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at proximal axodendritic synapses
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The lateral diffusion and trapping of neurotransmitter receptors within the postsynaptic membrane of a neuron
play a key role in determining synaptic strength and plasticity. Trapping is mediated by the reversible binding
of receptors to scaffolding proteins (slots) within a synapse. In this paper we introduce a method for analyzing
the transient dynamics of proximal axodendritic synapses in a diffusion-trapping model of receptor trafficking.
Given a population of spatially distributed synapses, each of which has a fixed number of slots, we calculate
the rate of relaxation to the steady-state distribution of bound slots (synaptic weights) in terms of a set of local
accumulation times. Assuming that the rates of exocytosis and endocytosis are sufficiently slow, we show that
the steady-state synaptic weights are independent of each other (purely local). On the other hand, the local
accumulation time of a given synapse depends on the number of slots and the spatial location of all the synapses,
indicating a form of transient heterosynaptic plasticity. This suggests that local accumulation time measurements
could provide useful information regarding the distribution of synaptic weights within a dendrite.
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I. INTRODUCTION

The lateral diffusion and trapping of neurotransmitter re-
ceptors within the postsynaptic membrane of a neuron plays a
key role in mediating synaptic strength and plasticity [1–16].
The two most studied examples are glycine receptors (GlyRs)
and α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid
receptors (AMPARs), although diffusion trapping appears to
be a general mechanism for most types of neurotransmitter
receptors. GlyRs are ligand-gated ion channels that mediate
chloride-dependent synaptic inhibition and are found in the
postsynaptic membrane of the soma and initial portion of den-
drites in spinal cord neurons. Single particle tracking (SPT)
experiments have shown that GlyRs alternate between diffu-
sive and confined states at the cell surface, and confinement
is spatially associated with postsynaptic densities (PSDs) that
contain the scaffolding protein gephyrin [1,3]. The majority
of fast excitatory synaptic transmission in the central nervous
system is mediated by the neurotransmitter glutamate binding
to AMPARs located in the postsynaptic membrane of den-
dritic spines. Again SPT experiments reveal that AMPARs
diffuse freely within the dendritic membrane until they enter
a spine, where they are temporarily confined by the geometry
of the spine and through interactions with scaffolding proteins
such as PSD-95 and cytoskeletal elements within the PSD
[2,6]. A surface receptor in either type of synapse may also be
internalized via endocytosis and stored within an intracellular
compartment, where it is either recycled to the surface via
recycling endosomes and exocytosis or sorted for degradation
by late endosomes and lysosomes [17].

A number of models have explored the combined effects
of diffusion trapping and recycling on the number of synaptic
AMPARs within dendritic spines [18–23]. In such models, the

synapse is treated as a self-organizing compartment in which
the number of receptors is a dynamic steady state that deter-
mines the strength of the synapse; activity-dependent changes
in the strength of the synapse then correspond to shifts in
the dynamical set point. Most diffusion-trapping models as-
sume that the number of trapping sites or “slots” within a
given synapse is fixed. However, it is known that scaffolding
proteins and other synaptic components are also transported
into and out of a synapse, albeit at slower rates [24]. Several
experimental and modeling studies have analyzed the joint
localization of gephyrin scaffolding proteins and GlyRs at
synapses [25–29], showing how stable receptor-scaffold do-
mains could arise dynamically.

In this paper we analyze a diffusion-trapping model of
receptor trafficking in the case of a population of spatially dis-
tributed axodendritic synapses that are proximal to the soma
and that have a fixed number of slots. We use the model to
investigate how the spatial locations of the synapses and the
distribution of slot proteins affect (i) the steady-state number
of bound receptors in each synapse (synaptic weights) and (ii)
the approach to steady state as determined by a set of local
accumulation times. The latter provide a method for char-
acterizing the transient response of synapses. Accumulation
times were originally used to estimate the time to form a
protein concentration gradient during morphogenesis [30–32].
More recently, they have been applied to a wider range of
diffusion processes, including intracellular protein gradient
formation [33], search processes with stochastic resetting
[34], and gap junctions [35]. The underlying idea is to treat
the fractional deviation from the steady-state concentration as
a cumulative distribution whose mean is identified with the
local accumulation time. One can thus take into account the
fact that different spatial regions can relax at different rates.
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(This contrasts with a global measure of the relaxation rate
based on the principal nonzero eigenvalue of the Laplacian.)
In addition, for linear diffusion problems, the accumulation
times can be calculated by solving the diffusion equation in
Laplace space, which avoids the difficulty in obtaining the
full time-dependent solution by evaluating the inverse Laplace
transform [36].

In order to introduce the basic approach, we focus on a
simplified one-dimensional (1D) model of a dendritic cable, in
which the synapses are represented as point sources or sinks
at different spatial locations along the cable. We previously
showed that reducing two-dimensional (2D) lateral diffusion
in the dendritic membrane to 1D diffusion is a reasonable ap-
proximation given the large aspect ratio of dendrites [37]. The
model does ignore the detailed microstructure of a synapse
and the effects of a confining geometry such as the bottle-
neck of a dendritic spine. However, the latter is not an issue
in the case of inhibitory synapses. We first derive a set of
reaction-diffusion (RD) equations for the extrasynaptic re-
ceptor concentration and the fraction of bound slot proteins
in each synapse (Sec. II). We then calculate the steady-state
distributions of extrasynaptic and synaptic receptor concentra-
tions by solving the steady-state RD system in terms of the 1D
Green’s function of the modified Helmholtz equation along
lines analogous to Refs. [18,20,21] (Sec. III). Finally, we ex-
tend the analysis to calculate the corresponding accumulation
times by solving the time-dependent RD equations in Laplace
space (Sec. IV). In this case, it is necessary to linearize the
equations by assuming that the slot proteins are unsaturated.
This is then compared with the more realistic saturated regime
using numerical simulations.

