this background, the nucleation rate (kN ) will be di-
rectly proportional to the number of correct contacts formed
between the c-ssDNAs per second. On the other hand, the av-
erage number of correct contacts formed per second (kcc) will
be equal to the number of collisions between the base clusters
of c-ssDNAs per second (kt , measured in M–1s–1) multiplied
by the average number of correct contacts (〈ncc〉) formed after
each collision and interpenetration inside the reaction volume
(V ), i.e., kcc = kt 〈ncc〉. As a result, one obtains kN ∝ kt 〈ncc〉.
Only the correct contact is the perfect registry match between
the c-ssDNAs that can lead to nucleation and zipping. Apart
from the correct contacts, several incorrect contacts (icc) can
also be formed between the c-ssDNAs upon collision. When
the c-ssDNAs are repetitive, there are possibilities for the
trap correct contacts (tcc) as described in Fig. 1(c). Trap
correct contacts possess registry matches within the repeats,
but they are all incorrect contacts in the view of the en-
tire c-ssDNAs. Here tcc can lead to partial duplexes with
single-strand overhangs which are actually kinetic traps in the
pathway of DNA renaturation. We denote the number of cc,
icc, and tcc as ncc, nicc, and ntcc, respectively. Clearly, ncc,

nicc, and ntcc are all random variables since they vary from
collision to collision and interpenetrations. We denote the cor-
responding ensemble averages as 〈ncc〉, 〈nicc〉, and 〈ntcc〉, re-
spectively. With these definitions, one can derive the following
expressions:

kcc
∼= kt 〈ncc〉, kicc

∼= kt 〈nicc〉, ktcc
∼= kt 〈ntcc〉. (1)

In these equations, kcc, kicc, and ktcc are respectively the
number of correct, incorrect, and trap correct contacts formed
between c-ssDNAs strands per second. Clearly, the nucleation
rate kN ∝ kcc. The correct contacts can form anywhere on the
entire stretch of c-ssDNAs with length equal to L number
of nucleotides (nt). Therefore, the probability of getting a
correct contact upon each collision will be pcc = 1/L. This
also means that the average number of correct and incor-
rect contacts is approximately connected via 〈ncc〉 ∼= pcc〈nicc〉.
To understand various scaling behaviors of 〈ncc〉, 〈nicc〉, and
〈ntcc〉, we model c-ssDNAs as self-avoiding random walks
(SARWs) confined in a lattice cube box that represents the re-
action volume V of the standard bimolecular collision model.
In this setting, the volume of a monomeric unit is v = 1, and
the volume occupied by the c-ssDNA strand of length L will
be vL. When the complexity of ssDNA is c nt, there will be
at least L/c number of repeating sequences in each c-ssDNA
strand. We assume that the respective c-ssDNA base clusters
have already arrived at the reaction volume through the 3D
translational diffusion with rate kt . The average number of cc,
icc, and tcc can be obtained by repeated generation of two
independent SARWs of length L inside a fixed cubic lattice
box with volume V . In each iteration, the number of cc, icc,
and tcc will be counted, and these counts are averaged over
105 SARW trajectories. Detailed stochastic simulations with
fixed L for both the c-ssDNA strands and reaction volume
V as given in the Simulation Methods section revealed the
following scaling relationships:

〈ncc〉 ∼= vL

V
, 〈nicc〉 ∼= vL2

V
, 〈ntcc〉 ∼= vL2

cV
. (2)

Here v/V is the probability of finding any nucleotide of
c-ssDNAs inside V upon each movement and vL is the
total chain volume. Upon assuming c-ssDNAs as a spherical-
shaped nucleotide clusters, the reaction space can be thought
approximately as a sphere with radius of 2Rg where Rg is
the average radius of gyration of the individual c-ssDNA.
One can straightforwardly interpret these results as follows.
Since L number of monomers of the c-ssDNA of interest
search for the complementary nucleotides on the other strand
at the same time, one obtains 〈nicc〉 ∼= vL2

V . Out of these nicc

numbers of incorrect contacts, the probability of finding the
trap correct contacts among the repetitive c-ssDNAs will be
1/c. Therefore, one obtains 〈ntcc〉 = 〈nicc〉/c. In the same way,
the probability of finding the correct contact will be 1/L that
is independent of the number of repeats. From this one can
deduce that 〈ncc〉 = 〈nicc〉/L. This expression for 〈ntcc〉 will
work only when L is much higher than the sequence complex-
ity c so that ( L

c ) 	 1. When c → L, there are always chances
for the occurrence of partial repeats, and one can obtain the
approximation limc→L〈ntcc〉 ∼= v(L̄2+l2 )

cV where L̄ = c� L
c � is the

length of c-ssDNAs containing full repeats and l = L−c� L
c �
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is the length of c-ssDNAs with partial repeats. For example,
when L = 20 and c = 6, one obtains L̄ = 18 and l = 2. Here
� L

c � is the floor function operator. For example, � 20
6 � = 3.

When the main template strand length is fixed at L and only
the length of the probe u is varied as in the case of PCR
reactions, we find the following scaling relationships:

〈ncc〉 ∼= vu

V
, 〈nicc〉 ∼= Lvu

V
, 〈ntcc〉 ∼= Lvu

cV
. (3)

When the length of both c-ssDNAs is randomized within
(0, L) with equal probabilities (= 1/L) esembling the uni-
formly sheared DNA [8] so that the average length will be
〈L〉 = L/2, one finds the following scaling relationships:

〈ncc〉 ∼= v〈L〉
2V

= vL

4V
, 〈nicc〉 ∼= v〈L〉2

V
= vL2

4V
,

〈ntcc〉 ∼= v〈L〉2

cV
= vL2

4cV
. (4)

When the complexity c = L, then irrespective of the
sheared nature of c-ssDNAs, the probability of finding the cor-
rect contact will be pcc = 1/L. As a result, one obtains 〈ncc〉 ∼=
pcc〈nicc〉 = Lv/4V for the case of sheared DNA. When
c → 〈L〉 one can obtain the approximation limc→〈L〉〈ntcc〉 ∼=
v(〈L̄〉2+〈l〉2 )

cV where 〈L̄〉 = c� 〈L〉
c � and 〈l〉 = 〈L〉−c� 〈L〉

c � by defi-
nition as in the case of nonsheared and repetitive c-ssDNAs.

