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Generalized fluctuation-dissipation theorem for non-Markovian reaction networks

Aimin Chen,1 Huahai Qiu,2,* Tianhai Tian ,4 and Tianshou Zhou 1,3,†

1School of Mathematics and Statistics, Henan University, Kaifeng 475004, China
2School of Mathematical and Physical Sciences, Wuhan Textile University, Wuhan 430200, People’s Republic of China

3Key Laboratory of Computational Mathematics, Guangdong Province, and School of Mathematics,
Sun Yat-sen University, Guangzhou 510275, People’s Republic of China
4School of Mathematics, Monash University, Melbourne 3800, Australia

(Received 18 November 2021; accepted 23 May 2022; published 10 June 2022)

Intracellular biochemical networks often display large fluctuations in the molecule numbers or the concen-
trations of reactive species, making molecular approaches necessary for system descriptions. For Markovian
reaction networks, the fluctuation-dissipation theorem (FDT) has been well established and extensively used
in fast evaluation of fluctuations in reactive species. For non-Markovian reaction networks, however, the
similar FDT has not been established so far. Here, we present a generalized FDT (gFDT) for a large class
of non-Markovian reaction networks where general intrinsic-event waiting-time distributions account for the
effect of intrinsic noise and general stochastic reaction delays represent the impact of extrinsic noise from
environmental perturbations. The starting point is a generalized chemical master equation (gCME), which
describes the probabilistic behavior of an equivalent Markovian reaction network and identifies the structure of
the original non-Markovian reaction network in terms of stoichiometries and effective transition rates (extensions
of common reaction propensity functions). From this formulation follows directly the solution of the linear noise
approximation of the stationary gCME for all the components in the non-Markovian reaction network. While
the gFDT can quickly trace noisy sources in non-Markovian reaction networks, example analysis verifies its
effectiveness.
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I. INTRODUCTION

Intracellular processes in single cells are often depicted
using biochemical reaction networks [1]. A main task of
Systems Biology is to design biologically reasonable math-
ematical models that faithfully describe the dynamics of these
networked systems. In many situations, intracellular reaction
networks display large fluctuations in the molecular numbers
or the concentrations of reactive species [2]. This property
makes it imperative to analyze the random behavior of the bio-
chemical reaction networks. Since Poisson statistics cannot
be assumed to be valid for living systems, characterizing the
stochastic properties of biochemical networks is challenging.

From the view of continuous time random walk (CTRW),
biochemical reaction networks can be divided into two
classes: Markovian and non-Markovian, where by “Marko-
vian” we mean that reaction events happen in a memoryless
manner, and by “non-Markovian” we mean that reaction
events occur in a memory fashion. For the former class of
networks, the reaction kinetics can be described by Pois-
son processes with constant rates, which are characterized
by exponential distributions of inter-reaction waiting times
[3,4]. This property enables the establishment of the chemi-
cal master equation (CME) describing the time evolution of
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the joint probability distribution for all the different compo-
nents in the underlying Markovian system [4]. For the latter
class of networks, however, inter-reaction waiting times in
general follow nonexponential distributions such as Gamma
distributions [5,6]. Nonexponential waiting times can create
molecular memory between individual reaction events, lead-
ing to non-Markovian (or non-Poissonian) reaction kinetics.
The increasing availability of time-resolved data on different
kinds of interactions has also verified the extensive exis-
tence of molecular memory in intracellular reaction networks
[7–14]. Recently, the so-called generalized CME (gCME) for
a general reaction network with molecular memory has been
established based on the CTRW theory [15–17].

In some cases, the CME or gCME can be analytically
solved, often under simplified conditions, and some analytical
methods have also been developed [18–21]. In most cases,
however, it needs to be numerically solved using methods
developed based on either direct integration [22–25] or Monte
Carlo sampling [26–28]. The question with these numerical
methods is that they are computationally expensive, and in
particular, they become infeasible as the number of reactive
species is large. This is because the number of equations in
the CME or gCME grows exponentially with the number of
reactive species, making stochastic analysis difficult even for
empirical networks of moderate size [29,30].

As an approach to the modeling of intracellular reac-
tion networks, the mesoscopic fluctuation-dissipation theorem
(FDT) has been gaining increasing attention. In Markovian
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reaction cases, FDT can be straightforward derived from the
CME. In turn, the FDT can be used in fast characterization
of the stochastic properties of complex biochemical reaction
networks [4,31]. In non-Markovian reaction cases, however,
the similar FDT has not been established although the corre-
sponding gCME has been available [6,15]. This motivates the
study of this paper. We will present a generalized FDT (gFDT)
for a large class of reaction networks with general (exponen-
tial or nonexponential) reaction waiting-time distributions.

Since memory functions involved in the gCME are implic-
itly (in fact by Laplace transform) expressed by the given
reaction waiting-time distributions [15], deriving the gFDT
directly from the gCME is nontrivial. In order to overcome
this difficulty, we first introduce an effective transition rate for
every reaction in the network, which explicitly decodes the
effect of molecular memory created due to nonexponential
waiting-time distributions. Then, we construct an equiva-
lent Markovian reaction network by taking the introduced
effect transition rates as reaction property functions of the
constructed Markovian reaction network. Importantly, the sta-
tionary CME for the constructed Markovian reaction network
is exactly the same as that for the original non-Markovian
reaction network. Finally, for the constructed Markovian reac-
tion network, we make use of the extension of Kramers-Moyal
expansions to derive the gFDT from the common stationary
gCME, which can be used in the fast evaluation of fluctuations
in the molecule numbers or the concentrations of reactive
species in the original non-Markovian reaction network. The
derive gFDT is apparently an extension of the classical linear
noise approximation (LNA), and can provide insights into the
role of molecular memory in controlling fluctuations in re-
active species of interest in complex non-Markovian reaction
networks. Two representative examples are analyzed to verify
the prediction of the gFDT.

II. GENERAL THEORY

A. Reaction network formulism

Consider a general networked system of reactions with
volume � and N different chemical components (denoted by
X1, · · · , XN ). Assume that these reactive species participate in
L reactions in total:

N∑
i=1

ri jXi →
N∑

i=1

r̃i jXi, j = 1, 2, . . . , L, (1)

where ri j and r̃i j are stoichiometries. The concentrations of
the system’s components are summarized in column vector
x = (x1, . . . , xN )T, whereas their molecular numbers in col-
umn vector X = �x = (X1, . . . , XN )T. The microscopic state
of the system is defined by X (or x), and is changed by
one of L reactions. Define Si j = r̃i j − ri j (net change, which
may be negative, zero, or positive), where i = 1, 2, . . . , N and
j = 1, 2, . . . , L. These Si j constitute an N × L stoichiometric
matrix (S) of the reaction network. In addition, denote by S j =
(S1 j, . . . , SN j )T the column vector of stoichiometric changes
for reaction j.

Traditionally, describing the transition rates for reactions
adopts reaction propensity functions if reaction events hap-

pen in a Markovian manner, e.g.,
∑N

i=1 ri jXi
k j−→ ∑N

i=1 r̃i jXi,
where k j is a constant reaction rate. This is equivalent

to the description of exponential waiting-time distribu-

tions, i.e.,
∑N

i=1 ri jXi
α j (t,x;�)−−−−→∑N

i=1 r̃i jXi, where α j (t, x; �) =
hj (x; �)e−h j (x;�)t in which h j (x; �) is a reaction propen-
sity function in the inter-reaction waiting-time distribution
for reaction j. However, reaction events happen often
in a non-Markovian manner with the reasons given in
Refs. [6,7,15]. In the non-Markovian case, α j (t, x; �) may
be a general (exponential or nonexponential) distribution,
and will be assumed to a Gamma distribution: α

(r)
i (t ; x) =

[1/�(ki )](λi(x))ki t ki−1e−λi (x)t , where λi(x) is a regulatory
function, �(ki ) is a common Gamma function, and ki is called
memory index throughout this paper.