For the sake of illustration, we focus in this paper on simple
configurations of synapses or synaptic clusters, which are
treated as identical, modulo their spatial locations and indi-
vidual slot protein numbers. (A more realistic model would
need to take into account the considerable heterogeneity in
synaptic properties, although one could consider some form
of homogenized version that is more consistent with our
simplified model.) We also interpret the number of bound
receptors as the effective synaptic weight or strength. (There
is a long-standing debate concerning whether or not synaptic
strength is predominately postsynaptic (e.g., number of bound
receptors) or presynaptic (e.g., vesicular release probabili-
ties) [4,5,7]. We assume the former here.) Given our various
assumptions, we obtain the following results. First, for a clus-
ter of closely spaced synapses, the steady-state fraction of
bound receptors in each synapse is the same. This implies
that an increase in the rate of slot binding under some form
of long term potentiation, say, scales all synaptic strengths
by the same factor (multiplicative scaling). An analogous
result was previously found in a nonspatial, compartmental
model [23]. However, multiplicative scaling breaks down for
spatially separated synapses and when synapses are located
sufficiently close to the soma. We then show that, in contrast
to the synaptic weights, the local accumulation times depend
on the distribution of slot proteins across all the synapses.
For both the steady-state solution and accumulation times,
we demonstrate that two different modes of behavior can be
observed, corresponding to small and large exocytosis rates,
respectively.
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FIG. 1. (a) Schematic illustration of a diffusion-trapping model
for a protein receptor by a single inhibitory synapse. The receptor
diffuses freely extrasynaptically but can transiently bind to scaffold-
ing protein slots within the PSD. The PSD thus acts as a trapping
region. Receptors can also be inserted into or removed from the
surface via exocytosis or endocytosis. (b) Schematic illustration of
the 1D diffusion-trapping model. Each synapse is treated as a point
source or sink for receptors that diffuse along a 1D dendritic cable.

II. DIFFUSION-TRAPPING MODEL

In Fig. 1(a) we show a simplified schematic diagram of
a single inhibitory synapse in the plasma membrane of a
neuron. A neurotransmitter receptor diffuses freely in the
extrasynaptic membrane, which means that its mean-square
displacement is proportional to Dt , where t is the elapsed time
in the free state and D is the membrane diffusivity. However,
on entering the PSD it can reversibly bind to a scaffolding or
slot protein, which has the effect of temporarily confining or
trapping the receptor within the PSD. This can be amplified
by molecular crowding within the PSD, which slows the rate
of diffusion, and by geometrical factors such as the narrow
neck of a dendritic spine in the case of an excitatory synapse
[38–41]. Recent imaging studies of the microstructure of the
PSD suggest that there exist PSD microdomains containing
higher densities of scaffolding proteins, where most of the
receptors are stabilized [42,43]; outside of these domains,
receptors tend to diffuse more freely. For simplicity, we ignore
the detailed microstructure of a PSD by treating the PSD as
a homogeneous medium within which a receptor can bind
at a rate that is proportional to the number of slots. We
also allow for receptors to be transferred from the surface
membrane to intracellular compartments via an internalization
process known as endocytosis [17]. Intracellular receptors
can also be inserted into the membrane via exocytosis. Ex-
perimentally, it has been found that sites of exocytosis and
endocytosis exist within the proximity of synapses as well as
various extrasynaptic locations. In our model, we assume that
endocytosis occurs everywhere, whereas exocytosis occurs
(peri)synaptically. However, one could modify these assump-
tions accordingly.
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Following Refs. [18,20,21], we treat the domain � as a 1D
dendritic cable in which the synapses are represented as point
sources or sinks on the cable [see Fig. 1(b)]. This particular
approach exploits the fact that the length of a dendrite is
typically several hundred microns, which is at least two orders
of magnitude greater than the radius of a dendrite and the size
of a synapse. Additionally, we are leveraging the fact that the
Green’s function of the 1D diffusion equation is nonsingular
(in contrast to higher spatial dimensions) so that we avoid
introducing singular solutions when modeling the dendritic
spines as point-like sources or sinks [37].

Suppose that � is a semi-infinite cable with the axial coor-
dinate x ∈ [0,∞); x = 0 denotes the location of the somatic
end of the cable. (Alternatively, we could consider a cable of
length L and simply ignore the effects of the distal boundary
for sufficiently large L.) Let x j , j = 1, . . . , N , denote the
position of the jth spine. The positions are ordered such that
x j < x j+1 for all j = 1, . . . , N − 1. Finally, let u(x, t ) denote
the concentration of receptors per unit length of cable and
Sk and rk (t ) be the number of binding sites and fraction of
bound sites in synapse k, respectively. This RD system is then
defined according to the following system of equations:

∂u

∂t
= D

∂2u

∂x2
− γ u(x, t ) +

N∑
k=1

[Skgk (t )