C. Radius of gyration of c-ssDNAs

The ensemble average of the radius of gyration of a chain

molecule can be defined as Rg = 〈|
√∑L

i, j=1 ( wi−w j )
2

2L2 |〉 where
wi is the vector coordinates (X, Y, Z) of the ith monomer
and L is the length [38,39]. The averaging is done over sev-
eral possible spatial configurations of the polymer. Detailed
numerical simulations suggested that the scaling of Rg with
L deviates significantly from the standard scaling Rg ∝ √

L
when the ratio ( vL

VS
) → 1 where VS is the volume in which the

SARW is confined. In other words, the scaling Rg ∝ √
L will

be valid only in the limit ( vL
VS

) → 0. In this context, nonlinear
least-square fittings of the values of Rg obtained over various
lengths of SARWs confined in different volumes VS using the
Marquart-Levenberg algorithm [40] suggested the following
functional form:

Rg
∼= α

√
L(1 + βL)−1, β =

(
ε

(
v

VS

)δ

+ σ

)
,

lim
VS→∞

Rg
∼= α

√
L, α ∼=

√
l2
p/6. (5)

Here α is the preexponent and lp is the physical distance
between the monomers. Clearly, in the limit as VS → ∞
that represents the dilute in vitro conditions, we recover the
well-known scaling relationship for linear chain polymers as
Rg

∼= lp
√

L/6. The excluded volume effects will be promi-
nent when the intrinsic volume of the polymer vL is close
to the confinement volume VS [8]. Under such conditions,
the interpenetration of c-ssDNAs among each other will be
very much limited. In our model, c-ssDNAs are not physically
confined in space. Rather, they are allowed to enter or exit the
reaction volume freely. Hence, we assume Rg

∼= lp
√

L/6 and

subsequently derive the following expressions for the reaction
and monomer volumes:

V ∼= 4

3
π (2Rg)3 = 32

3
π l3

p

(L

6

)3/2

, v ∼= 4

3
π l3

pn3
D. (6)

In these equations, lpnD is the radius of gyration of the
nucleotide monomer in terms of number (nD) of distances
between adjacent nucleotides [lp

∼= 3.4 × 10−10 m for dsDNA
and lp

∼= (5.9 to 7) × 10−10m for c-ssDNAs; since lp corre-
sponding to c-ssDNAs is a fluctuating quantity, we denote lp

corresponding to dsDNA as the standard base-pair unit, bp],
and the volumes are measured in bp3. When we model DNA
as chain of beads where each bead represents a monomer, the
radius of the monomer bead will be approximately equal to the
radius of the DNA cylinder, which is approximately equals
nDlp ≈ 3 bp. Using Eqs. (6), when L 	 c, one can derive
the following expressions for the number of cc, icc, and tcc
formed upon interpenetration of c-ssDNAs inside the reaction
volume:

〈ncc〉 ∼= 3
√

6n3
D

4
√

L
, 〈nicc〉 ∼= 3

√
6n3

D

√
L

4
,

〈ntcc〉 ∼= 3
√

6n3
D

√
L

4c
. (7)

When c-ssDNAs are equal in length, using Eqs. (6) and (7)
one can drive expressions for the overall rate associated with
the formation of cc, icc, and tcc as follows:

kcc
∼= kt

3
√

6n3
D

4
√

L
∝ 1

η
√

L
,

kicc
∼= kt

3
√

6n3
D

√
L

4
∝

√
L

η
, (8)

ktcc
∼= kt

3
√

6n3
D

√
L

4c
∝

√
L

ηc
.

D. One-step DNA hybridization model

Using the scaling results presented in Eqs. (7) and (8),
we now revisit the Wetmur-Davidson model [8]. When the
nucleation occurs via pure 3D diffusion controlled collision
route as described in Scheme I of Fig. 1(a), the nucleation
occurs with a rate kN ∝ kcc and one can straightforwardly
derive the scaling as kN ∝ 1

η
√

L
. This means that kN = ζkcc

where ζ is the dimensionless proportionality constant. In this
background, the differential rate equations for the renaturation
of a nonrepetitive c-ssDNAs can be written as follows:

d[2LMD]

dt
= kN [LM1][LM2],

d[MD]

dt
=

(
kN L

2

)
[M1][M2],

kRI
∼=

(
kccζ

L

2

)
∼= ktζ

3
√

6n3
D

8

√
L. (9)

In this equation, we have substituted kN = ζkcc. Here kRI is
the overall hybridization rate corresponding to Scheme I, MD

(mol/lit) is the concentration of dsDNA molecules and M1 and
M2 (mol/lit) are the concentrations of the c-ssDNA molecules.
Upon multiplying by L (or 2L in the case of dsDNA) one can
convert these concentrations of the polymer molecules into the
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concentrations of nucleotides in each category which are ac-
tually the experimentally observed variables. In the derivation
of Eqs. (9), one assumes that the zipping is spontaneous and
the nucleation is the rate-limiting step. Remarkably, Eqs. (9)
associated with the Wetmur-Davidson model correctly pre-
dicts the length-dependent scaling as kRI ∝

√
L

η
in line with

the experimental observations [8,14].

E. Two-step mechanism of DNA hybridization

When the concentration of the nucleus is W and the av-
erage size of a nucleus is N nt (so that the concentration of
nt in the nucleus form dsDNA is [2NW ]), from the two-step
mechanism given in Scheme II of Fig. 1(a), one can derive the
following rate equations:

d[2NW ]

dt
= kN [LM1][LM2] − kZ [2NW ],

d[2LMD]

dt
= kZ [2NW ],

dW

dt
→ 0, (10)

d[MD]

dt
∼=

(
kN L

2

)
[M1][M2], kRII

∼=
(

ζkcc
L

2

)
.

In this equation, kRII is the overall hybridization rate corre-
sponding to Scheme II, kZ (nt/s) is the zipping rate constant.
When zipping is much faster than the nucleation step, the rate
equations given in Eqs. (10) attain steady state so that one can
set dW

dt → 0. Nucleation will be the rate-limiting step. In such
scenario, Eqs. (10) reduce to Eqs. (9) where kcc = kicc/L for
nonrepetitive c-ssDNA. Therefore one obtains the expression
kRII

∼= (kccζ
L
2 ) ∝ √

L.

F. Limitations of one-step and two-step hybridization models

The main flaws of Eqs. (9) and (10) are as follows:
(1) Clearly, Eqs. (9) and (10) will work only for short DNA

segments for which one can ignore the zipping times. How-
ever, for long c-ssDNAs, the zipping time τZ scales with the
length of DNA in a linear or square [15] or power-law manner
[27]. In general, one observes the scaling for the zipping
rate (which is the inverse of the zipping time) as kZ ∝ L−ρ .
There are two extreme possibilities: (1) When the zipping is
diffusion like and not energetically driven or hampered by the
chain entropy of the single-stranded overhangs, the zipping
will be a diffusion-like process and kZ ∝ L−2. (2) When the
zipping is irreversible and an energetically driven process
over the entropic barriers, one finds that kZ ∝ L−1. In reality,
the chain entropy barrier decreases in the process of zipping
and the stability of duplex increases along the transition from
ssDNA to dsDNA form. In general, when the entropic barrier
associated with the single-strand overhangs is significant, one
observes the exponent as 1 � ρ � 2 depending on the type
of prevailing conditions. For example, when the zipping is
similar to that of the forced translocation of a polymer through
a nanopore [27], one finds that ρ ∼= 1.37.