In order to better model the random occurrence of reac-
tion events in terms of waiting times, we distinguish between
intrinsic and extrinsic sources of noise. The intrinsic noise is
referred to the inherent stochasticity of the reaction process
proper [1,32,33]. A single event of reaction j is character-
ized by reaction waiting time τ

(r)
j , whose probability density

function (PDF), denoted by α
(r)
j (t, x; �) throughout this pa-

per, depends, in general, on system state X . The reaction
event that actually occurs is the one whose waiting time is
the minimum, that is, τ (r) = min{τ (r)

j |1 � j � L}. Note that

the expression
∏

j �=k [1− ∫ t
0 α

(r)
j (t ′, x; �)dt ′] or equivalently,∏

j �=k

∫ ∞
t α

(r)
j (t ′, x; �)dt ′ represents the probability that the

kth reaction does not happen. Thus, the joint distribution for
reaction k to happen after a reaction time interval [t, t + dt]
is given by κ

(r)
k (t, x; �)dt , where we define κ

(r)
k (t, x; �) =

α
(r)
k (t, x; �)

∏
j �=k

∫ +∞
t α

(r)
j (t ′, x; �)dt ′.

In contrast to intrinsic noise, extrinsic noise results from
external fluctuations, e.g., the variability in the physical or
chemical environment. Under transport-limited conditions, re-
action delays arise from mass-transfer limitations due to the
spatial sampling efficiency and fluctuation-induced segrega-
tion of reactants [34,35]. In the kinetic Monte Carlo spirit,
these delays can influence all particles in the same way,
independently of the system state. Therefore, in contrast to
τ (r), we introduce a delay time, τ (d ), which does not depend,
directly, on the state but may depend on the current reaction
waiting time, τ (r). That is, for a given state X , the reaction
waiting time takes the form τ = τ (r) + τ (d )(τ (r) ). Let τ

(d )
i be

a stochastic reaction delay for reaction i due to environmental
perturbations and assume that this delay follows a distribution,
κ

(d )
i (t ). Then, the actual PDF for the waiting time of reaction i

should be κi(t, x; �) = (κ (r)
i ∗ κ

(d )
i )(t, x; �), where ∗ denotes

convolution. Intuitively, the delay time can be viewed as a
“preparation” time for the next reaction event to happen.

Regarding reaction delays, here we emphasize the follow-
ing four points: (1) the delay time is external but the delay
event is triggered by the reaction event; (2) the reaction delays
generated by environmental heterogeneity or by the extrinsic
noise mean that reaction events are postponed to happen in
contrast to the case of no extrinsic noise; (3) the reaction de-
lays in our model, which are implicit, are different from those
in delay models in Ref. [36], which are explicit, where the
former means that the extrinsic noise impacts the occurrence
of each reaction, whereas the latter means that a delay only
affects the rate (rather than the occurrence) of a particular
reaction; and (4) the delay of each reaction in our model is
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random and is assumed to follow a distributions, whereas the
delay is extracted from a given distribution and is essentially
deterministic. In a word, the meaning and source of two kinds
of delays are completely different.

Note that if reaction events happen in a Markovian
(or memoryless) manner, then the intrinsic-event waiting-
time distribution for reaction j, α

(r)
j (t, x; �), is exponential.

Moreover, this distribution takes the form α
(r)
j (t, x; �) =

hj (x; �)e−h j (x;�)t , where h j (x; �) is the reaction propensity
function for reaction j (1 � j � L). In general, reaction
events happen in a non-Markovian (or memory) fashion,
implying that reaction waiting times follow nonexponential
distributions.

B. Memory functions and effective transition rates

According to Ref. [15], we know that the joint probability
that the jth reaction happens and the reaction waiting time is

within time interval [t, t + dt] given by κ j (t, x; �)dt , where
κ j (t, x; �) is the PDF for the waiting time of reaction j.
Note that for reaction j of the reaction network, we may
introduce a memory function Mj (t, x; �) [6,15], which is de-
fined by its Laplace transform with variable t : M̄ j (s, x; �) =

sκ̄ j (s,x;�)

1− ∑L
k=1 κ̄k (s,x;�)

, whose form seems bizarre but is typical of

the CTRW key formulism [37]. Here, functions M̄ j (s, x; �)
and κ̄ j (s, x; �) are the Laplace transforms of functions
Mj (t, x; �) and κ j (t, x; �), respectively, and j = 1, 2, . . . , L.
We point out that in general, memory function Mj (t, x; �)
cannot be explicitly expressed by waiting-time distributions.
In the following, the above bar always represents Laplace
transform.

Interestingly, we find that the limit lims→0 M̄ j (s, x; �)
always exists. Moreover, if this limit is denoted by
Wi(x; �), it can be expressed as (see Appendix A for
derivation)

Wi(x; �) =
∫ ∞

0 κ
(r)
j (t, x; �)dt∑L

j=1

〈
τ

(d )
j

〉 ∫ ∞
0 κ

(r)
j (t, x; �)dt + ∑L

j=1

∫ ∞
0 tκ (r)

j (t, x; �)dt
, (2)

where 〈τ (d )
i 〉 = ∫ +∞

0 tα(d )
i (t )dt represents the mean delay for

reaction i. Throughout this paper, Wi(x; �) is called the ef-
fective transition rate for reaction i. Equation (2) reveals that
Wi(x; �) depends, only, on the delay means, independently of
the forms of the delay distributions. This is an interesting re-
sult. We point out that effective transition rates are extensions
of reaction propensity functions [6,15].

Next, we consider the limit of large �, and define

ϕ = lim
�→∞
X→∞

�−1X = lim
�→∞

x,

Wj (ϕ) = lim
�→∞

Wj (x; �),

j = 1, 2, . . . , L (3)

where ϕ = (ϕ1, ϕ2, . . . , ϕN )T is the system’s macroscopic
state. Apparently, if all the mean reaction delays are equal and
the common delay is denoted by τg, Eq. (2) then becomes

Wj (ϕ) =
∫ +∞

0 α
(r)
j (t ; ϕ)

∏
i �= j

[∫ ∞
t α

(r)
i (t ′; ϕ)dt ′]dt

τg + ∫ +∞
0

∏L
i=1

[∫ ∞
t α

(r)
i (t ′; ϕ)dt ′]dt

,

j = 1, 2, . . . , L, (4)

where α
(r)
j (t,ϕ) = lim�→∞ α

(r)
j (t, x; �), and we have made

use of the fact
∑L

j=1

∫ ∞
0 κ

(r)
j (t, x; �)dt = 1.

C. Generalized chemical master equations

Let P(x, t ) be the probability that the system is in state x at
time t . According to the update theory [3,4], we can derive the
following gCME for the above reaction network in the sense

of Laplace transform:

sP̄(x, s) − P(x, 0)

= �

L∑
j=1

(
N∏

i=1

E−Si j − I

)
[M̄ j (s, x; �)P̄(x, s)], (5)

where P̄(x, s) is the Laplace transform of probability
function P(x, t ). In Eq. (4), I is a unit operator, E
is a step operator, and E−1 is its inverse. Note that
E−Si j is also a step operator and its operation rule is
when E−Si j acts on a function, g(X1, X2, . . . , XN ), it re-
moves Si j molecules from reactive species Xi in reaction
j, i.e., E−Si j g(X1, X2, . . . , XN ) = g(X1, . . . , Xi − Si j, . . . , XN ).
Thus, for any two integers i and k (1 � i, k � N),
we have the operation rule: E−Si jE−Sk j g(X1, X2, . . . , XN ) =
g(. . . , Xi − Si j, . . . , Xk − Sk j, · · ·) for reaction j (1 � j � L).