+ σ − γ̂ u(xk, t )]δ(x − xk ), (2.1a)

drk

dt
= κ+u(xk, t )[1 − rk (t )] − κ−rk (t ) ≡ −gk (t ), (2.1b)

together with the boundary condition −D∂xu(0, t ) = J0 > 0.
The latter represents a constant flux of receptors injected
from the soma. The first term on the right-hand side of
Eq. (2.1a) represents the lateral diffusion of receptors in the
dendritic membrane with diffusivity D, whereas the second
term represents endocytosis of the extrasynaptic receptors at
a uniform rate γ . The sum over k takes into account the
additional sources of freely diffusing receptors within the N
point-like synapses; the latter are represented by the Dirac
delta functions δ(x − xk ), k = 1, . . . , N . The total current in
the kth synapse consists of the sum of three terms: σ is
the exocytosis current into the perisynaptic domain, γ̂ u(xk, t )
is the current due to the endocytosis of unbound synaptic
receptors, and Skgk (t ) is the difference between the unbind-
ing and binding rates associated with the Sk slot proteins.
The fractional rate gk (t ) [see Eq. (2.1b)] is the difference
between the total unbinding rate κ−rk (t ) and the total binding
rate κ+u(xk, t )[1 − rk (t )]. The factor [1 − rk (t )] represents the
fraction of unbound slot proteins at time t . Finally, we impose
the initial conditions

u(x, 0) = 0, r(0) = 0. (2.2)

It is important to note that γ , σ , and κ− have units of
inverse time, whereas γ̂ and κ+ have units of speed. Unfor-
tunately, only a few model parameters are known explicitly
[23]. These include the unbinding rate κ− ∼ 2.5 × 10−2 s−1

[44], the rate of internalization γ ∼ 10−3 − 10−2 s−1 [10],
and the membrane diffusivity D ∼ 0.1 μm2 s−1 [10]. One
general observation, however, is that the basal rates of receptor
binding and unbinding are at least an order of magnitude faster

than the rates of receptor internalization and externalization,
that is, κ± � γ .

In this paper we are interested in calculating the steady-
state solution of Eqs. (2.1) and the corresponding approach
to steady state. We will investigate the latter in terms of the
accumulation times of the RD process. In order to construct
the accumulation time of u(x, t ) to reach the steady-state
u∗(x), consider the function

Z (x, t ) = 1 − u(x, t )

u∗(x)
, (2.3)

which represents the fractional deviation of the concentration
from the steady state. Assuming that there is no overshoot-
ing, 1 − Z (x, t ) is the fraction of the exterior steady-state
concentration that has accumulated at x by time t . It follows
that −∂t Z (x, t )dt is the fraction accumulated in the interval
[t, t + dt]. The accumulation time is then defined as [30–32]

T (x) =
∫ ∞

0
t

(
−∂Z (x, t )

∂t

)
dt =

∫ ∞

0
Z (x, t )dt . (2.4)

Finally, by analogy, we can also define an accumulation time
for the fraction of bound receptors, namely,

τk =
∫ ∞

0
zk (t )dt, zk (t ) = 1 − rk (t )

r∗
k

. (2.5)

It is often more useful to calculate an accumulation time in
Laplace space. First, consider Z (x, t ) in Eq. (2.3). Using the
identity

u∗(x) = lim
t→∞ u(x, t ) = lim

s→0
s̃u(x, s)

and setting F̃ (x, s) = s̃u(x, s) imply that

sZ̃ (x, s) = 1 − F̃ (x, s)

F̃ (x, 0)

and

T (x) = lim
s→0

Z̃ (x, s) = lim
s→0

1

s

[
1 − F̃ (x, s)

F̃ (x, 0)

]
= − 1

F̃ (x, 0)

d

ds
F̃ (x, s)

∣∣∣∣
s=0

. (2.6)

Similarly, setting f̃k (s) = s̃rk (s), we have

τk = − 1

f̃k (0)

d

ds
f̃k (s)

∣∣∣∣
s=0

. (2.7)

III. STEADY-STATE SOLUTION

At steady state we have gk (t ) = 0 for all k = 1, . . . , N .
Hence, the steady-state equations take the form

D
d2u∗(x)

dx2
− γ u∗(x) = −

N∑
k=1

[σ − γ̂ u∗(xk )]δ(x − xk ),

(3.1a)

r∗
k = κ+u∗(xk )

κ− + κ+u∗(xk )
, (3.1b)

and du∗/dx = −J0/D at x = 0. Equation (3.1a) can be solved
in terms of the 1D Neumann Green’s function G(x, ξ ) on
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[0,∞), which is the solution to the equation

D
d2G(x, ξ )

dx2
− γ G(x, ξ ) = −δ(x − ξ ),

dG(x, ξ )

dx

∣∣∣∣
x=0

= 0,

(3.2)
with G(x, ξ ) → 0 as |x| → ∞. One finds that

G(x, ξ ) = 1

2
√

Dγ
[e−√

γ /D|x−ξ | + e−√
γ /D(x+ξ )]. (3.3)

It follows that the dendritic surface receptor concentration has
an implicit solution of the form

u∗(x) = J0G(x, 0) +
N∑

k=1

[σ − γ̂ u∗(xk )]G(x, xk ). (3.4)

The first term represents the effect of the flux at the somatic
end x = 0.