(2) When L = 1, one finds from the extrapolation of exper-
imental data [21] that limL→1kRII

∼= 5 × 10−3ksm where ksm =
kt/φ is the maximum possible Smoluchowski diffusion-
controlled bimolecular collision rate limit across neutral
molecules. However, Eqs. (9) and (10) associated with the 3D

diffusion model predict only that limL→1kRII
∼= ksmφ

3
√

6n3
D

8 .
This means that the contributions from the electrostatic repul-
sions across the negatively charged phosphate backbones over
the rate enhancement at the DNA-DNA interface of c-ssDNAs
should be φ ∼= 4×10−2

3
√

6n3
D

where nD
∼= 3 nt.

(3) When the mode of nucleation is via pure 3D diffusion,
the number of correct contacts or the nucleation rate should be
independent of the number of repeats in the c-ssDNA strands.
Since the zipping step directly follows from the 3D diffusion-
mediated nucleation, the overall renaturation rate should be
independent of the complexity of c-ssDNAs. Further, the pres-
ence of trap correct contacts would slow down the nucleation
process since tcc across the c-ssDNAs need to be broken be-
fore exploring other locations for the correct contacts [13,25].
This incurs a significant amount of time lapse, which in turn
delays the renaturation process. On the other hand, such tcc
keeps the complementary strands in the close proximity for
an extended amount of time compared to icc. This is essential
for the efficient operation of various one-dimensional facil-
itating processes such as slithering, inchworm movements,
and internal displacement mechanisms [13,25], which can
speed up the rate of nucleation. Detailed molecular dynamics
simulations also reveal that the metastable states arising out of
trap correct contacts among the short repetitive c-ssDNAs can
significantly speed up the hybridization process [33].

(4) For repetitive ssDNA with complexity c and L/c num-
ber of repeats, the Wetmur-Davidson model directly assumed
the scaling kRII ∝

√
L

cη , which predicted that kRII ∝ 1√
L

at
c = L is not consistent with their experimental observations
[8,14]. This critical flaw and other arguments arising out of
the simulation results [25] clearly suggest that the nucleation
process must involve at least two different pathways, viz., 3D
diffusion-only mode and a mode with the combination of 1D
and 3D diffusions [15] as described in Schemes III and IV of
Fig. 2. The 3D diffusion-only pathway progresses directly via
correct contacts, and it works only for short c-ssDNAs where
the zipping times can be ignored. The 3D-1D diffusion path-
way can progress via either incorrect contacts or trap correct
contacts depending on the repetitive nature of c-ssDNAs.

G. Three-step models of DNA hybridization

According to Scheme III, the base clusters of c-ssDNAs
interpenetrate each other upon collision to the form incorrect
contacts in the first step with a rate kicc. Subsequently, the
correct contact will be formed via various 1D facilitating
processes such as slithering, inchworm movements, and in-
ternal displacement mechanisms. These are all analogous to
the facilitating processes such as sliding, hopping, and inter-
segmental transfers exhibited by the DNA binding proteins
in the process of searching for their cognate sites on DNA
[41]. Nucleation occurs upon finding the correct contacts over
several rounds of incorrect contact formation, 1D slithering
movements, and dissociations. Remarkably, detailed molecu-
lar dynamics simulation on the hybridization of short ssDNA
segments also revealed the presence of a four-state (three-
step) mechanism [33]. With this background, Eqs. (10) can
be rewritten for the case of nonrepetitive c-ssDNAs as follows

064410-6



LATTICE MODEL ON THE RATE OF DNA HYBRIDIZATION PHYSICAL REVIEW E 105, 064410 (2022)

(Scheme III in Fig. 2):

d[2UY ]

dt
= kicc[LM1][LM2] − (kr + kNZ )[2UY ],

d[2LMD]

dt
= kNZ [2UY ],

d[Y ]

dt
→ 0,

d[MD]

dt
∼= kNZ kiccL

2(kr + kNZ )
[M1][M2],

kRIII
∼= kNZ kiccL

2(kr + kNZ )
= kiccL

2(1 + krτNZ )
. (11)

In these equations, kRIII is the overall hybridization rate
corresponding to Scheme III, [2UY ] is concentration of the
nucleotides involved in the icc, kr (1/s) is the dissociation
rate constant connected with the icc, τNZ = 1

kNZ
is the total

time required for the nucleation and zipping through in-
correct contact formation route, and its inverse will be the
overall nucleation-zipping rate. After each incorrect contact,
c-ssDNAs perform 1D slithering on each other over q nu-
cleotides on average and then dissociate. The time required

for such 1D diffusion will be τq
∼= l2

pq2

6Do
[15]. In this time,

c-ssDNAs scan q nt on each other for the presence of correct
contacts. To completely scan the entire c-ssDNAs of length L,
at least L/q numbers of such cycles of incorrect contact forma-
tion, 1D slithering, and dissociations are required. Therefore,
the nucleation time can be expressed as τN

∼= Lτq

q , which is the
minimum amount of time that is required by the c-ssDNAs to
find a correct contact. When c-ssDNAs are nonrepetitive, one
finds the total time required for the nucleation and zipping

steps as τNZ
∼= τZ + τN where τZ

∼= L
k+

and τN
∼= l2

pqL

6Do
are the

zipping and nucleation times through the incorrect contact
route [15]. The nucleation rate will be the inverse kN = 1

τN
and

the zipping rate will be kZ = 1
τZ

. Noting that fact that nucle-
ation will be immediately followed by zipping, we combine
the nucleation and zipping times.

Since the stabilizing effects of the already formed Watson-
Crick base pairs are much stronger than the entropic barriers
arising out of the freely moving single-stranded overhangs,
one can assume the linear scaling for the zipping time with
the length of c-ssDNAs as τZ ∝ L. Here k+(nt/s) is the micro-
scopic zipping rate (Fig. 2), lp = 1 bp, q (nt) is the average
slithering length, and DO (bp2/s) is the phenomenological 1D
diffusion coefficient associated with the slithering dynamics
of c-ssDNA segments. Upon inserting the expressions for the
nucleation and zipping times into the expressions for kRIII as
given in Eq. (11) one obtains the following result:

kRIII
∼= kiccL

2(1 + krτNZ )
= kt

3
√

6n3
D

√
L

4 L

2
[
1 + kr

(
L
k+

+ l2
pqL

6Do

)] ∝
√

L

η
. (12)

One should note that DO will be influenced only by the
local viscosity at the DNA-DNA interface of the c-ssDNAs
with icc or tcc, and it will not be much influenced by the
global viscosity that is connected with the translational diffu-
sion of the entire c-ssDNA nucleotide cluster. In the presence
of repetitive sequences, apart from icc and cc, trap correct
contacts are also formed as shown in Scheme IV of Fig. 2.
Clearly, the nucleation can occur via both icc and tcc in

the case of repetitive c-ssDNAs, which is also substantiated
by the coarse-grained molecular dynamics simulations [29].
Particularly, these tcc can influence the renaturation in two
possible ways: (1) they keep the complementary strands in the
close proximity for prolonged amount of time that enhances
the slithering times, which in turn increases the efficiency of
searching for the correct contacts [29,33] or (2) these kinetic
traps prolong the overall renaturation timescales, which will
be more prominent especially when the length of ssDNA is
very long. As a result of these, the dissociation rate connected
with the partial duplexes decreases (kr → krt ) and the slith-
ering length increases (q → qt ). The overall renaturation rate
corresponding to the tcc route can be obtained by replacing
(kr → krt , q → qt , kicc → ktcc) in Eq. (12). Upon combining
the contributions of these parallel pathways through icc and
tcc routes, one finally obtains the following expression for the
overall renaturation rate for the repetitive c-ssDNAs:

kRIV
∼= kiccL

2(1 + krτNZ )
+ ktccL

2(1 + krtτNZR)