Recall the final value theorem [38]: for arbitrary function
f (t ), if the limit limt→∞ f (t ) exists and is finite, two limits
limt→∞ f (t ) and lims→0 s f̄ (s) [where f̄ (s) is the Laplace
transform of function f (t )] are equal, namely limt→∞ f (t ) =
lims→0 s f̄ (s). For the above reaction network, if stationary
distribution P(x) exists (in fact, numerical simulation has
verified this point [6,37]), we have

P(x) = lim
t→∞ P(x, t ) = lim

s→0
sP̄(x, s). (6)

Multiplying s on both sides of Eq. (5) and using Eq. (3) and
Eq. (6), we thus obtain

L∑
j=1

(
N∏

i=1

E−Si j − I

)
[Wj (x; �)P(x)] = 0, (7)

which is called the stationary gCME for the above reaction
network with system size �. This equation lays a solid foun-
dation for the further analysis of this paper.
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FIG. 1. Schematic diagram for two reaction networks with the same topology and the same species. α-Type functions in the left-
hand side diagram represent inter-reaction waiting-time distributions and are assumed to take the forms in this paper: α

(r)
i (t ; x) =

[1/�(ki )](λi(x))ki t ki−1e−λi (x)t , where λi(x) are regulatory functions depending on the system’s microscopic state x = (x1, x2, . . . , xN )T with
x j representing the concentration or the molecular number of reactive species Xj , and shape parameter ki of distribution α

(r)
i (t ; x) is called

memory index throughout this paper; W -type functions in the right-hand side diagram are effective transition rates [Eq. (2)]; and system size
� is not explicitly considered or is omitted. The model to be studied also considers stochastic reaction delays (see the main text). The results in
Ref. [6] imply that the stationary behaviors of two reaction networks are exactly the same although reaction events occur in different manners.

By comparing the structure of Eq. (5) and Eq. (7), we nat-
urally construct a reaction network as shown in the left-hand
side diagram of Fig. 1: it has the same network topology as
the original reaction network in the right-hand side diagram of
Fig. 1) and takes Wj (x; �) as its reaction propensity functions.
Clearly, the stationary CME for this constructed reaction net-
work is nothing but Eq. (7), implying that the steady-state
behavior of the constructed Markovian reaction network is
exactly the same as that of the original non-Markovian reac-
tion network. In fact, if we list the CME for the constructed
reaction network in the sense of Laplace transform

sQ̄(x, s) − Q(x, 0)

= �

L∑
j=1

(
N∏

i=1

E−Si j − I

)
[Wj (x; �)Q̄(x, s)], (8)

the form of which is similar to that of Eq. (5), where Q̄(x, s)
is the Laplace transform of probability function Q(x, t ) for
the constructed network; then, the CME of Eq. (8) at steady
state is Eq. (7) except for notation. This property will greatly
simplify the analysis of non-Markovian reaction networks.

In the following, we will restrict our analysis to the con-
structed Markovian reaction network due to the equivalence
of the stationary behaviors of the two reaction networks (in
spite of some differences in dynamical behaviors at initial
time points between the two reaction networks [39]).

D. Generalized fluctuation-dissipation theorem

For the reaction network constructed above, the relative
fluctuations in components will eventually become insignif-
icant if the system volume � is sufficiently large. In the limit
of large �, the stochastic concentration vector x will nor-
mally become deterministic, and the effective transition rates,
Wj (x,�), will be simplified to their macroscopic rate law
counterparts, Wj (ϕ). On the other hand, the LNA is often used
in simplifying the analysis of reaction networks [3,4,40]. For
the above non-Markovian reaction system, here we present
a generalized fluctuation-dissipation theorem, which can be

used in the fast evaluation of stochastic fluctuations in a reac-
tive species of interest.

First, note that macroscopic concentrations at steady state
satisfy the following N algebraic equations:

L∑
j=1

Si jWj (ϕ) = 0, i = 1, 2, . . . , N, (9)

which altogether determine the steady state (denoted by ϕ̃)
of the deterministic system corresponding to the constructed
Markovian reaction network. This steady state can be taken
as the one of the original non-Markovian reaction system. We
point out that these stationary equations can also be derived
directly from Eq. (7).

Second, it is widely agreed that if the average copy number
is n, the size of fluctuations around it must be

√
n (Poisson

statistics). This means that if the average molecular number
(n) of a certain species in an Escherichia coli cell is 100
or more (corresponding to a concentration >0.2 μM [41]),
the relative fluctuations (

√
n/n = 1/

√
n) would be around

10% or less. Accordingly, if the molecular number is large
(>1000), the relative fluctuations would be only 3% and there-
fore insignificant. However, intracellular chemical reactions
take place far from equilibrium. Therefore, Poisson statistics
assumptions may not be valid, and the stochastic fluctuations
around the average of n molecules may be much larger or
much smaller than

√
n [42,43]. In general, we can write X =

�x + �1/2ξ, where ξ is a vector of random variables.
Now, we state the following theorem (see the proof details

given in Appendix B of this paper), which is the main result
of this paper:

The generalized fluctuation-dissipation theorem: Let ϕ̃

be the macroscopic stationary state of the networked sys-
tem, and denote Ai j=

∑L
k=1 Sik∂Wk (ϕ̃)/∂ϕ j and [BBT]i j =∑L

k=1 SikS jkWk (ϕ̃), where i, j = 1, 2, . . . , N . Then, we have
the Lyapunov matrix equation:

AC + CAT + �BBT = 0, (10)
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where C =〈(X − 〈X〉)(X − 〈X〉)T〉 ≡ 〈
X · 
X T〉 is a co-
variance matrix.

In Eq. (10), matrices A and B are all known, but matrix C
is unknown. Note that these three matrices are all square ones
of N × N orders, and in particular, the diagonal elements of
matrix C represent variances. This theorem is apparently an
extension of the LNA in the Markovian case and is therefore
called the generalized LNA (gLNA). This LNA is apparently
an extension of the common (i.e., in Markovian cases) LNA.
This is because the effective transition rates [i.e., Wk (ϕ),
1 � k � L] are extensions of common reaction-propensity
functions of Markovian reaction systems, and only when all
waiting-time distributions are exponential or all the reaction
rates are constants do our effective transition rates reduce to
common reaction-propensity functions.

If the noise is quantified by the ratio of the variance over
the squared mean, we can calculate the noise intensities for
individual reactive species according to

ηXi = Cii

�2ϕ̃2
i

= �ii

�ϕ̃2
i

, i = 1, 2, . . . , N, (11)

where �ii are diagonal elements of matrix � =
〈(x − 〈x〉)(x − 〈x〉)T〉 ≡ 〈
x · 
xT〉 = C

�
, and ϕ̃i is a

component of vector ϕ̃. Similarly, we can give calculation
formulae for the Fano factors of reactive species if the Fanbo
factor is defined as the ratio of the variance over the mean.
Note that �ϕ̃i is the macroscopic steady-state molecular
number for reactive species Xi. This theorem can provide a
fast evaluation of stochastic fluctuations in individual reactive
species in any reaction network.

III. EXAMPLE ANALYSIS

Here, we choose two simple yet representative examples
for analysis, so that approximate solutions of the stationary
gCME can be analytically derived. Then, we use these approx-
imations to clarify the sources of fluctuations in each case and
to trace the effects of different parameters on the stochastic
properties of the systems.

A. Importance of molecular memory and stoichiometries:
Analysis of a generalized birth-death process

As one of the most common and fundamental reaction
modules, the birth-death process is a simple, natural, and for-
mal framework for modeling many biological processes such
as constitutive gene expression [6,39], population dynamics,
speciation, and genome evolution [3,4,44,45]. Such a simple
reaction module was previously studied under the Markovian
hypothesis. Main results include that the stationary number
of molecules for the reactive species follows a Poissonian
distribution [4] and the corresponding Fano factor is equal
to 1. These results well characterize the reaction kinetics of
birth-death processes without molecular memory. As pointed
out in the Introduction, however, the waiting times between
reaction events in general follow nonexponential distributions,
raising issues: how does the non-Markovianity affect reaction
kinetics? And, does the non-Markovianity have extra effects
in contrast to Markovianity? Addressing these issues is not

nontrivial even for non-Markovian birth-death processes since
non-Markovianity can induce additional dynamics [6].