We can now generate a closed set of equations for the
synaptic concentrations u∗

j = u∗(x j ), j = 1, . . . , N , by setting
x = x j in Eq. (3.4):

u∗
j = J0G(x j, 0) +

N∑
k=1

G(x j, xk )[σ − γ̂ u∗
k ]. (3.5)

This can be rewritten as the matrix equation

N∑
k=1

[
δ j,k + γ̂√

γ D
G jk

]
u∗

k = H j, (3.6a)

with

G jk =
√

γ DG(x j, xk ), (3.6b)

H j = J0G(x j, 0) + σ

N∑
k=1

G(x j, xk ). (3.6c)

A solution for u∗
k , k = 1, . . . , N , will exist provided that the

matrix I + γ̂√
γ D

G is invertible. One way to invert the matrix is
to exploit the fact that the rate of endocytosis within a synapse
is relatively small (possibly due to receptor clustering and
molecular crowding). Therefore, since G(x, x′) ∼ 1/

√
Dγ ,

we assume that

γ̂√
Dγ

= εγ0 � 1, (3.7)

where γ0 is a dimensionless O(1) parameter. We can now
carry out a perturbation expansion of the steady-state solution
(3.5) with respect to ε. That is, we write

(I + εγ0G)−1 = I − εγ0G + ε2γ 2
0 G2 + · · · (3.8)

and introduce the series expansion

u∗
j = u∗

j,0 + εu∗
j,1 + ε2u∗

j,2 + · · · . (3.9)

Substituting Eqs. (3.8) and (3.9) into Eq. (3.5) gives

u∗
j,0 + εu∗

j,1 + ε2u∗
j,2 + · · ·

=
N∑

k=1

[
δ j,k − εγ0G jk + ε2γ 2

0 [G2] jk + · · · ]
×

[
J0G(xk, 0) + σ

N∑
l=1

G(xk, xl )

]
. (3.10)

Hence, collecting terms in powers of ε leads to a hierarchy of
equations, the first few of which are as follows:

u∗
j,0 = J0G(x j, 0) + σ

N∑
l=1

G(x j, xl ), (3.11a)

u∗
j,1 = −γ0

N∑
k=1

G jku∗
k,0. (3.11b)

The leading order term u∗
j,0 has two distinct contributions. The

first, J0G(x j, 0), represents the exponential-like decay of the
flux strength with respect to the spatial distance of the jth
synapse from the soma. The second, σ

∑N
l=1 G(x j, xl ), is a

pairwise synaptic interaction term. Clearly, the former contri-
bution will dominate at proximal locations and relatively large
flux amplitudes J0. On the other hand, the latter contribution
will dominate at more distal locations, particularly when there
are a large number of synapses in a cluster. Finally, substi-
tuting the series expansion of u∗

j into Eq. (3.4) shows that
u∗(x) = u∗

0(x) + O(ε), with

u∗
0(x) = J0G(x, 0) + σ

N∑
k=1

G(x, xk ). (3.12)

Note that u∗
j,0 = u∗

0(x j ). In Fig. 2, we plot Eq. (3.12) and a
numerical steady-state solution obtained by numerically in-
verting the matrix equation (3.6) for u∗

k and substituting the
result into Eq. (3.4). We find that for ε values in the range
[0.001, 0.1], Eq. (3.12) yields an accurate approximation of
the steady-state solution.

If the synapses are clustered in an interval of length
[X, X + �] with � � √

D/γ , then G(x j, 0) ≈ G(X, 0), and
G(xk, xl ) ≈ G(X, X ), so that

u∗
j,0 ≈ U (X ) ≡ J0G(X, 0) + σNG(X, X ) (3.13)

and

r∗
j ≈ R(X ) ≡ κ+U (X )

κ− + κ+U (X )
(3.14)

for all j = 1, . . . , N , where N is the number of synapses in
the cluster. We thus find that the fraction of filled slots in
each synapse is the same, irrespective of the number of slot
proteins. Suppose that w j = S jr∗

j is identified as the steady-
state strength of the jth synapse. (For simplicity, we ignore
presynaptic factors.) This implies that the ratio of synaptic
strengths of any two synapses within the cluster is equal to the
ratio of their number of slots. Moreover, if R(X ) is modified
due to changes in the binding rate κ+, say, then all synap-
tic strengths are scaled by the same factor (multiplicative
scaling). An analogous result was previously obtained in a
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FIG. 2. (a) Plots of the steady-state receptor concentration for a dendrite with three synapses for various ε values with γ0 = 1 and γ̂ =
ε
√

γ D. The positions of the synapses are xk = x0 + (k − 1)�, k = 1, 2, 3, where x0 = 10 μm, � = 2.5 μm, and the other parameter values
are as follows: σ = 10−3 s−1, γ = 10−3 s−1, D = 0.1 μm2/s, Sk = 10, κ+ = 10−3 μm/s, κ− = 10−3 s−1, and J0 = 10−3 s−1. The solid black
curve was calculated using the O(1) approximation given in Eq. (3.12), and the dashed curves were calculated by numerically inverting the
matrix equation (3.6) for u∗

k and substituting the result into Eq. (3.4). (b) Plot of the average percent error of the O(1) approximation given by
avgx|u∗

0 (x) − û∗(x)|/̂u∗(x) as a function of ε, where û∗ is the steady-state numerical solution.

nonspatial compartmental model [23]. On the other hand, as
synapses within a cluster become more separated, the multi-
plicative scaling rule breaks down. The multiplicative scaling
of the synaptic strengths also breaks down when the effect of
the somatic receptor flux becomes sufficiently strong. This can
be achieved by either moving a synapse cluster closer to x = 0
or by increasing J0, as illustrated in Fig. 3. We also see that
when the somatic flux dominates, the steady-state solution
becomes a monotonic decreasing function of x characterized
by the J0G(x, 0) term in Eq. (3.12), but when endocytosis
dominates, local maxima occur in the neighborhoods of each
of the two synapses. Hence, the steady-state concentration
cannot detect the presence of synapses in the presence of a
large flux and slow endocytosis rates.