∼= 3kt

√
6n3

D

√
L

4

⎧⎨
⎩

L

2
[
1+kr

(
L
k+

+ l2
pqL

6Do

)]

+ L

2c
[
1+krt

(
L
k+

+ l2
pqt L

6Do

)]
⎫⎬
⎭. (13)

Equation (13) is the central result of this paper. In this
equation, kRIV is the overall hybridization rate corresponding
to the repetitive c-ssDNAs as described by Scheme IV, τNZR

∼=
τZ + τNR is the nucleation-zipping time via trap correct con-

tact route where τNR
∼= l2

pqt L

6Do
is the average nucleation time,

krt is the dissociation rate connected with tcc, and qt is the
1D slithering length associated with the repetitive c-ssDNAs
with partial duplexes and single-strand overhangs. The nu-
cleation rate will be the inverse kNR = 1

τNR
. When L > c,

kr > krt since the partial duplexes are more stable than the
incorrect contacts and q < qt since the c-ssDNAs stay close
to each other for a prolonged amount of time, which allows
extended amount of slithering. As a result of these, we find

that [kr ( 1
k+

+ l2
pq

6Do
)] � [krt ( 1

k+
+ l2

pqt

6Do
)] from which one obtains

the generally observed scaling as kRIV ∝
√

L
cη . Remarkably,

when c = L, Eq. (13) predicts the correct scaling kRIV ∝
√

L
η

in line with the experimental observations [8,14].
Equation (13) will be still valid when c-ssDNAs are un-

equal in length similar to that of the template and probe DNAs
used in the PCR reactions. However, in this case the length of
duplex formed upon hybridization will be equal to the length
of the probe. Let us denote the lengths of the template and
probe as L and u respectively. When L 	 u, the template
strand diffuses slower than the probe strand, and one can
show that the bimolecular collision rate associated with the
template-probe system scales as kt ∝

√
L
u . This follows from

the fact that kt
∼= 2kBT

3η

(Ru+RL )2

RuRL
where Ru ∝ √

u and RL ∝ √
L

are the radius of gyration of the probe and template strands,
respectively [35]. When u � L, the reaction volume will be
almost independent of the volume of the probe. This results in
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the scaling as kcc ∝
√

u
L for the rate of formation of the correct

contacts. Since the nucleation rate is directly proportional to
the rate of formation of the correct contacts across c-ssDNAs,
this means that the nucleation rate scales with the lengths of
the probe and template c-ssDNAs as kN ∝

√
u

L since kN ∝ kcc,
which reduces to the observed scaling corresponding to the
nucleation rate kN ∝ 1√

L
as c → L.

III. SIMULATION METHODS

To understand various scaling relationships associated with
the correct, incorrect, and trap correct contacts in the process
of renaturation, we modeled the c-ssDNAs as self-avoiding
random walks confined inside a 3D lattice box that mimics
the reaction volume.

(1) When the box is a cube with side b, the box volume will
be V = b3 cubic units. We denote the position on this lattice
box with coordinated (X , Y , Z). Here (X,Y, Z ) = (0, 0, 0)
and (b, b, b) are the reflecting boundaries for the generation
of SARWs 1 and 2, which mimic c-ssDNA strands 1 and 2
confined inside the reaction volume.

(2) Consider a cubic lattice with boundaries (0, b) in all
(X , Y , Z) dimensions. The first positions of SARWs 1 and 2
will be randomly chosen by calling three uniform distributed
random integers inside (0, b), which are the initial positions
denoted as (X0,Y0, Z0). The total number of points in a given
SARW represents the number of monomers in c-ssDNAs. We
denote these points by the index starting from 1 to L where L
is the total length.

(3) Let us assume that the current position of the growing
SARW of interest at the end of kth step is (X , Y , Z). The sub-
sequent point of this SARW will be generated by sequentially
calling three real random numbers from the uniform distribu-
tion inside r1,2,3 ∈ (0, 1). If r1 < 0.5, then X → (X + 1) else
X → (X–1) and similar rules were set for Y and Z variables.
The next (k + 1)th position of a SARW could be any one
from the eight possibilities (X ± 1,Y ± 1, Z ± 1). Hence the
obtained new position will be checked against the earlier k
positions of the growing SARW for self-intersections. Only
those moves without self-intersections will be allowed.

(4) The boundaries at (0 and b) are reflecting ones
so that those moves result in (X,Y, Z ) = (−1,−1,−1) or
(b + 1, b + 1, b + 1) will not be allowed. For example, those
moves which result in the new position (X,Y, Z ) = (−1, 1, 2)
and (1, 2, b + 1) will not be allowed.

(5) When all these eight possible moves are self-
intersecting, such dead-end walks will be dropped and a new
SARW will be started from step 2 by choosing random initial
position similar to the Rosenbluth algorithm [42].

(6) SARW 1 and SARW 2 cannot self-intersect, but they
can cross-intersect each other that mimics the interpenetration
and contact formation among the pair of c-ssDNAs. These
cross-intersection points can be classified into correct, incor-
rect, or trap correct contacts.

(7) When the sequence is repetitive with complexity c, in
such a polymer of length L > c, the positions from 1 to c,
c + 1 to 2c, 2c + 1 to 3c, and so on are identical in sequence.
To model such repetitive c-ssDNAs, SARW of size L will
be fragmented into L/c number of blocks, and the sequence

FIG. 3. Lattice model of DNA renaturation. The complementary
single strands are modeled as self-avoiding random walks [SARWs 1
(blue) and 2 (red)] confined inside the reaction volume defined by the
lattice box. The positions of the nucleotides are marked from 1 to L.
Both strands arrive at the reaction volume via 3D diffusion. Correct
contact between these SARWs occurs when there is an exact registry
match that can further lead to nucleation and zipping. For example,
when there is a contact between position 7 of SARW 1 with position
7 of SARW 2, it is defined as a correct contact (cc). When there is
a contact between position 7 of SARW 1 with position 5 of SARW
2, it is an incorrect contact (icc). When the complexity is c < L, the
SARW has L / c number of repeats, i.e., the sequence spanned across
position 1 to c, c + 1 to 2c, 2c + 1 to 3c, and so on will be the same.
Therefore, when there is a contact between position 1 of SARW 1
with position c + 1 (or 2c + 1 and so on) of SARW 2, it is defined
as a trap correct contact (tcc). Here tcc can lead to the formation of
partial duplexes with single-stranded overhangs which are actually
kinetic traps in the renaturation pathway. The settings are L = 250,
c = 5, and reaction volume V = 203, the number of incorrect con-
tacts (nicc ) = 25, trap correct contacts ntcc = 4, and the number of
correct contacts ncc = 1 that occur at (X,Y, Z ) = (9, 8, 17).

indices of all the blocks will be from 1 to c apart from the
original overall sequence index, which runs from 1 to L.