The first example to be analyzed is a system that contains
only one type of reactive species, X . The X molecules are
synthesized and consumed by two different reactions with
general waiting-time distributions:

∅ α
(r)
1 (t ;ϕ)−−−−→ mX , nX

α
(r)
2 (t ;ϕ)−−−−→ ∅, (12)

where ϕ is the molar concentration of X , m and n are stoi-
chiometries and two positive integers. The first reaction adds
n molecules to X in a single event, and the second reaction
removes m molecules from X in another single event. This
example may describe many molecular systems, e.g., those
of constitutive gene expression [6,39]. In fact, any reactive
species will undergo both a birth process and a death process.
Apparently, if m = 1 and n = 1, and if both α

(r)
1 (t ; ϕ) and

α
(r)
2 (t ; ϕ) are exponential functions, this corresponds to the

common birth-death process.
Below, we set α

(r)
1 (t ; ϕ) = t k1−1e−μt

�(k1 ) μk1 and α
(r)
2 (t ; ϕ) =

t k2−1e−λ(ϕ)t

�(k2 ) (λ(ϕ))k2 , where �(·) is the common Gamma func-
tion, μ is the average synthesis rate of X (given in molar
concentration per second), and two parameters k1 and k2 are
positive numbers, which may be positive real numbers in
theory and can be used to model the numbers of reaction steps
involved in the considered processes [45]. Function λ(ϕ) =
δϕn may be regarded as the reaction propensity function in
the Markovian reaction case, where δ represents the mean
degradation rate of X . With these settings, we can show that
Eq. (4) reduces to

W1(ϕ) =
(μ)k1

∑k2−1
i=0

(k1 + i − 1
i

) (δϕn )i

(μ+δϕn )k1+i

τg + ∑k1−1
i=0

∑k2−1
j=0

(i + j
i

) (μ)i (δϕn ) j

(μ+δϕn )i+ j+1

,

W2(ϕ) =
(δϕn)k2

∑k1−1
i=0

(k2 + i − 1
i

) (μ)i

(μ+δϕn )k2+i

τg + ∑k1−1
i=0

∑k2−1
j=0

(i + j
i

) (μ)i (δϕn ) j

(μ+δϕn )i+ j+1

, (13)

due to
∫ ∞

t α
(r)
1 (t ′; ϕ)dt ′ = e−μt

∑k1−1
i=0 (tμ)i/i! and∫ ∞

t α
(r)
2 (t ′; ϕ)dt ′ = e−δϕnt

∑k2−1
i=0 (tδϕn)i/i!. The determin-

istic equation is given by dϕ/dt = mW1(ϕ) − nW2(ϕ), and
the steady state (ϕ̃) is given by solving algebraic equation
mW1(ϕ̃) − nW2(ϕ̃) = 0. Using the above notations, we know
vector S = (m −n), matrix A = mW ′

1(ϕ̃) − nW ′
2(ϕ̃),

where “W ′(x)” represents the derivative of function W (x)
with regard to x, and matrix BBT = m2W1(ϕ) + n2W2(ϕ).
From Lyapunov matrix equation A� + �AT + �BBT = 0,
we can derive

� = −�

2

m2W1(ϕ̃) + n2W2(ϕ̃)

mW ′
1(ϕ̃) − nW ′

2(ϕ̃)
. (14a)

Thus, the noise intensity for X is given by

ηX = 1

2�ϕ̄2

m2W1(ϕ̃) + n2W2(ϕ̃)

−mW ′
1(ϕ̃) + nW ′

2(ϕ̃)
, (14b)
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TABLE I. Analytical results for the generalized birth-death process, where � is the system volume, ϕ̄ is the microscopic mean of reactive
species X , and μ̃ is the transcription rate normalized by degradation rate δ, i.e., μ̃ = μ/δ.

Macroscopic mean: �ϕ̄ Fano factor: Fano Noise intensity:ηX

Case 1: ϕ̃ = {[( m+n
n )1/k1 − 1]μ̃}1/n m

2nk1

(m+n)1/k1

(m+n)1/k1 −n1/k1

m
2nk1�ϕ̃

(m+n)1/k1

(m+n)1/k1 −n1/k1

k1 > 0,
k2 = 1

Case 2: ϕ̃ = ( μ̃m1/k2

(m+n)1/k2 −m1/k2
)
1/n

1
2k2

(m+n)1/k2

(m+n)1/k2 −m1/k2

1
2k2�ϕ̃

(m+n)1/k2

(m+n)1/k2 −m1/k2

k1 = 1,
k2 > 0

Case 3: ϕ̃ is determined by m(μ̃+ϕ̃n )
2nk1(k1+1) ( μ̃

ϕ̃n + k1 + 1)
m

2n�ϕ̃

μ̃+ϕ̃n

k1(k1+1)

× ( μ̃

ϕ̃n + k1 + 1)

k1 > 0, (1 + ϕ̃n

μ̃
)
k1 = m+n

n (1 + k1ϕ̃n

μ̃+ϕ̃n )
k2 = 2

Case 4: ϕ̃ is determined by μ̃+ϕ̃n

2k2 (k2+1) ( μ̃

ϕ̃n + k2 + 1)
1

2�ϕ̃

μ̃+ϕ̃n

k2 (k2+1)

× ( μ̃

ϕ̃n + k2 + 1)

k1 = 2, (1 + ϕ̃n

μ̃
)
k2 = m+n

m (1 + k2 ϕ̃n

μ̃+ϕ̃n )
k2 > 0

and the Fano factor by

Fano = 1

2ϕ̄

m2W1(ϕ̃) + n2W2(ϕ̃)

−mW ′
1(ϕ̃) + nW ′

2(ϕ̃)
. (14c)

In order to show the explicit effect of molecular memory,
however, we consider four special cases: Case 1: k1 > 0 and
k2 = 1; case 2: k1 = 1 and k2 > 0; case 3: k1 > 0 and k2 = 2;
and case 4: k1 = 2 and k2 > 0. Main results are listed in
Table I. Note that if one of memory indices k1 and k2 is
more than 1, the corresponding case leads to non-Markovian
dynamics. If both k1 and k2 are equal to 1, this case (i.e., the
Markovian case) has been previously studied [6,39].

From Table I, we observe: (1) the macroscopic mean, the
Fano factor, and the noise intensity for reactive species X
are all independent of the mean of global stochastic reaction
delay; (2) if k1 = k2 = 1, which corresponds to the Markovian
case, our results reproduce previous results; (3) similar to the
common birth-death process, the Fano factor is independent of
the ratio of the mean transcription rate over the mean degra-
dation rate for cases 1 and 2, but depends on stoichiometries
m and n.

Next, we perform numerical calculations. Numerical re-
sults are demonstrated in Fig. 2, where Fig. 2(a) shows the
dependence of the X Fano factor on memory index k1 for
two different yet fixed values of memory index k2 whereas
Fig. 2(b) shows the dependence of the Fano factor on k2 for
two different values of k1. From Fig. 2(a), we observe that
the Fano factor is a monotonically decreasing function of
memory index k1, but the larger the k2 is, the more remarkable
is the reduction degree. Similarly, the Fano factor is also a
monotonically decreasing function of memory index k2, but
the larger the k1 is, the more remarkable is the reduction
degree. Since the Fano factor can be a sign of whether or not
a signal is amplified (specifically, a signal is amplified if its
Fano factor is more than 1 and reduced if the Fano factor is
less than 1), Figs. 2(a) and 2(b) imply that a larger number of
reaction steps in the birth (or death) process reduces a signal

more, in agreement with intuition. From Fig. 2(b), we observe
a particularly interesting fact: for a fixed value of k1, the Fano
factor is always larger than 1, whatever the value of k2 � 1.