Another observation is that if σ > 0, then the strengths of
the synapses in a cluster are highly dependent on the number

of synapses in the cluster. Figure 4 shows that the synaptic
strength significantly increases with the number of synapses
in a cluster even if that cluster is moved farther from the
receptor flux at x = 0. Again we see exponential decay in
regions far from the synaptic clusters since the local receptor
pools are governed by the somatic flux. In the neighborhood
of the N = 1 cluster, the steady-state solution becomes an
increasing function until the region near the N = 6 cluster is
reached due to large increases in the size of the local receptor
pool from perisynaptic endocytosis. The concentrations begin
to decrease again as one moves from the N = 6 cluster to
the N = 12 cluster despite the presence of a large number
of synapses since the somatic receptor source sufficiently
degrades in this region.

Finally, in Fig. 5 we show results from numerically
simulating the full model (2.1) for a cluster of three synapses
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FIG. 3. Steady-state receptor concentration u∗(x) per unit length for a pair of synapses separated by a fixed distance � = 2 μm. Other
parameter values are as in Fig. 2. The concentration u∗(x) is obtained by numerically inverting the matrix equation (3.6) for u∗

k and substituting
the result into Eq. (3.4). (a) Plots of u∗(x) as a function of x for different spatial locations of the synaptic pair and fixed �. (b) Corresponding
plots for different flux values J0 and fixed synaptic locations x1 = 10 μm, x2 = 12 μm.
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with nearest-neighbor distance �. It can be seen that the
fraction of bound receptors rk (t ), k = 1, 2, 3, converges
to a steady state r∗

k as t → ∞. For sufficiently small � the
time-dependent curves rk (t ) are approximately independent of
k, and Eq. (3.14) provides a good approximation of the steady-
state value. However, as the separation between the synapses
increases, these curves asymptote to different steady-state val-
ues that are all lower than the original steady state. Therefore,
tightly clustering the synapses has the effect of both homog-
enizing and increasing the steady-state synaptic strengths.

IV. LOCAL ACCUMULATION TIMES

Having obtained the steady-state solution, we can now
calculate the accumulation times using Eqs. (2.6) and (2.7).
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In order to Laplace transform Eqs. (2.1), we will assume
that concentration of receptors within a synapse is sufficiently
small so that κ− � κ+u(xk, t ) and rk (t ) � 1. This means that
nonlinear effects due to the saturation of the binding sites can
be ignored. Laplace transforming Eqs. (2.1a)–(2.1c) using the
initial conditions u(x, 0) = 0 and r j (0) = 0 then gives

D
∂2ũ(x, s)

∂x2
− (s + γ )̃u(x, s)

= −
N∑

j=1

(
S j[κ−r̃ j (s) − κ+ũ(x j, s)]

+σ

s
− γ̂ ũ(x j, s)

)
δ(x − x j ),

(4.1a)

r̃k (s) = κ+
κ− + s

ũ(xk, s). (4.1b)

In analogy to Eq. (3.2), we introduce the s-dependent Neu-
mann Green’s function on [0,∞) according to

D
∂2G(x, y; s)

∂x2
− (s + γ )G(x, y; s) = −δ(x − y),

∂G(x, y; s)

∂x

∣∣∣∣
x=0

= 0. (4.2)

From Eq. (3.3) we have

G(x, y; s) = 1

2
√

D[s + γ ]
[e−√

(s+γ )/D|x−y| + e−√
(s+γ )/D(x+y)].

(4.3)

It then follows that

ũ(x, s) = J0

s
G(x, 0; s)

+
N∑

k=1

(
σ

s
−

[
sSkκ+
κ− + s

+ γ̂

]̃
u(xk, s)

)
G(x, xk, s).

(4.4)

Multiplying this equation by s and taking the limit s → 0
immediately recovers the steady-state solution (3.4) since
G(x, xk, 0) = G(x, xk ).

It remains to determine the synaptic terms ũ(x j, s). Setting
x = x j in Eq. (4.4) gives the matrix equations

ũ(x j, s) = J0

s
G(x j, 0, s)

+
N∑

k=1

(
σ

s
−

[
sSkκ+
κ− + s

+ γ̂

]̃
u(xk, s)

)
G(x j, xk, s).