(8) Those contacts between c-ssDNAs without exact reg-
istry matches are the incorrect contacts. The positions from 1
to c of SARW 1 can form duplex with position stretch c + 1
to 2c of SARW 2 and so on. These cross-intersections can
be classified as correct contact (cc), incorrect contact (icc),
or trap correct contact (tcc) depending the position of the
registry match. For example, when there is a cross-intersection
between the overall sequence index 4 of SARW 1 and 7 of
SARW 2, it is an incorrect contact in the case of nonrepet-
itive c-ssDNAs. When there is a cross-intersection between
the original sequence index 7 of SARW 1 and 7 of SARW
2, it is a correct contact. When there is a cross-intersection
between the block 1 sequence index 3 of SARW 1 and block
5 sequence index 3 of SARW 2, it is defined as a trap correct
contact. When there is a cross-intersection between the block
1 sequence index 3 of SARW 1 and block 5 sequence index
5 of SARW 2, it is an incorrect contact. In this setting, the
volume of a SARW with length L will be vL where v = 1 is
the volume of the monomer unit.
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FIG. 4. Variation of the average number of correct (ncc), incorrect (nicc), and trap correct contacts (ntcc) with respect to the length L of
SARWs and dimensionality. Average number of various contacts were obtained over 105 SARW trajectories. Hollow circles are the stochastic
simulations results, and solid lines are the predictions by Eqs. (2). Irrespective of the dimensionality and shape of the lattice box where the
volume of the monomer unit is v = 1, the expressions given in Eqs. (2) are valid. (a) 3D SARW confined in volume V = 203, length iterated
in L = (10, 250), and c = 2. (b) 3D SARW confined inside a box with base area = 102 (10 by 10) and length = 80 so that V = 8000. The
length of the SARW is iterated inside L = (10, 250) with complexity c = 2. (c) 2D SARW confined in V = 502, and the length of the SARW
iterated inside L = (10, 250) and c = 2. (d) 4D SARW confined in V = 204, L = (10, 250) and c = 2.

(9) To understand the effects of sheared c-ssDNAs on the
overall rate of renaturation, we randomized the lengths of
SARWs. The length of the original c-ssDNA is L, and we
denote the index of the monomers from 1 to L. Shearing
of c-ssDNAs will generate fragments of this template strand
with random lengths. To mimic this, two uniform distributed
random integers r1, r2, were generated inside (1, L), which
are the random lengths of SARW 1 and SARW 2. The starting
sequence index of SARW 1 was defined by calling an uniform
random integer s1 inside (1, L − r1) and the end point will be
s1 + r1. Similarly the starting sequence index of SARW 2 was
defined by calling a random integer s2 inside (1, L − r2), and
the end point will be s2 + r2. These start and end locations
of SARWs 1 and 2 were used to compute the number of

correct, incorrect and trap correct contacts as described in
step 8.

We assume that the pair of c-ssDNAs have already reached
the reaction volume V via 3D translational diffusion with
a bimolecular collision rate kt . The quantities that we are
interested to compute here are the average number of correct,
incorrect, and trap correct contacts formed between a pair of
c-ssDNAs of length L and complexity c inside the reaction
volume V . To achieve this, several pairs of SARWs were
generated inside a closed cubic lattice box as in Fig. 3, and the
number of cc, icc, and tcc were enumerated and averaged over
105 trajectories. The average number of cc, icc, and tcc seems
to be influenced by the length of c-ssDNA (L), its sequence
complexity (c), and the reaction volume (V ). To investigate
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FIG. 5. Variation of the average number of correct (ncc), incorrect (nicc), and trap correct contacts (ntcc) with respect to change in
confinement volume of SARW and dimensionality. Average number of various types of contacts was obtained over 105 trajectories. Hollow
circles are the stochastic simulations results, and solid lines are the predictions by Eqs. (2). Irrespective of the dimensionality and shape of the
lattice box where the volume of the monomer unit is v = 1, the expressions given in Eqs. (2) are valid. (a) 3D SARW confined in cubic box
with volumes iterated inside V = (103, 503), length of SARW set as L = 100, and c = 2. (b) 3D SARW confined inside a box with base area
= 102, and length iterated from 10 to 1000 so that V varies from 103 to 105. The length of SARW is L = 100 with complexity c = 2. (c) 2D
SARW confined in box with base side = 100 and length iterated from 10 to 1000 so that V varies from 103 to 105, L = 100, and c = 2. (d) 4D
SARW confined in a box with base 103 (10 × 10 × 10) and the other side iterated from 10 to 1000 so that the volume V varies from 104 to
106, length of SARW set as L = 100, and the complexity set as c = 2.

the effects of these variables, we iterated one factor over a
range of values at a time by fixing other two factors at constant
values. In the real situations, one can translate the results of
the lattice model by setting the reaction volume as the volume
of the sphere with radius equals to 2Rg where Rg is the average
radius of gyration of c-ssDNAs. To understand the distribution
of icc, cc, and tcc, we constructed the histogram of samples
drawn from large population of counts over 104 numbers of
SARW trajectories.

IV. RESULTS AND DISCUSSION

The c-ssDNA strands can be modeled as self-avoiding
random walks with the average radii of gyration Rg.
Renaturation of c-ssDNAs requires the formation of correct

contacts between them that leads to nucleation and zipping.
Here c-ssDNAs reach the reaction volume via 3D translational
diffusion. Upon entering the reaction volume, they can inter-
penetrate each other to form various types of contacts such
as cc, icc, tcc, or no contact at all. Clearly, when the size
of c-ssDNAs is approximately equal, then the rate at which
they enter the reaction volume via translational diffusion (kt =
8kBT

3η
φ) will be independent of the radius of gyration. However,

the extent of interpenetration of these strands will be strongly
dependent on the length of c-ssDNAs L and the confinement
volume V .