Figures 2(c) or 2(d) demonstrate the dependence of the X
noise (quantified by ηX ) on memory index k1 or k2. From
Fig. 2(c), we observe that ηX is a monotonically increas-
ing function of k1, and moreover, the greater the k2 is, the
more remarkable is the increasing degree. This implies that a
multistep birth process always enlarges the X noise but this
amplification will be decreased with increasing the number

FIG. 2. Effects of the number of reaction steps on the gene ex-
pression noise in the generalized birth-death process: (a) dependence
of the X Fano factor (Fano) on k1 for fixed k2 = 1 (line with stars)
and k2 = 2 (line with circles), respectively; (b) dependence of the
X Fano factor on k2 for fixed k1 = 1 (line with stars) and k1 = 2
(line with circles), respectively. The other parameter values are set
as μ = 10−6 (mol/s), δ = 106 (s−1), τg = 3 (s), m = 4, n = 2, and
� = 10−15 (liter).
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of reaction steps in the death process. Similarly, ηX is a
monotonically decreasing function of memory index k1, but
the decreasing degree does not apparently depend on the value
of k1 [Fig. 2(d)]. This hints that the X noise always reduces
with increasing the number of reaction steps in the death stage
but the number of reaction steps in the birth process does not
impact this reduction remarkably.

In summary, molecular memory is an un-neglectable factor
for affecting the Fano factor and the noise in the birth-death
process: It can not only amplify a signal in its propagation
process but can also reduce its noise. This property would
be utilized by cells or living organisms survived in complex
environments.

B. Zero-order sensitivity and fluctuation size: Analysis
of a generalized modification-demodification system

Two-component switching systems can find their proto-
types in many scientific fields, e.g., genetic toggle-switch
networks in the biological field. Such a kind of systems
can model the cross repression between the determinants
of different cellular states, which can result in a definite
choice between two outcomes [46–48]. Conventional models
of genetic toggle switch consider exponential waiting-time
distributions. However, the expression of a gene in general
involves a multistep process. Indeed, transcriptional repressor
monomer (X1 or X2) binds first to dimers and then to specific
DNA sequences near the promoter, repressing the produc-
tion of transcriptional repressor monomer (X2 or X1). This
multistep process can lead to nonexponential waiting times,
creating a memory between individual reaction events.

Another similar example is a generalized modification-
demodification system. As pointed out by Goldbeter and
Koshland [49], the extent of modification in certain enzymat-
ically catalyzed modification-demodification reactions can be
ultrasensitive to the amount of either the modifying or the
demodifying enzyme. It was also shown that such a system
can display large fluctuations, which will tend to attenuate the
macroscopically predicted ultrasensitivity [50]. We exemplify
this by treating the case with a protein that is converted from
its unmodified state X1 to its modified state X2 by one enzyme
and back to X1 from X2 by another, where the converting pro-
cesses would be multistep. With a constant total concentration
ϕ0 of modified and unmodified target concentrations, the state
of the system is completely described by the concentration ϕ1

of X1 or by the concentration ϕ2 of X2 due to the conservation
condition: ϕ0 = ϕ1 + ϕ2.

The above examples or other similar systems can be unit-
edly treated as the following generalized model of toggle
switch with two reactions:

X1
α

(r)
1 (t ;ϕ)−−−−→ X2, X2

α
(r)
2 (t ;ϕ)−−−−→ X1, ϕ = (ϕ1, ϕ2)T. (15)

We assume that α
(r)
1 (t ; ϕ) = t k1−1e−μϕ1t

�(k1 ) (μϕ1)k1 and

α
(r)
2 (t ; ϕ) = t k2−1e−δϕ2t

�(k2 ) (δϕ2)k2 with k1 and k2 being positive
numbers (remark: k1 and k2 may be two positive real numbers
in theory). According to Eq. (4), it is not difficult to show that

two effective transition rates are, respectively, given by

W1(ϕ) =
(μϕ1)k1

∑k2−1
i=0

(k1 + i − 1
i

) (δϕ2 )i

(μϕ1+δϕ2 )k1+i

τg + ∑k1−1
i=0

∑k2−1
j=0

(i + j
i

) (μϕ1 )i (δϕ2 ) j

(μϕ1+δϕ2 )i+ j+1

,

W2(ϕ) =
(δϕ2)k2

∑k1−1
i=0

(k2 + i − 1
i

) (μϕ1 )i

(μϕ1+δϕ2 )k2+i

τg + ∑k1−1
i=0

∑k2−1
j=0

(i + j
i

) (μϕ1 )i (δϕ2 ) j

(μϕ1+δϕ2 )i+ j+1

. (16)

The deterministic equation takes the form dϕ1/dt =
−W1(ϕ) + W2(ϕ), where ϕ1 = ϕ0 − ϕ2 with ϕ0 being a pos-
itive constant. From A� + �AT + �BBT = 0, we can obtain

�11 = �

2

W1(ϕ̃) + W2(ϕ̃)

∂ϕ1W1(ϕ̃) − ∂ϕ1W2(ϕ̃)
,

�22 = �

2

W1(ϕ̃) + W2(ϕ̃)

∂ϕ2W2(ϕ̃) − ∂ϕ2W1(ϕ̃)
,

where ϕ̃ is the macroscopic steady state of the system. The
noise intensity for X2 is then given by

η2 = 1

2�ϕ̃2
2

W1(ϕ̃) + W2(ϕ̃)

−∂ϕ1W2(ϕ̃) + ∂ϕ1W1(ϕ̃)
. (17)

For clarity, we consider the following two special cases:
Case 1: k1 > 0 and k2 = 1.
If the steady state is denoted by ϕ̃ = (ϕ̃1, ϕ̃2)T, then we

have (seeing Appendix D for derivation)

ϕ̃1 = ϕ0

(21/k1 − 1)μ̃ + 1
, ϕ̃2 = (21/k1 − 1)μ̃ϕ0

(21/k1 − 1)μ̃ + 1
, (18)

where μ̃ = μ/δ. We can show that the noise intensity is given
by

η2 = 1

2�ϕ̃2
2

W1(ϕ̃) + W2(ϕ̃)

∂ϕ1W1(ϕ̃) − ∂ϕ1W2(ϕ̃)

= 1

2k1�μ̃ϕ0

1

(21/k1 − 1)(1 − 2−1/k1 )
, (19)

which is apparently independent of stochastic delay.
Case 2: k1 = 1 and k2 > 0.
The steady state is determined by (μ̃ϕ̃1)

[((μ̃ − 1)ϕ̃1 + ϕ0)k2 − (ϕ0 − ϕ̃1)k2 ] = (μ̃ϕ̃1)(ϕ0 − ϕ̃1)k2 ,
which gives

ϕ̃2 = μ̃ϕ0

21/k2 − 1 + μ̃
. (20)

The X2 noise intensity is given by (also seeing
Appendix D)

η2 = 1

2�ϕ̃2
2

W1(ϕ̃) + W2(ϕ̃)

∂ϕ1W1(ϕ̃) − ∂ϕ1W2(ϕ̃)

= 1

2k2�μ̃ϕ0

21/k2 − 1 + μ̃

[(μ̃ − 1)2−1/k2 + 1]
, (21)

which is also independent of stochastic reaction delay.
Next, we carry out numerical simulations with results

shown Fig. 3, where Figs. 3(a) and 3(b) demonstrate how the
mean concentration of the X2 reactive species, ϕ̃2, depends
on memory index k1 for a fixed value of k2 and on k2 for a
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FIG. 3. Effects of the number of reaction steps on properties
of the modification-demodification system (one-component system):
(a) dependence of average concentration ϕ̃2 (unit: molar) on k1 for
fixed k2 = 1; (b) dependence of ϕ̃2 on k2 for fixed k1 = 1; (c) depen-
dence of the X2 Fano factor on k1 for fixed k2 = 1; (d) dependence of
the X2 Fano factor on k2 for fixed k1 = 1; (e) dependence of the X2

noise on k1 for fixed k2 = 1; (d) dependence of the X2 noise on k2 for
fixed k1 = 1. The other parameter values are set as μ = 0.1 (mol/s),
δ = 0.05 (mol/s), τg = 3 (s), (the total concentration) ϕ0 = 10−5

(mol), and � = 10−15 (liter). We point out that the case of k1 < 1
or k2 < 1 in (c)–(f) is not shown since the noise intensity or the Fano
factor is very small when the memory index is less than 1.

fixed value of k1, respectively. We observe that when the total
concentration of X1 and X2 is fixed, ϕ̃2 first changes slowly and
then drops down sharply and finally tends to a small value with
increasing k1. The change tendency in the k2 case is contrary
to that in the k1 case. These two diagrams imply that molecular
memory can induce (zero-order) ultrasensitivity of reactive
species by remarkably changing their concentrations.