(4.5)

This can be rewritten as the matrix equation

N∑
k=1

(
δ j,k+

[
s
(s)Sk+ γ̂√

[s + γ ]D

]
G jk (s)

)
ũ(xk, s) = Hj (s)

s
,

(4.6)
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with

G jk (s) =
√

[s + γ ]DG(x j, xk, s), (4.7a)

Hj (s) = J0G(x j, 0, s) + σ

N∑
k=1

G(x j, xk, s), (4.7b)


(s) = κ+
κ− + s

1√
[s + γ ]D

. (4.7c)

Note that Hj (0) = u∗
0(x j ), with u∗

0(x) defined by Eq. (3.12).
Again we will invert the matrix by exploiting the relatively
slow rate of endocytosis. Since we are ultimately interested
in the limit s → 0, we will also assume that s is small and
impose the inequalities (3.7) with s = O(ε). We can now carry
out a perturbation expansion of Eq. (4.6) with respect to ε by
writing

{I + G(s)[s
(s)S + εγ0I]}−1

= I − G(s)[s
(s)S + εγ0I] + · · · , (4.8)

with S = diag(S1, S2, . . . , SN ), and introduce the series ex-
pansion

ũ(xk, s) = ũ0(xk, s) + εũ1(xk, s) + ε2ũ2(xk, s) + · · · . (4.9)

Substituting into Eq. (4.5) gives

ũ0(x j, s) + εũ1(x j, s) + · · ·

= 1

s

N∑
k=1

{δ j,k − G jk (s)[s
(s)Sk + εγ0] + · · · }Hk (s).

(4.10)

We thus obtain the leading order solution

ũ0(x j, s) = 1

s

[
Hj (s) − s
(s)

N∑
k=1

G jk (s)SkHk (s)

]
. (4.11)

Having obtained a series expansion of ũ(x j, s), we have
a corresponding series expansion of the fraction of bound
receptors according to Eq. (4.1c):

r̃ j (s) = r̃ j,0(s) + ε̃r j,1(s) + · · · , (4.12)

r̃ j,n(s) = κ+
κ− + s

ũn(x j, s). (4.13)

Substituting Eqs. (4.11)–(4.13) into Eq. (2.7) yields

τ j = − 1

r∗
j

d

ds

[
sκ+

κ− + s
[̃u0(x j, s) + εũ1(x j, s) + · · · ]

]∣∣∣∣
s=0

= − 1

r∗
j,0

d

ds

[
κ+

κ− + s

(
Hj (s)−s
(s)

N∑
k=1

G jk (s)Hk (s) + · · ·
)]∣∣∣∣∣

s=0

= − 1

r∗
j,0

κ+
κ−

[
∂sHj (0) − 1

κ−
Hj (0) − 
(0)

N∑
k=1

G jk (0)SkHk (0)

]
+ O(ε). (4.14)

In the unsaturated regime,

r∗
j,0 = κ+Hj (0)

κ−
. (4.15)

Hence, to leading order, we have

τ j = |∂sHj (0)|
Hj (0)

+ κ+
κ−

N∑
k=1

Sk
Hk (0)

Hj (0)
G(x j, xk ) + 1

κ−
. (4.16)

In the limit σ → 0, we obtain the simplified expression

τ j = T0(x j ) + κ+
κ−

N∑
k=1

Sk
G(xk, 0)

G(x j, 0)
G(x j, xk ) + 1

κ−
, (4.17)

where

T0(x) = 1

2

[
1

γ
+ x√

Dγ

]
(4.18)

is the accumulation time for pure diffusion and endocyto-
sis (or degradation) [30–32], that is, in the absence of any
synapses. This corresponds to dropping the second line of
Eq. (2.1a). Note that since the accumulation time is defined
in terms of the difference of the current concentration from
the steady-state concentration, it is independent of the somatic

flux J0 when σ = 0. We have used the result

∂sG(x, y; s)

= − 1

4
√

D[s + γ ]

[
1

γ + s
+ |x − y|√

D[γ + s]

]
e−|x−y|√(s+γ )/D

− 1

4
√

D[s + γ ]

[
1

γ + s
+ x + y√

D[γ + s]

]
e−(x+y)

√
(s+γ )/D,

which implies

∂sG(x, 0; s)

= − 1

2
√

D[s + γ ]

[
1

γ + s
+ x√

D[γ + s]

]
e−x

√
(s+γ )/D.

Substituting Eqs. (4.4) and (4.11) into Eq. (2.6) yields the
following equation for the accumulation time in the bulk:

T (x) = J0|∂sG(x, 0; 0)|
u∗

0(x)
+ κ+

κ−

N∑
k=1

Sk
u∗

0(xk )

u∗
0(x)

G(x, xk ) + O(ε).

(4.19)

In the limit that σ → 0, we obtain

T (x) = T0(x) + κ+
κ−

N∑
k=1

Sk
G(xk, 0)

G(x, 0)
G(x, xk ) + O(ε). (4.20)
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FIG. 6. (a) Plots of the percentage error E of the O(1) synaptic accumulation times τk with respect to the numerical accumulation times
τ̂k with E = 1

N

∑N
k=1 |τk − τ̂k |/̂τk . The numerical accumulation times are obtained by simulating Eq. (2.1) to determine rk (t ) and computing

r∗
k using Eq. (3.4) and numerically solving Eq. (3.6). τ̂k is then calculated by numerically integrating zk (t ) = 1 − rk (t )/r∗

k . The synapses are
located at xk = x0 + (k − 1)�, where x0 = 5 μm and � = 0.1 μm. We fix κ+ = 10−3 μm/s and vary the ratio κ−/κ+. The other parameters are
as in Fig. 2. (b) Plots of the fraction of bound slot proteins for the second synapse in the cluster generated by numerically simulating Eq. (2.1)
(solid curves) and the linearized version of Eq. (2.1) (dashed curves).