Detailed lattice model simulations revealed the general
scaling of various types of contacts between c-ssDNA
strands as nQ ∝ vLγ

V for nonrepetitive c-ssDNAs where Q =
(icc, cc) and v is the monomer volume. For cc, we find the
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FIG. 6. Variation of the average number of correct (ncc), incor-
rect (nicc), and trap correct contacts (ntcc) with respect to changes in
length L and complexity c of SARWs. Average number of various
types of contacts was obtained over 105 trajectories Hollow circles
are the stochastic simulations results, and solid lines are the predic-
tions by Eqs. (3). The volume of the monomer unit is set as v = 1.
(a) The volume is fixed at V = 203. (b) The template strand length is
fixed at L = 100, and the length of the probe is fixed at u = 10. The
probe is set to form duplex with the template at position stretch 40
to 50. This is the recognition stretch of the probe ssDNA. Both these
strands are embedded inside the volume V = 203.

exponent γ = 1, and for icc we find that γ = 2. For repetitive
c-ssDNAs one finds that ntcc ∝ vLγ

cV with γ = 2. When c = L,

this reduces to ncc ∝ vLγ−1

V resembling the nonrepetitive case.
Variations of the number of tcc, cc, and icc with respect to
changes in L with fixed V and c are demonstrated in Fig. 4.
Variations of the number of tcc, cc, and icc with respect to
changes in V with fixed L and c are demonstrated in Fig. 5.
Results clearly suggest that the scaling nQ ∝ vLγ

V where Q =
(icc, cc) is independent of the shape and dimension of the con-
fining lattice box as shown in Figs. 4(b)–4(d) and 5(b)–5(d).
Similar results for the repetitive c-ssDNAs are demonstrated
in Fig. 6(a). We can conclude from these results that the
number of correct contacts scales with L and V as ncc ∝ vL

V
irrespective of the complexity of c-ssDNA strands and shape
and dimension of the confining lattice box.

These scaling relationships are not affected when the
lengths of c-ssDNAs are unequal as demonstrated in Fig. 6(b)
or random as demonstrated in Fig. 7. Particularly, when the

length of the template ssDNA is L and probe ssDNA is u as
in the case of annealing phase of polymerase chain reactions,
then one obtains the scaling ncc ∝ vu

V . When the c-ssDNA
lengths are random with equal distribution inside (0, L), one
observes the scaling ncc ∝ v〈L〉

2V where 〈L〉 = L
2 here. These

results are demonstrated in Fig. 7. Under in vitro conditions,
V will be the reaction volume. Since the reaction radius here
is approximately equal to 2Rg, one can consider the reaction
volume as V ∼= 4

3π (2Rg)3.
To understand the effect of varying the confinement vol-

ume on the radius of gyration, we iterated the length L
of SARWs at different confinement volumes. From Flory’s
theory, one can conclude that the radius of gyration of the
spatially unconfined 3D SARW approximately scales with the
length as Rg ∝ L3/5 [43]. One naturally expects the scaling
exponent θ in Rg ∝ Lθ as limVS→∞θ → 3

5 . However, when
the SARW trajectory is confined inside a cubic box, then
the magnitude of the scaling exponent decreases in a com-
plicated manner since the SARW trajectory gets reflected at
boundaries of the box, which in turn results in tight pack-
aging of SARWs. In this line, several asymptotic functions
for the exponent were tried to fit the data on the computed
Rg versus the confinement volume of SARWs. However, the
volume and length dependency of Rg seems to best fit the
functional form Rg

∼= α
√

L(1 + βL)−1 where β is a volume-
dependent parameter. Nonlinear least-square fitting using
the Marquardt-Levenberg algorithm [40] to this function re-
vealed an approximate functional form for the parameter β ∼=
[ε( v

VS
)δ + σ ] where v is the monomer volume, VS is the con-

finement volume with the fit parameters ε = 0.5 ± 0.04, δ =
0.61 ± 0.1, and σ = −10−4 ± 10−5 at 95% confidence level.
These results are summarized in Fig. 8. The parameter α

seems to be independent of VS as shown in Fig. 8(b). Clearly,
one obtains the limiting condition limVS→∞Rg

∼= α
√

L not-
ing the fact that β → 0 under such conditions as shown in
Fig. 8(c). Since this limiting condition is valid under in vitro
conditions, one can use this limiting expression to calculate
the molecular and reaction volumes. Remarkably, the numbers
of cc, icc, and tcc show a bimodal-type distribution with zero
spike as demonstrated in Fig. 9. The reason for the zero spike
could be that the confinement volume here is much larger
than the intrinsic volume of the c-ssDNA polymer. This means
that the magnitude of the zero spike is inversely proportional
to the volume ratio vL/V . The number of tcc decreases as
the sequence complexity increases, which is evident from
Figs. 9(c)–9(f).

When the average radius of gyration of c-ssDNAs scales as
Rg ∝ √

L, the reaction volume scales with L as V ∝ L3/2. As
a result, one observes the scaling associated with the average
number of correct contacts formed between the c-ssDNAs
upon interpenetration as 〈ncc〉 ∝ 1√

L
. Since the rate of nucle-

ation is directly proportional to the number of correct contacts,
one observes kN ∝ 1√

L
in line with the experimental obser-

vations. When c-ssDNAs reach the reaction volume element
via 3D translational diffusion, one finally obtains the viscosity
dependence as kN ∝ 1

η
√

L
. The overall renaturation rate in the

case of pure 3D diffusion model [Scheme I of Fig. 1(a)] is
directly proportional to the nucleation rate as well as L. As a
result, we finally arrive at the scaling for overall renaturation
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FIG. 7. Variation of the average number of correct (ncc), incorrect (nicc), and trap correct contacts (ntcc) with respect to changes in
the randomized lengths and complexity c of (c-ssDNAs) SARWs. Average number of various types of contacts obtained over 105 SARW
trajectories. Hollow circles are the stochastic simulation results, and solid lines are the predictions by Eqs. (4.) The volume is set at V = 203,
and the length of the SARW was chosen randomly within (0, L) with equal probabilities so that the average length is 〈L〉 = L/2. L is iterated
inside (10, 360) so that the average length 〈L〉 will vary from 5 to 180. Results suggest that the probability of finding the correct contact upon
collision is 1 / L rather than 1/〈L〉, which leads to 〈ncc〉 = L/4V . (a) 〈ncc〉; (b) 〈nicc〉; (c) 〈ntcc〉. When the sequence complexity is close to the

sequence length, one finds the approximation limc→〈L〉〈ntcc〉 ∼= v(〈L̄〉2+〈l〉2 )
cV where 〈L̄〉 = c� 〈L〉

c � is the length of DNA containing full repeats and

〈l〉 = 〈L〉−c� 〈L〉
c � is the length of DNA left over with partial repeat. Here v = 1 and Fc = 〈L̄〉2 + 〈l〉2. One also should note that Eqs. (4) will

be valid for the repetitive DNA sequences only when (L/c) 	 1.

rate as kRI ∝
√

L
η

in line with the experimental observations
[8] on the hybridization of nonrepetitive c-ssDNAs.

