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Robust boundary formation in a morphogen gradient via cell-cell signaling
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Establishing sharp and correctly positioned boundaries in spatial gene expression patterns is a central task in
both developmental and synthetic biology. We consider situations where a global morphogen gradient provides
positional information to cells but is insufficient to ensure the required boundary precision, due to different types
of noise in the system. In a conceptual model, we quantitatively compare three mechanisms, which combine
the global signal with local signaling between neighboring cells, to enhance the boundary formation process.
These mechanisms differ with respect to the way in which they combine the signals by following either an AND,
an OR, or a SUM rule. Within our model, we analyze the dynamics of the boundary formation process, and
the fuzziness of the resulting boundary. Furthermore, we consider the tunability of the boundary position and
its scaling with system size. We find that all three mechanisms produce less fuzzy boundaries than the purely
gradient-based reference mechanism, even in the regime of high noise in the local signals relative to the noise in
the global signal. Among the three mechanisms, the SUM rule produces the most accurate boundary. However,
in contrast to the other two mechanisms, it requires noise to exit metastable states and rapidly reach the stable
boundary pattern.
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I. INTRODUCTION

The formation and maintenance of gene expression bound-
aries between neighboring groups of cells is a fundamental
task in biology [1,2]. In developmental biology, such bound-
aries form to spatially partition embryonic tissues into distinct
cell fates. The position of a boundary can be controlled by a
global morphogen, a substance that displays a concentration
gradient over the tissue and permits cells to determine their
position via a concentration measurement [3]. Classic ques-
tions about gene expression boundaries concern the accuracy
and scaling of their positioning [4] and their sharpness [1].
Embryo-to-embryo variations of the boundary position have
been quantitatively studied, for instance, in the vertebrate
neural tube [5] and Drosophila embryos [6]. Studying bound-
ary sharpness additionally requires measuring the boundary
profile within each embryo, as was done in Ref. [7] for a
mechanically maintained compartment boundary.

Establishing and maintaining sharp, precisely positioned
boundaries that scale with tissue size is a challenging task,
given the various sources of noise in these systems [8].
Despite much research, the interplay of mechanisms that
performs this task in different organisms and tissues is
only partially understood [8–11]. Local cell-cell signaling is
well known to play a major role in development [12,13],
but its role in boundary formation remains underexplored.
Recently, a quantitative exploration of tissue patterning prin-
ciples has become feasible in synthetic biology [2]. In a
bottom-up approach, synthetic morphogen gradients and dif-
ferent intracellular regulation networks were constructed to
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quantitatively characterize their interplay [14,15]. These stud-
ies were able to recapitulate, in a controlled way, many
patterning features of native systems, including boundary for-
mation [14]. However, the obtained boundaries were fuzzy
rather than sharp, suggesting that additional mechanisms are
required to recapitulate this feature of native systems [2].

Here we focus on local cell-cell signaling as a candidate
additional mechanism to enable sharp boundaries and take
a theoretical approach to explore its interplay with a global
morphogen signal. A theoretical exploration appears timely,
given that engineered cell-cell communication networks have
recently been demonstrated [16], and further experimental
work can benefit from a theoretical comparison of different
possible designs. Also, the same conceptual question arises in
a completely different biological context, based on bacterial
systems [17], where short-range signaling can now also be
controlled [18].

Our aim is to identify generic principles rather than to
model a specific biological system. We therefore choose a
simple class of models, permitting us to focus on the con-
ceptual question and to perform a systematic exploration of
the associated parameter space. A prior study in a similar
spirit [19] analyzed the encoding of positional information in
a one-dimensional equilibrium model (a variant of an Ising
spin system), which combined a morphogen gradient with a
local interaction between neighboring cells. Here we focus on
the concrete task of boundary formation in a two-dimensional
system, rather than the more abstract notion of positional
information, and study both the dynamics and the steady-state
properties of the boundary formation process. Furthermore,
we compare three different rules with which cells combine
the local and global signals they receive: the SUM, AND, and
OR rule, which are common regulation schemes in biological
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signal processing [20,21]. We investigate which signal pro-
cessing rule best meets the following criteria in each noise
regime: (i) reduction of the boundary fuzziness, (ii) short time
to reach the stationary boundary position, (iii) tunability of the
boundary to different positions, such that the same mechanism
can produce variations of the pattern in related species, and
(iv) scaling of the boundary position with system size, such
that pattern proportions are conserved in systems of different
sizes.