In Fig. 6(a), we plot the percentage error of Eq. (4.16)
with respect to the numerical synaptic accumulation times
calculated using simulations in Eq. (2.1). We see that the error
decreases linearly until κ−/κ+ ≈ 12.5. The error is approxi-
mately constant after this point, indicating that the assumption
that the slot proteins are not saturated is a reasonable approx-
imation. This can also be seen in Fig. 6(b), where we plot
the trajectories of the fraction of bound slot proteins for both
Eq. (2.1) and the linearized version of Eq. (2.1). We see that
the linearized model provides an accurate approximation of
the full model when κ−/κ+ � 1. Furthermore, for ε � 0.01
and κ−/κ− > 10, the O(1) approximation of the accumulation
times is within 10% of the numerical results. Finally, we see
that for κ−/κ+ = 0.1 the breakdown of the linear approxima-
tion yields bound receptor fractions that exceed unity.

Comparing Eqs. (4.16) and (4.17) with the steady-state
solution (3.11) establishes a number of significant differences.
First, in the limit σ → 0 (no exocytosis), the O(1) steady-
state receptor concentration is purely local, u∗

j,0 = J0G(x j, 0).
This means that the presence of a set of synapses does not
affect the O(1) bulk concentration u∗

0(x). Hence, the fraction
of bound receptors in a given synapse is independent of the
other synapses. On the other hand, synaptic interactions have
an O(1) effect on the local accumulation time τ j , even when
σ = 0. Second, this O(1) contribution depends on the number
of slot proteins Sk , k = 1, . . . , N , in all the synapses. These
features are illustrated in Fig. 7, where we plot the accumula-
tion times τ j , j = 1, 2, for a pair of synapses with x1 fixed and
x2 = x1 + � for a variable spacing �. The dependence of τ j on
� and S2 can be seen even when σ = 0. The accumulation
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FIG. 7. (a) Pair of synapses with x1 = 10 μm and x2 = x1 + �. (b) Plot of the accumulation times τ1 (dark curves) and τ2 (light curves)
as a function of the separation � for σ = 0, S1 = 10, and various values of the slot protein number S2: S2 = 10, 20, 40, 80. (c) Corresponding
plots for σ = 0.1. The other parameter values are as in Fig. 2. The accumulation times τ1,2 are calculated using Eq. (4.16).

064407-8



LOCAL ACCUMULATION TIMES IN A … PHYSICAL REVIEW E 105, 064407 (2022)

ac
cu

m
ul

at
io

n 
tim

e 
τ k

cluster spacing 
2 4 6 8 100

14000

12000

10000

8000

6000

6000

5000

4000

3000

cluster spacing 
2 4 6 8 100

(c)(b)

4000

8000

7000

N = 3

N = 6

N = 12

soma

(a)

FIG. 8. (a) Cluster of N synapses at spatial locations xk = x1 + (k − 1)�, where x1 = 10 μm. (b) Plots of the accumulation times τ1 and
τN , respectively, for the first and last synapses in the cluster as a function of the cluster spacing � and various cluster sizes N = 3, 6, 12 for
σ = 0. (c) Corresponding plots for σ = 0.1. The other parameter values are as in Fig. 2. The accumulation times τ1,N are calculated using
Eq. (4.16).

time τ2 has a weaker dependence on � than τ1, while the
difference τ2 − τ1 for fixed � is reduced as σ increases from
zero. In Fig. 8 we show analogous plots for τ1 and τN in a
cluster of N synapses with variable spacing �. It can be seen
that adding synapses to a highly separated cluster does not
affect the value of τ1 but increases τN significantly due to the
other synapses inhibiting access to the receptor pool. In the
case of a tight cluster of synapses, the accumulation time is
approximately the same for each synapse in the cluster. As
the spacing � is increased, the synapses located closer to x = 0
reach steady state more rapidly while the accumulation times
of the synapses on the right end of the domain do not change
significantly [see Fig. 9(a)]. On the other hand, if σ � J0 and
Si = S for all j, then the homogeneity of the synaptic accu-
mulation times is preserved even when the synapses have a
large separation. We also observe that the accumulation times
are reduced significantly for all synapses in the cluster [see
Fig. 9(b)].

O(1) synaptic interactions also appear in the bulk accumu-
lation time T (x). This is illustrated in Fig. 10, where we show
example plots of T (x) as a function of dendritic location x.

We assume that there are several synaptic clusters of different
sizes. In the absence of any synapses, the corresponding ac-
cumulation time T0(x) increases linearly with x. On the other
hand, the presence of synaptic clusters significantly increases
T (x), which now varies nonlinearly with x. If σ � J0, then
T (x) is a monotonically increasing function of x, with T ′(x)
having a local maximum in a neighborhood of each cluster
[see Fig. 10(a)]. If σ � J0, then T (x) is no longer monotonic
and shows a much weaker dependence on x, as demonstrated
in Fig. 10(b). These two distinct modes of behavior seem to
arise from the relative dominance of the two sources of recep-
tors. When the local pool of receptors available to a cluster
is dominated by exocytosis, the accumulation time becomes
homogeneous and is mostly a function of the total number of
synapses in each cluster. When the local pool of receptors is
dominated by the somatic flux at x = 0, the heterogeneity of
the accumulation times increases, and they become mostly a
function of their position relative to x = 0.