In the case of repetitive c-ssDNAs, the average number of
correct contacts is independent of the sequence complexity or
the number of repeating elements since it requires only the
exact registry match. Clearly, models based on only the 3D
diffusion cannot explain the complexity dependence of the
renaturation rate. For example, when we assume the scaling
kRI ∝

√
L

cη as in the case of the Wetmur-Davidson model, then
we will end up with the inconsistency when c → L, which
predicts the scaling kRI ∝ 1√

L
, which is not in line with the ex-

perimental observations [8]. These arguments clearly suggest
that the renaturation follows multiple and parallel pathways
in the presence of repetitive sequences. Particularly, the 1D
slithering dynamics plays critical roles in the renaturation of
the repetitive sequences. The trap correct contacts between
the repetitive c-ssDNAs can lead to the formation of partial
duplexes with single-strand overhangs. Although the entropy
component of the single-strand overhangs will destabilize

these kinetic traps in the pathway of renaturation, tcc keep the
c-ssDNAs in the close proximity for a prolonged timescale,
which is essential for efficient slithering dynamics and inter-
nal displacement mechanisms, which in turn accelerates the
search for the correct contacts. Clearly, the extent of possible
slithering dynamics is directly proportional to the number of
trap correct contacts, which is inversely proportional to the
sequence complexity.

The pathway of renaturation via an incorrect contact route
always operates irrespective of the presence of repeating ele-
ments. Therefore, the overall renaturation rate associated with
the repetitive c-ssDNAs will be the sum of rates corresponding
to the incorrect contact and trap correct contact routes as de-
scribed in Eq. (13). When the sequence complexity is close to
the length of the c-ssDNAs, the number of tcc and the associ-
ated slithering lengths will be much limited. This follows from
the fact that the stability of incorrect contacts will be much
lower than the trap correct contacts. As a result, the pathway
via incorrect contacts will be the dominating one when c is
close to L, which is characterized by the scaling kRIV ∝

√
L

η
.
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FIG. 8. Variation of the average radius of gyration Rg of SARWs
with respect to changes in the length L and the confinement vol-
ume VS of the SARW. The radius of gyration of a chain molecule

was calculated as Rg = 〈|
√∑L

i, j=1 ( wi−w j )2

2L2 |〉 where wi is the vector
coordinates (X , Y , Z) of the ith monomer and L is the total length.
Average of Rg is obtained over 105 numbers of SARW trajectories.
Filled circles in (a) and (c) are the numerical results, and solid lines
are the nonlinear least-square (NLS) fittings. (a) NLS fits to function
Rg

∼= α
√

L(1 + βL)−1 with respect to L at various VS values reveal
the parameter α does not change much with VS as given in (b) and
β = [ε( v

VS
)δ + σ ] as given in (c) where ε = 0.5 ± 0.04, δ = 0.61 ±

0.1, and σ = −10−4 ± 10−5. These values were obtained with 95%
confidence level. The monomer volume is set to v = 1 cubic unit.

The number of tcc and the extent of slithering lengths will be
much higher when the sequence complexity is much lesser
than the length of c-ssDNAs. Under such conditions, the
pathway via trap correct contacts will be the dominating one,
which is characterized by the scaling kRIV ∝

√
L

cη in line with
the experimental observations [8]. Clear differences between
one-step, two-step, and three-step hybridization models are
summarized in Table I.

A. Computational evidence for the three-step model

The single-molecule coarse-grained molecular dynamic
trajectory of the hybridization of oxDNA shows a four-state
mechanism which comprises [29] random collisions between
the complementary ssDNAs with oscillations in the system-
atic energy, which is followed by nucleation, zippering, and
formation of duplex DNA. The oscillations in the systematic
energy upon random collisions between c-ssDNAs represents
the existence of several rounds of incorrect contact formations
and dissociations of our model. The step corresponding to
the initialization of hybridization represents the nucleation.
Remarkably, the average zipping time seems to be almost
independent of the electrostatic interactions arising at the
DNA-DNA interface of c-ssDNAs, which implies that the
zippering is not a rate-determining step, especially for short
c-ssDNA segments [29]. However, our theory predicts a linear

FIG. 9. Distributions of the number of correct (ncc), incorrect
(nicc), and trap correct contacts (ntcc) at various sequence complexity
c values. The volume of the lattice cube is set as V = 203, the length
of the SARW is fixed at L = 250, and the sequence complexity c
is varied as c = (5, 10, 15, 20, 250). Histograms of various types of
contacts are constructed over 104 numbers of SARW trajectories.
Clearly, all these distributions show a bimodal type with zero spike
that represents no contact cases. (a), (b) Complexity is set to c = 250.
(c) c = 5; (d) c = 10; (e) c = 15; (f) c = 20.

scaling of the zipping time with the length of c-ssDNAs,
which means that the zipping time cannot be ignored when
the length of c-ssDNAs is very large.

Coarse-grained molecular dynamics simulation [33] of the
hybridization of repetitive ATATATATAT oligomer revealed
the existence of out-of-register shifted metastable states (par-
tially hybridized DNA molecules at tcc with single-strand
overhangs of our model). The rate of formation of dsDNA
from these metastable states seems to be twice faster than
the formation rate from the corresponding fully dissociated
c-ssDNAs [33]. This observation is in line with our theoretical
prediction that the partially hybridized metastable states via
tcc retain the c-ssDNAs in close proximity for prolonged
timescales, which enhances the 1D slithering-type search for
the correct contacts to initiate the nucleation. This enhance-
ment effect can be represented by the inequality condition
q < qt in Eq. (13). However, our theory also predicted the
retardation effects of such metastable trap configurations on
the overall hybridization rate, which can be represented by the
inequality kr > krt in Eq. (13). Insertion of a GC pair at the
terminal or middle position of this poly-AT oligomer drasti-
cally reduced the number of out-of-register shifted metastable
states leading to a two-state hybridization scheme [33]. This
observation suggested that the ruggedness of the interaction
energy landscape of the single-stranded poly AT oligomers
gets smoothened and funneled upon insertion of a GC pair.
That is to say, those out-of-state shifted metastable states
are funneled towards the stable GC contact-nucleus, which
indirectly reveals the presence of 1D slithering dynamics.
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TABLE I. Comparison of various hybridization models.

Model Summary Predictions and limitations

One-step model
(Scheme I)

Hybridization occurs via one-step 3D
diffusion-controlled collision

(1) This model predicts an inverse scaling of the
hybridization rate with the length of DNA, which
contradicts the experimental findings that the
hybridization rate scales with the length of DNA
in a square root manner. (2) Zipping time is
ignored. Therefore, this model will work only for
short DNAs. (3) Correctly predicts the viscosity
dependence of the hybridization rate.

Two-step model
(Scheme II)

Hybridization occurs via nucleation in the first step,
which is followed by zipping in the second step

(1) This model predicts correct scaling of the
hybridization rate with the length and complexity
of DNA as long as the complexity is much lower
than the length. However, when the complexity
approaches the length, this model predicts inverse
square root scaling of the hybridization rate with
the length of DNA, which is against the
experimental observations. (2) Translational
diffusion of DNA is ignored, and the microscopic
diffusion dynamics at the time of nucleation is
used to explain the viscosity dependence of the
hybridization rate.

Three-step model
presented (Schemes III
and IV)

Hybridization occurs via 3D diffusion-mediated
incorrect as well as trap correct contacts in the first
step, followed by nucleation via 1D slithering in the
second step, followed by zipping in the third step. In
Scheme IV, slithering pathways are different for
incorrect and trap correct contact-mediated
nucleation.