Figures 3(c) and 3(d) show how the X2 Fano factor depends
on memory indexes k1 and k2, respectively. We observe that
this factor is a monotonically increasing (decreasing) function
of k1 (k2), implying that k1 amplifies the X2 signal, whereas k2

reduces the X2 signal. Similar change tendency holds for the
X2 noise.

Numerical results shown in Fig. 3 imply that for the
modification-demodification system with a conservative total
concentration, molecular memory can induce ultrasensitivity
of a reactive species, and enlarge or reduce the noise in the
species, depending on the source of molecular memory. This
property would also be utilized by cells or living organisms
survived in changing environments.

IV. DISCUSSION

We have extended the LNAs in Markovian reaction cases
to the gLNAs (or the gFDTs) in non-Markovian reaction cases
(i.e., the above gFDT theorem). This extension can be conve-
niently used in the fast evaluation of stationary fluctuations
in the concentrations of reactive species in general reaction
networks with arbitrary reaction waiting-time distributions. In
particular, it can provide insights into how molecular memory

fine-tunes the noise in reactive species of interest in the com-
plex non-Markovian reaction networks, as shown in the above.
We believe that like the common LNA, the gLNA or the gFDT
can also have broad applications although we analyzed only
two examples in this paper.

Tracing sources of noise in the output of a reaction network
is an interesting topic. This involves the question of their
different contributions, e.g., how does the noise from each
reaction in the network, including the noise generated due to
the distributed reaction waiting times, differently contribute
to the total noise or the output noise? From the gFDT de-
rived above, we can also give the noise composition principle
mainly because the effect of molecular memory has been
explicitly incorporated in the effective transition rates. For
clarity, let us consider the above birth-death process in the
case of m = n = 1 and k1 > 0, k2 = 1. In this case, we can
show that the noise intensity is given by

ηX = δ

�μ

1/(2k1)

(21/k1 − 1)(1 − 2−1/k1 )
, (22)

where δ/(�μ) represents the noise intensity in the Markovian
reaction case, and factor (1/(2k1))/[(21/k1 − 1)(1 − 2−1/k1 )]
appears due to the introduction of nonexponential waiting-
time distribution for the synthetic reaction. In other words,
molecular memory impacts the output noise in a nonlinear
manner. This qualitative result seems universal.

Recall that Franzke and Kosko’s Markov chain noise ben-
efit theorem (MCNBT) showed that for a Markovian reaction
system, intermediate noise levels—similarly to a stochastic
resonance effect—can speed up the convergence of the sys-
tem to a steady state [51,52]. However, for non-Markovian
reaction systems, the MCNBT would not hold. For this, let
us still consider the previous non-Markovian birth-death pro-
cess of m = n = 1. We can show that the effect of molecular
memory is equivalent to the introduction of feedback. In fact,
if α1(t, x) = [(μt )k1−1/�(k1)]e−μt , where μ is the average
production rate and k1 a positive integer (modeling the step
number of a multistep process and representing the mem-
ory strength), and α2(t ; x) = xδe−xδ , where δ is the average
decay rate and x the molecular number of reactive species
X , the effect of molecular memory is equivalent to the ef-
fect of a negative feedback. In fact, according to Eq. (4)
above, we can have W1(x) = xδμk1/[(μ + xδ)k1 − μk1 ] and
W2(x) = xδ. To see clearly the effect of molecular mem-
ory, we set k1 = 2. Then, W1(x) = μ/(2μ + xδ), indicating
that the equivalent Markovian reaction system has a nega-
tive feedback. Completely similarly, if α1(t, x) = μe−μt and
α2(t, x) = [(xδt )k2−1/�(k2)]e−xδt , where k2 is a positive in-
teger, we can show that the effect of molecular memory
is equivalent to that of a positive feedback. On the other
hand, it is well known that negative feedback reduces the
noise whereas positive feedback amplifies the noise. Thus,
properties of the equivalent reaction network depend on the
settings of waiting-time distributions. We then conclude that
for non-Markovian reaction systems, the MCNBT depends on
waiting-time distributions.

Finally, we point out that the derived-above gFDT for a
general reaction network is based on the assumption that
inter-reaction waiting times are reset. From the viewpoint
of CTRW, this resetting corresponds to the so-called active
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CTRW [53]. However, there is another kind of CTRW where
waiting times cannot be reset, e.g., those in the sense of
queuing theory [54]. Which kind of waiting time is used, the
more reasonable modeling of biochemical reaction networks
is unclear. And, the relationship between the two classes of
waiting times has not been established yet. In addition, Jia
and Kulkarni studied a queuing model of stochastic gene
expression and derived an estimate for the noise in steady-
state protein distributions [55], and Pedraza and Paulson [7]
analyzed another queuing model of stochastic gene expression
and presented another estimate for the expression noise, which
formulates the variance in protein abundance in terms of the
randomness of the individual gene expression events. In spite
of these, the question of how the gFDT is established for
queuing models of biochemical reaction networks is an issue
worth exploring.
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APPENDIX A: DERIVATION OF EFFECTIVE
TRANSITION RATES

Denote by κ̄i(s, x; �) the Laplace transform of κi(t, x; �)
in the main text. According to the property of Laplace trans-
form, we have κ̄i(s, x; �) = κ̄

(r)
i (s, x; �)κ̄ (d )

i (s, x; �).
According to the definition of M̄ j (x; �) in the main text,

we have

M̄ j (s, x; �) = sκ̄ j (s, x; �)

1 − ∑L
j=1 κ̄ j (s, x; �)

= sκ̄ (d )
j (s, x; �)κ̄ (r)

j (s, x; �)

1 − ∑L
j=1 κ̄

(d )
j (s, x; �)κ̄ (r)

j (s, x; �)

= s
∫ ∞

0 e−stκ
(d )
j (t, x; �)dt

∫ ∞
0 e−stκ

(r)
j (t, x; �)dt

1 − ∑L
j=1

∫ ∞
0 e−stκ

(d )
j (t, x; �)dt

∫ ∞
0 e−stκ

(r)
j (t, x; �)dt

.

Note that

d

ds

{
1 −

L∑
j=1

∫ ∞

0
e−stκ

(d )
j (t, x; �)dt

∫ ∞

0
e−stκ

(r)
j (t, x; �)dt

}

= s
L∑

j=1

∫ ∞

0
te−stκ

(d )
j (t, x; �)dt

∫ ∞

0
e−stκ

(r)
j (t, x; �)dt

+ s
L∑

j=1

∫ ∞

0
e−stκ

(d )
j (t, x; �)dt

∫ ∞

0
te−stκ

(r)
j (t, x; �)dt .

By L’Hospital rule, we have

Wi(x; �) = lim
τ→0

M̄ j (τ, x; �)

=
∫ ∞

0 κ
(d )
j (t, x; �)dt

∫ ∞
0 κ

(r)
j (t, x; �)dt∑L

j=1

〈
τ

(d )
j

〉 ∫ ∞
0 κ

(r)
j (t, x; �)dt + ∑L

j=1

∫ ∞
0 κ

(d )
j (t, x; �)dt

∫ ∞
0 tκ (r)

j (t, x; �)dt
,

where 〈τ (d )
j 〉 = ∫ ∞

0 tκ (d )
j (t, x; �)dt . Note that

∫ ∞
0 κ

(d )
j (t, x; �)dt ≡ 1 and

L∑
j=1

∫ ∞

0
κ

(d )
j (t, x; �)dt

∫ ∞

0
tκ (r)

j (t, x; �)dt

=
L∑

j=1

∫ ∞

0
tα(r)

j (t, x; �)
∏
i �= j

∫ +∞

t
α

(r)
i (t ′, x; �)dt ′dt

= −
∫ +∞

0
t

[
d

dt

L∏
j=1

∫ +∞

t
α

(r)
i (t ′, x; �)dt ′

]
dt =

∫ +∞

0

L∏
j=1

∫ +∞

t
α

(r)
i (t ′, x; �)dt ′dt .