We find that combining global and local signaling outper-
forms a gradient-only mechanism in nearly all noise regimes,
even though local signaling adds an additional source of noise
to the system. Among the three different rules, the SUM rule
performs best for larger noise levels but converges slowly
to the correct boundary position at lower noise levels. The
performance of the AND and OR rules is equivalent. The
stationary boundary position is tunable within the system for
all rules by varying the threshold for global signaling. Also,
the position scales linearly with system size.

II. MODEL AND OBSERVABLES

Our theoretical approach is based on a minimal model for
the formation of a gene expression boundary in a single layer
of cells. The model focuses on the interplay between a mor-
phogen gradient and local cell-cell signaling. Consequently, it
ignores all other processes occurring in developmental sys-
tems that might change the neighborhood relation of cells,
such as cell migration, proliferation, cell death, and cell shape
changes. Also, we treat the local coupling between cells
completely on the level of information and do not consider
additional physical mechanisms, such as differential cell ad-
hesion and differential mechanical tension [1]. The role of
the morphogen gradient is to activate the target gene in cells
at positions where the morphogen level exceeds a threshold,
thereby creating a gene expression boundary. By contrast, the
local signaling provides a means for cells to exchange infor-
mation about their gene expression state with their neighbors
and to use this information to modulate their response to the
morphogen gradient.

Our model and the relevant observables are described in
detail in the following two subsections. On a conceptual level,
it may be helpful to think of the model as a two-dimensional
(2D) kinetic Ising model, which has unusual couplings be-
tween neighboring spins and is subject to an inhomogeneous
external magnetic field, see Supplemental Material for a de-
tailed comparison [22]. However, in the context of our study
it is important that there are different sources of noise, not just
a single thermal noise. First, there is noise from the global
morphogen signal. In developmental systems, all processes in-
volving the morphogen—morphogen production, morphogen
transport, morphogen uptake, and signaling—contribute to
this noise. For example, morphogen production is subject
to stochastic variations in morphogen molecule synthesis
and secretion [9,23], morphogen transport by diffusion is a
stochastic process itself and can moreover be hindered by
barriers [24]. At the morphogen uptake stage, cell-cell vari-
ability in the number of receptors, binding of molecules to
receptors and receptor occupancy are additional sources of
noise [9,10,25]. Finally, activation of the signaling pathways

and gene regulation are also noisy processes [23]. These latter
processes are also the cause for noise in cell-cell signaling.

A. Model

We consider a square grid of L × L cells, see Fig. 1. The
state of a cell is reduced to either “On” or “Off,” c = + 1

2 or −
1
2 . Along the axis of the gradient (index i) the boundary con-
ditions of our grid are fixed to Off on the left (i = 0) and On
on the right side of the grid (i = L). In the perpendicular di-
rection (index j) we apply periodic boundary conditions. The
cell state is updated according to a signal processing rule L,
which we also refer to as signal integration rule. The state can
change at discrete time steps. The rule processes two different
signals: the global signal at the cells position (i, j), sG

i j (t ),
representing the morphogen gradient, and a local signal, sL

i j (t ),
encoding the state of the cells within c′

i js neighborhood,

ci j (t + 1) = L
[
sG

i j (t ), sL
i j (t )

]
. (1)

A Boolean logic is the common simplification of the bio-
logically observed Hill type regulation, as the sigmoidal form
becomes a sharp threshold in the limit of large Hill coefficients
[26].

1. Global signal

The stochastic global signal at a cell with index (i, j) is
given as

sG
i j (t ) = mi + ξG

i j (t ), (2)

with m, m ∈ [0, 1] ⊂ R, the morphogen gradient slope at i and
ξG additive Gaussian white noise with mean zero and standard
deviation σ G.

During embryogenesis, morphogen molecule concentra-
tion is commonly assumed to be exponentially decaying
within the tissue. Inspired by Ref. [19], we interpret the
logarithm of the molecule concentration as the actual signal
(Weber-Fechner law), resulting in a linear morphogen gradi-
ent signal.

2. French flag mechanism

We refer to a signal processing rule that only depends on
the global signal and compares it to a global threshold a as
pure gradient rule LGRAD[sG]. It is the analog of the French
flag mechanism [3]. More precisely,

LGRAD
[
sG

i j (t )
]

:= �
[
sG

i j (t ) − a
] − 1

2 , (3)

with � denoting the Heaviside step function with convention
�[0] = 0. The state of a cell at position i at t + 1 is + 1

2 if the
global signal exceeds the global threshold a and − 1

2 else.