Finally, the transient heterosynaptic effects of the number
of slot proteins Sk , k = 1, . . . , N , across a cluster of synapses
is illustrated in Fig. 11. We see that the steady-state values
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FIG. 10. (a) Plots of the bulk accumulation time T (x) given by Eq. (4.20) for σ = 0 in the case of four synaptic clusters at x = 10 μm,
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synapses in each cluster is varied. (The dashed lines represent the results when the order of the cluster sizes is reversed.) (b) Corresponding
plots for σ = 0.1. Other parameter values are as in Fig. 2.

of the fractions of bound slot proteins is independent of Sk

but the total time to steady state increases with Sk . This is
consistent with the accumulation time calculations. Further-
more, increasing the number of slot proteins in a subset of the
synapses in a cluster before the steady-state value is reached
has the effect of increasing the time to steady state for all
the synapses in the cluster, including the unaltered synapses.
This implies that the total number of slot proteins in a cluster
is the important parameter that controls the dynamics of a
synapse rather than the number of slot proteins in an individ-
ual synapse.

V. DISCUSSION

In this paper, we used a diffusion-trapping model of den-
dritic receptor trafficking to investigate the effects of spatial
heterogeneity on the steady-state distribution of synaptic
weights and the relaxation to steady state. The model took

the form of a set of RD equations, in which the dendrite was
represented as a semi-infinite cable and each synapse was
taken to be a point source. The latter leveraged the nonsin-
gular behavior of one-dimensional Green’s functions. We first
derived a solution to the associated steady-state equations,
which took the form of a perturbation series expansion in
the small dimensionless parameter ε that characterized the
relatively slow rates of endocytosis. We showed that for a
cluster of closely spaced synapses, the steady-state fraction
of bound receptors in each synapse is the same to leading
order (multiplicative scaling). However, it was found that the
synaptic strengths are coupled at O(ε), and a breakdown of
multiplicative scaling can be observed by increasing the size
of the synaptic domain or by increasing the strength of the
source of receptors from the soma. The latter was achieved
by both moving the cluster closer to x = 0 and increasing the
receptor flux. Additionally, we observed that the strengths of
all synapses in a cluster can be increased by reducing the size
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FIG. 11. Transient heterosynaptic effects in a cluster of three synapses located at xk = x + (k − 1)� with x = 5 μm and � = 0.1 μm.
(a) Plots of the fraction of bound receptors rk (t ) for Sk = S, k = 1, 2, 3, and various values of S. (b) Corresponding plots when the number of
slot proteins in one or more of the synapses is increased to Sk = 100 at t = 1500 s (as indicated by the arrow). The other parameter values are
as in Fig. 2. The dashed horizontal lines indicate the steady-state fraction R = 0.21 as in Fig. 5. Results are obtained by numerically simulating
the full equations (2.1).
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of the synaptic domain or increasing the number of synapses
in the cluster.

In order to study the temporal dynamics of the receptor
trafficking process, we calculated a set of local accumulation
times. In contrast to spectral methods, which provide a global
measure of the rate at which the system reaches steady state,
the accumulation times determine how rapidly steady state is
approached at each point in the bulk and at each synapse.
The accumulation times were calculated by solving the lin-
earized RD equations in Laplace space using Green’s function
methods analogous to those used to obtain the steady-state
solution. Contrary to the results obtained from the steady-state
analysis, we found that the accumulation times had a strong
dependence on the number of slot proteins in the synapses
at order O(1). We thus observed that dynamically altering
the number of slot proteins in a single synapse or subset of
synapses within a cluster altered the trajectories to steady state
as a whole rather than altering the trajectories of only the
modified synapses. This implies that the total number of slot
proteins in a cluster is the important parameter for controlling
the dynamics of the trajectories rather than the distribu-
tion of slot proteins among the individual synapses within a
cluster.

Interestingly, two distinct modes of behavior were ob-
served, depending on whether exocytosis or the somatic flux
was the dominant source of receptors, which can be seen in
Figs. 7 and 8. The O(1) dependence on the spatial distribution
of synapses within a cluster was similar to the steady-state
results when σ > 0, but this dependence could be eliminated
such that the synaptic accumulation times were homogeneous
even for large synaptic separations by letting σ → 0. Fur-

thermore, when σ was sufficiently large, not only did the
presence of a cluster of synapses cause a significant increase
in accumulation times of the points near the cluster, but this
increase was communicated to all points to the right of the
cluster as well.

One natural extension of the current model is to consider
diffusion in a 2D cellular membrane, rather than a 1D den-
dritic cable in which the synapses are represented as point
sources or sinks at locations xk on the cable. The latter ex-
ploits the quasi-1D geometry of a dendrite over length scales
of the order of hundreds of microns. However, the quasi-
1D approximation is not appropriate for synapses distributed
over a more local region of a dendrite or for synapses lo-
cated in the somatic membrane. In such cases one has to
take � to be a 2D domain. Moreover, one can no longer
treat the synapses as point-like since the corresponding 2D
Green’s function has a logarithmic singularity. However, if
the synapses are relatively small compared to the size of
the domain, then one can use asymptotic perturbation meth-
ods along the lines of [37]. Finally, in future work it would
be interesting to explore how the relaxation times analyzed
in this paper overlap with typical spike timing-dependent
plasticity experiments. The latter stimulate synapses using a
pair or triplet of excitation pulses, and the resulting synaptic
modifications can depend on the order of presynaptic and
postsynaptic spiking within a critical window of tens of mil-
liseconds; see the review in [45]. Although this is several
orders of magnitude faster than the accumulation times for
receptor trafficking, there could be an interplay between the
latter and the timescales associated with sequences of synaptic
modifications.
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