Thus, we obtain

Wi(x; �) =
∫ ∞

0 κ
(r)
j (t, x; �)dt∑L

j=1

〈
τ

(d )
j

〉 ∫ ∞
0 κ

(r)
j (t, x; �)dt + ∫ +∞

0

∏L
j=1

∫ +∞
t α

(r)
i (t ′, x; �)dt ′dt

. (A1)
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According to the definition of function Wj (ϕ), i.e.,
Wj (ϕ) = lim�→∞ Wj (x; �), and note the fact that∑L

j=1

∫ ∞
0 κ

(r)
j (t, x; �)dt = 1, we finally obtain Eq. (4) in

the main text.

APPENDIX B: PROOF OF THE GENERALIZED
FLUCTUATION THEOREM

In general, we can write X = �x + �1/2ξ, where ξ is a
vector of random variables. Under this transform, the original
stationary PDF, P(X ) becomes a new PDF, denoted by �(ξ).
Then, we perform the following � expansions: (I) expand
function Wj (x; �) into

Wj (x; �) = Wj (ϕ + �−1/2ξ)

= Wj (ϕ) + �−1/2
N∑

i=1

ξi
∂Wj (ϕ)

∂xi
+ O(�−1) (B1)

(II) For the step operator in the stationary gCME, i.e.,
Eq. (7) in the main text, we in general have the approximation

Eβ f (x) = f (x + �−1/2(ξ + �−1/2β ))

=
[
1+ �−1/2β

∂

∂ξ
+ �−1/2β2

2

∂2

∂ξ∂ξ
+ O(�−3/2)

]
f (x),

(B2)

where β is a real number. For jumps in multiple dimensions,
we have

N∑
i=1

E−Si j − I = −�−1/2
N∑

i=1

Si j
∂

∂ξi

+ 1

2
�−1

N∑
i,k=1

Si jSk j
∂2

∂ξi∂ξk
+ O(�−3/2).

(B3)

Inserting Eqs. (B1)–(B3) into Eq. (7) in the main text yields

0 = −�−1/2
L∑

j=1

N∑
i=1

Si jWj (ϕ)
∂�(ξ)

∂ξi

+ �−1
L∑

j=1

[
1

2

N∑
i,k=1

Si jSk jWj (ϕ)
∂2�(ξ)

∂ξi∂ξk

−
N∑

i=1

N∑
�=1

Si j
∂Wj (ϕ)

∂x�

∂ (ξ��(ξ))

∂ξi

]
+ O(�−3/2).

Identifying the term of order �−1/2 gives

L∑
j=1

N∑
i=1

Si jWj (ϕ)
∂�(ξ)

∂ξi
= 0, (B4)

which naturally holds due to Eq. (8) in the main text. Identi-
fying the term of order �−1 yields

1

2

L∑
j=1

N∑
i,k=1

Si jSk jWj (ϕ)
∂2�(ξ)

∂ξi∂ξk

−
L∑

j=1

N∑
i=1

N∑
�=1

Si j
∂Wj (ϕ)

∂x�

∂ (ξ��(ξ))

∂ξi
= 0,

which can be further rewritten as

−
N∑

i, j=1

Ai j
∂[ξ j�(z)]

∂ξi
+ 1

2

N∑
i, j=1

[BBT]i j
∂2�(z)

∂ξi∂ξ j
= 0, (B5a)

where

Ai j =
L∑

k=1

Sik
∂Wk (ϕ)

∂ϕ j
= ∂[SiW (ϕ)]

∂ϕ j
, (B5b)

[BBT]i j =
L∑

k=1

SikS jkWk (ϕ)

= [STdiag(W1(ϕ), . . . ,WL(ϕ))S]i j . (B5c)

Note that Eq. (B5a) is a stationary linear Fokker-Plank
equation [56] with coefficient matrices A and BBT that will be
assumed to be evaluated in the macroscopic stationary state ϕ̄.
The stationary solution of the linear Fokker-Planck equation,
i.e., Eq. (B5a), is a multidimensional normal distribution of
the following form [54,57]:

�(ξ) = 1√
(2π )N det (�)

exp

(
−1

2
ξT�−1ξ

)
, (B6)

where det(�) represents the determinant of matrix � = ξξT.
This distribution has the zero average vector and the co-
variance matrix � = ξξT that follows a Lyapunov equation
of the form A�+�AT+BBT = 0. Note that the correlation
matrix of the stationary process is given by ξ(t )ξT(s) =
�e|t−s|A. Using the relation of X= �ϕ+�1/2ξ, we know
that the covariance matrix C =〈(X − 〈X〉)(X − 〈X〉)T〉 =
〈
X · 
XT〉 is given by C = ��. Thus, the algebraic equa-
tion A�+�AT+BBT = 0 can be rewritten as Eq. (10) in the
main text. Matrices A and BBT are evaluated in the macro-
scopic stationary state and hence constant matrices, so we can
obtain the expressions for the variances of individual reactive
species (i.e., for the diagonal elements of matrix C). If the
noise intensity is defined as the ratio of the variance over the
squared mean, we can further obtain the formal expression of
the noise intensity for each individual reactive species, i.e.,
Eq. (11) in the main text. The above generalized fluctuation
theorem provides a fast evaluation for stochastic fluctuations
in individual reactive species in a reaction network. Here, we
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emphasize that the above generalized fluctuation theorem is
derived in the non-Markovian case and although similar in the
form, it is different from the traditional linear noise approxi-
mation since functions Wk (ϕ) (1 � k � N) in the former have
incorporated the effects of molecular memory.

APPENDIX C: DERIVATION OF THE NOISE
IN THE BIRTH-DEATH PROCESS

In the following, we assume that all stochastic reaction
delays 〈τ (d )

j 〉 are equal, and denote by τg the mean of the
common stochastic reaction delay.

Case 1: k1 > 0 and k2 = 1.

In this case, we can show that two effective transition rates are given by

W1(ϕ) = μk1δϕn

(μ + δϕn)k1 − μk1 + τgδϕn(μ + δϕn)k1
and W2(ϕ) = (δϕn)[(μ + δϕn)k1 − μk1 ]

(μ + δϕn)k1 − μk1 + τgδϕn(μ + δϕn)k1
.

The steady state ϕ̃, determined by solving algebraic equation mW1(ϕ̃) = nW2(ϕ̃), is given by

(μ + δϕ̃n)k1 = m + n

n
μk1 , or ϕ̃ =

{[(m + n

n

)1/k1

− 1

]
μ̃

}1/n

, (C1)

indicating that the mean global delay does not impact the steady state, where μ̃ = μ/δ. Note that

W ′
1(ϕ̃)

nδϕ̃n−1
= n

m + τg(m + n)δϕ̃n
− n(m + n)δϕ̃n[k1 + τg(k1δϕ̃

n + μ + δϕ̃n)]

(μ + δϕ̃n)[m + τg(m + n)δϕ̃n]2 .

and

W ′
2(ϕ̃)

nδϕ̃n−1
=

m + k1(m + n)
(

δϕ̃n

μ+δϕ̃n

)
m + τg(m + n)δϕ̃n

− m(m + n)(δϕ̃n)[k1 + τg(k1δϕ̃
n + μ + δϕ̃n)]

(μ + δϕ̃n)[m + τg(m + n)δϕ̃n]2 .