(1) Detailed contributions of trap correct contacts
arising from the repetitive DNA over the
hybridization rate were not considered in Scheme
III.

(2) (a) Scheme IV correctly predicts the length and
complexity dependence of the hybridization rate
irrespective of the relative levels of complexity
and length of the interacting DNA sequences. (b)
It correctly predicts the viscosity dependence of
the hybridization rate.

The possibility of bipedal-directed walks of short frag-
ments of DNA over a template DNA track have been
demonstrated by several groups [44–48]. The directional-
dependent movement of these DNA walkers requires the input
of an external energy. In this context, according to our three-
step model, the correct contact formation across the c-ssDNAs
is via a combination of 1D and 3D diffusion routes, which
is an unbiased random walk that is mainly driven by the
background thermal energy.

Although the computational studies could reveal the finer
details about the mechanism of DNA hybridization at the
molecular level, our simplified lattice model is able to capture
the overall dynamical aspects of hybridization phenomenon.
Particularly, the three-step Scheme IV corresponding to the
repetitive c-ssDNA along with Eq. (13) can successfully
explain how the overall hybridization rate scales with the
viscosity of the reaction medium and relative levels of lengths
and sequence complexities of c-ssDNAs (particularly in the
limit as the level of sequence complexity approaches the
length) where most of the earlier theoretical models and com-
putational studies failed.

B. Assumptions and limitations

Although the presented lattice model could recover several
kinetic scaling laws associated with the DNA renaturation
dynamics, there are several assumptions and limitations, viz.,
(1) the rigidities of both c-ssDNAs and dsDNA are ignored;
(2) the same intermonomer distance for both c-ssDNA and
dsDNA strands was assumed; (3) detailed base-paring and
base stacking interactions were ignored; (4) formation of in-
trastrand loops was ignored; (5) GC base compositions of the
c-ssDNA were not considered; and (6) there is no direct com-
putational or experimental evidence for the entire connected
Scheme IV.

Translation diffusion of c-ssDNAs and their interpenetra-
tion upon collision mainly decide the kinetic scaling laws
rather than the fine details of base-pairing and base-stacking
interactions. Therefore, these factors will not affect the main
scaling results much. Variation in the GC composition of
c-ssDNAs will influence the microscopic zipping rates k+
and k− and subsequently the overall zipping rate kZ . How-
ever, this will not affect the scaling of the zipping rate
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with the length of c-ssDNAs. Variation of the intermonomer
distances of c-ssDNAs will not affect the obtained scaling
laws since we measure the lengths in terms of number of
monomer units (nt). For example, we consider only the num-
ber of nucleotides scanned by the c-ssDNAs over slithering
events rather than the number of intermolecular distances.
The rigidity of both c-ssDNA and dsDNA will be mainly
compensated by the conformational fluctuations driven by the
chain entropy [49]. Formation of intrastrand loop structures
will influence our results in two ways: (1) significant fraction
of c-ssDNA segments will not be exposed for the exploration
of correct contacts, which in turn increases the time required
for nucleation and (2) upon forming correct contacts at the
nonloop regions, zipping will be hindered by the presence
of intrastrand loops, which in turn increases the overall zip-
ping time. This means that additional time components will
be added up to the overall nucleation and zipping times,
which will not change the overall kinetic scaling laws much.
Although there is no direct computational or experimental ev-
idence for the entire connected Scheme IV, recent simulation
studies have revealed the presence of its various components,
viz., incorrect and trap correct contact formation, slithering,
nucleation, and zippering steps.

V. CONCLUSION

We have developed a lattice model on the rate of hybridiza-
tion of the complementary ssDNA (c-ssDNA) strands. These
c-ssDNAs can be thought as loosely packed and spherical-
shaped nucleotide clusters, and the collisions between these
clusters are mediated via the 3D translational diffusion. Upon
each collision, the base clusters of c-ssDNAs interpenetrate
each other to form three different types of contacts among
them: correct, incorrect, and trap correct contacts. Correct
contacts are those with exact registry matches which can lead
to nucleation and zipping of c-ssDNAs. Incorrect contacts
are the mismatch contacts which are less stable compared to
the trap correct contacts, which can occur in the repetitive
c-ssDNAs. Trap correct contacts possess exact registry match
within the repeats. However, they are incorrect contacts in the
view of the whole c-ssDNAs.

Trap correct contacts can form partial duplexes with single-
stranded overhangs. The nucleation rate (kN ) is directly
proportional to the average number of correct contacts (〈ncc〉)
formed when c-ssDNAs interpenetrate each other inside the
reaction volume. The c-ssDNAs reach the reaction volume
via translational diffusion with rate kt . This rate will be inde-
pendent of the length of c-ssDNAs when both c-ssDNAs are
equal in size. As a result, the nucleation rate will be directly

proportional to kt times the number of correct contacts. For
short c-ssDNAs, the zipping times will much lower than the
nucleation times. In such conditions, the overall renaturation
rate (kR) will be directly proportional to kN and L as kR =
kN L ∝ kt 〈ncc〉L, which is the 3D diffusion model.

To understand the scaling properties of the average number
of various types of contacts with respect to the length (L)
of c-ssDNAs, sequence complexity (c), and reaction volume
(V ), we modeled the c-ssDNAs as a pair of self-avoiding
random walks confined in a cubic lattice box which resembles
the reaction volume (V ). Our lattice model simulations sug-

gested the scaling 〈ncc〉 ∼= vL
V , 〈ntcc〉 ∼= vL2

cV , and 〈nicc〉 ∼= vL2

V
where v = 1 is the monomer volume, 〈nQ〉 are the average
number of correct (Q = cc), incorrect (Q = icc), and trap
correct contacts (Q = tcc). Further numerical analysis and
nonlinear least-square fitting results suggested the scaling for
the average radius of gyration of c-ssDNAs with their length
as Rg ∝ √

L. Since the reaction space will be approximately
a sphere with radius equals to 2Rg, one obtains the scaling
for the nucleation rate with length of c-ssDNA as kN ∝ 1√

L
,

and one finally obtains kR ∝ √
L in line with the experimental

observations. However, this expression works only for a non-
repetitive and short c-ssDNAs. When c-ssDNAs are repetitive
with a complexity of c < L, earlier models suggested the
scaling kR ∝

√
L

c . This scaling will break down when c = L.
These observations clearly suggested the existence of at least
two different pathways of renaturation, viz., through incorrect
contact and trap correct contact.

The trap correct contacts occurring between repetitive c-
ssDNAs can lead to the formation of partial duplexes with
single-strand overhangs. These partial duplexes keep the c-
ssDNAs in close proximity for prolonged timescales, which is
essential for the extended 1D slithering that can speed up the
searching for the correct contacts. Clearly, the extent of slith-
ering dynamics will be inversely proportional to the sequence
complexity c. When the complexity is close to the length
of c-ssDNAs, the pathway through incorrect contact will be
the dominating one with minimal level of slithering. When
the complexity is much less than the length of c-ssDNAs, the
pathway via the trap correct contact will be the dominating
one.
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