Thus,

−mW ′
1(ϕ̃)

nδϕ̃n−1
+ nW ′

2(ϕ̃)

nδϕ̃n−1
=

k1n(m + n)
(

δϕ̃n

μ+δϕ̃n

)
m + τg(m + n)δϕ̃n

. (C2)

Also note that W1(ϕ̃) = nδϕ̃n

m+τg(m+n)δϕ̃n and W2(ϕ̃) = m(δϕ̃n )
m+τg(m+n)δϕ̃n . Therefore,

m2W1(ϕ̃) + n2W2(ϕ̃) = mn(m + n)δϕ̃n

m + τg(m + n)δϕ̃n
. (C3)

According to Eq. (14a) in the main text, we thus obtain the analytical expression for the X noise:

ηX = mμ̃

2k1�nϕ̃n+1

(m + n

n

)1/k1

= 1

2k1�ϕ̃

m

n

(m + n)1/k1

(m + n)1/k1 − n1/k1
, (C4)

which is independent of stochastic delay.

Case 2: k1 = 1 and k2 > 0.

In this case, two effective transition rates are W1(ϕ) = μ[(μ+δϕn )k2 −(δϕn )k2 ]
(μ+δϕn )k2 −(δϕn )k2 +τgμ(μ+δϕn )k2

and W2(ϕ) = μ(δϕn )k2

(μ+δϕn )k2 −(δϕn )k2 +τgμ(μ+δϕn )k2
.

The steady state is determined by the equation (μ + δϕ̃n)k2 = m+n
m (δϕ̃n)k2 or ϕ̃ = [ μ̃m1/k2

(m+n)1/k2 −m1/k2
]
1/n

. Note that W1(ϕ̃) =
nμ

n+τgμ(m+n) and W2(ϕ̃) = mμ

n+τgμ(m+n) . Therefore,

m2W1(ϕ̃) + n2W2(ϕ̃) = mn(m + n)μ

n + τgμ(m + n)
. (C5)

Also note that

W ′
1(ϕ̃)

nδϕ̃n−1
= 1

(μ + δϕ̃n)

k2μ
[
m + n − m μ+δϕ̃n

δϕ̃n

]
n+τgμ(m + n)

−
k2μn

[
m + n − m μ+δϕ̃n

δϕ̃n +τgμ(m + n)
]

(μ + δϕ̃n)[n+τgμ(m + n)]2 ,
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and

W ′
2(ϕ̃)

nδϕ̃n−1
= mk2μ(δϕ̃n)−1

n + τgμ(m + n)
−

k2μm
[
m + n − m μ+δϕ̃n

δϕ̃n + τgμ(m + n)
]

(μ + δϕ̃n)[n + τgμ(m + n)]2 .

Thus,

−mW ′
1(ϕ̃)

nδϕ̃n−1
+ nW ′

2(ϕ̃)

nδϕ̃n−1
=

m(m + n)k2μ(δϕ̃n)−1 − k2μm m+n
μ+δϕ̃n

n + τgμ(m + n)
. (C6)

According to Eq. (14a) in the main text, the X noise is then given by

ηX = 1

2k2�ϕ̃

(m + n)1/k2

(m + n)1/k2 − m1/k2
, (C7)

which is independent of stochastic reaction delay.

APPENDIX D: DERIVATION OF THE NOISE IN THE MODIFICATION-DEMODIFICATION SYSTEM

In the following, we assume that all stochastic reaction delays 〈τ (d )
j 〉 are equal, and denote by τg the mean of the common

stochastic reaction delay.

Case 1: k1 > 0 and k2 = 1. In this case, two effective transition rates are

W1(ϕ) = δ(μ̃ϕ1)k1 (ϕ0 − ϕ1){
[(μ̃ − 1)ϕ1 + ϕ0]k1 − (μ̃ϕ1)k1

} + δτg(ϕ0 − ϕ1)[(μ̃ − 1)ϕ1 + ϕ0]k1
,

W2(ϕ) = δ(ϕ0 − ϕ1)
[
[(μ̃ − 1)ϕ1 + ϕ0]k1 − (μ̃ϕ1)k1

]
{
[(μ̃ − 1)ϕ1 + ϕ0]k1 − (μ̃ϕ1)k1

} + δτg(ϕ0 − ϕ1)[(μ̃ − 1)ϕ1 + ϕ0]k1
.

If steady state is denoted by ϕ̃ = (ϕ̃1, ϕ̃2)T, then we have

(μϕ̃1 + δϕ̃2)k1 = 2(μϕ̃1)k1 , or ϕ̃2 = (21/k1 − 1)μ̃ϕ0

(21/k1 − 1)μ̃ + 1
. (D1)

By calculation, we can obtain

W1(ϕ̃) + W2(ϕ̃) = 2

I
(μ̃ϕ1)k1 (ϕ0 − ϕ1)|

ϕ1=ϕ̃1
, (D2)

where I = (1/δ){[(μ̃ − 1)ϕ1 + ϕ0]k1 − (μ̃ϕ1)k1} + τg(ϕ0 − ϕ1)[(μ̃ − 1)ϕ1 + ϕ0]k1 . Similarly,

−∂ϕ1W2(ϕ̃) + ∂ϕ1W1(ϕ̃) = 2k1

I
(21/k1 − 1)(μ̃ϕ1)k1 [μ̃ − (μ̃ − 1)2−1/k1 ]|

ϕ1=ϕ̃1
.

Therefore, the X2 noise intensity is given by

η2 = 1

2�ϕ̃2
2

W1(ϕ̃) + W2(ϕ̃)

∂ϕ1W1(ϕ̃) − ∂ϕ1W2(ϕ̃)
= 1

2k1�μ̃ϕ0

1

(21/k1 − 1)(1 − 2−1/k1 )
. (D3)

which is independent of stochastic reaction delay.

Case 2: k1 = 1 and k2 > 0. In this case, two effective transition rates are

W1(ϕ) = δ(μ̃ϕ1)[[(μ̃ − 1)ϕ1 + ϕ0]k2 − (ϕ0 − ϕ1)k2 ]

{[(μ̃ − 1)ϕ1 + ϕ0]k2 − (ϕ0 − ϕ1)k2} + δτgμ̃ϕ1[(μ̃ − 1)ϕ1 + ϕ0]k2
,

W2(ϕ) = δ(μ̃ϕ1)(ϕ0 − ϕ1)k2

{[(μ̃ − 1)ϕ1 + ϕ0]k2 − (ϕ0 − ϕ1)k2} + δτgμ̃ϕ1[(μ̃ − 1)ϕ1 + ϕ0]k2
,

where μ̃ = μ/δ. The steady state is determined by solving the algebraic equation

(μ̃ϕ̃1)[((μ̃ − 1)ϕ̃1 + ϕ0)k2 − (ϕ0 − ϕ̃1)k2 ] = (μ̃ϕ̃1)(ϕ0 − ϕ̃1)k2 ,

which gives

(μ̃ − 1)ϕ̃1 + ϕ0 = 21/k2 (ϕ0 − ϕ̃1), or ϕ̃2 = μ̃ϕ0

21/k2 − 1 + μ̃
(D4)
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By calculation, we have

W1(ϕ̃) + W2(ϕ̃) = (2μ̃ϕ1)(ϕ0 − ϕ1)k2

I
|ϕ1=ϕ̃1 , (D5)

where I = {[(μ̃ − 1)ϕ̃1 + ϕ0]k2 − (ϕ0 − ϕ̃1)k2} + τgμ̃ϕ̃1[(μ̃ − 1)ϕ̃1 + ϕ0]k2 . Similarly, we have

−∂ϕ1W2(ϕ̃) + ∂ϕ1W1(ϕ̃) = 1

I
{2k2(μ̃ϕ1)(ϕ0 − ϕ1)k2−1[(μ̃ − 1)2−1/k2 + 1]}|ϕ1=ϕ̃1

. (D6)

Therefore, the X2 noise intensity is given by

η2 = 1

2�ϕ̃2
2

W1(ϕ̃) + W2(ϕ̃)

∂ϕ1W1(ϕ̃) − ∂ϕ1W2(ϕ̃)
= 1

2k2�μ̃ϕ0

21/k2 − 1 + μ̃

[(μ̃ − 1)2−1/k2 + 1]
, (D7)

which is apparently independent of stochastic reaction delay.
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