3. Local signal

The signal processing rules with correction ability ad-
ditionally make use of a local signal sL that stems from
nearest-neighbor cells communicating their state. We conser-
vatively assume that the central cell cannot sense from which
neighbor the signal came from and thus define sL to be the
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global signal)(local signal > :
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+[SUM] if  

[AND] if (global signal > ):
(local signal > ) OR[OR]   if (global signal > ):

else:

c(i,t) =   
OFF =

mL global signal > :[GRAD] if  

FIG. 1. (a) Sketch of the minimal model. The morphogen signal is represented by blue dots and nearest-neighbor interaction by green
triangles. A green cell is in state On and signals this to its direct neighbors, a pink cell is Off, i.e., not signaling. The left boundary at i = 0 is
fixed to Off cells, while the right boundary at i = L + 1 is fixed to On cells. In perpendicular direction we chose periodic boundary conditions.
For example, the green cell highlighted by a dark gray frame senses the local signal from its upper, lower, left, and right neighbor (light gray
frames) canceling to one Off state plus local noise as well as a morphogen concentration of 2m plus global noise. (b) Summary of the three
rules: [SUM]: Given a cell at position i at time t in state c(i, t ): If the local signal subject to Gaussian noise plus the global signal subject to
independent Gaussian noise exceeds a global threshold a, then the cell state c at the next time step t + 1 is On, else Off. [AND/OR]: If the
local signal exceeds a local threshold AND/OR, then the global signal exceeds the global signal, c(i, t + 1) = On.

sum of these signals

sL
i j (t ) =

∑
(k,l )∈neighbors(i, j)

ckl (t ) + ξL
i j (t ). (4)

“neighbors” refers to the upper, lower, left, and right neighbor
(von Neumann’s neighborhood). ξL is chosen to be Gaussian
white noise with a mean of zero and standard deviation σ L.
Consequently, the noise realization is in R, and with that the
local signal.

4. Correction mechanisms

To implement a correction mechanism, each cell needs to
combine the two noisy signals sL and sG. It is by no means
clear how this combination is optimally performed. Straight-
forwardly, we can add up both signals and compare the result
to the global threshold a. We will refer to this procedure as
SUM rule LSUM,

LSUM
[
sL

i j (t ), sG
i j (t )

] = �
[
sL

i j (t ) + sG
i j (t ) − a

] − 1
2 . (5)

Note that the contribution of the local signal to the full signal
can take any value by rescaling m and a simultaneously.

Alternatively, both signals could be processed separately
and the results combined by an AND or OR rule, denoted
by LAND and LOR, respectively. A NOR or XOR rule is not
expected to perform well in our setting, as both signals are
chosen to promote the On state, see also Appendix A for
a more explicit discussion. Processing the local signal sepa-
rately requires an additional threshold, aAND respectively aOR,

LAND[
sL

i j (t ), sG
i j (t )

] = �
[
sL

i j (t ) − aAND]
�

[
sG

i j (t ) − a
] − 1

2 ,

LOR[
sL

i j (t ), sG
i j (t )

] = �
[
sL

i j (t ) − aOR] + �
[
sG

i j (t ) − a
]

− �
[
sL

i j (t ) − aOR
]
�

[
sG

i j (t ) − a
] − 1

2 .

If we want the AND and the OR rule to be able to pro-
duce a boundary from an arbitrary initial grid for all noise

levels, equivalently to the pure gradient mechanism, then we
find that there is only one choice for the local thresholds,
i.e., aAND = −1 and aOR = +1. For larger aAND values the
AND rule cannot exit an initial all Off grid in the small noise
scenario. On the other hand, smaller aAND values increase the
fuzziness as they reduce the correction ability of the AND
rule, as for aAND � −1 we essentially have a pure gradient
rule. A quantitative version of this argument and numeric
confirmation are shown in Appendix B. Equivalent reasoning
holds true for the OR rule when starting from an all On grid.

For a choice of local thresholds such that aAND = −aOR we
observe in simulations and can show, a direct “particle-hole”
correspondence between the AND and the OR rule, resulting
in 〈

cAND
i j

〉 ≈ −〈
cOR

ĩ j

〉
, with ĩ = 2

a

m
− i, (6)

with the approximate relation becoming exact in the limit of
an infinite grid. The approximation generally works well for
a boundary position that is distant from the grid boundary.
Essentially, this relation follows because the local signal is an-
tisymmetric with respect to exchanging On for Off states and
linearity of the global signal, as made explicit in Appendix C.

These rules can also be motivated by common input func-
tions to gene transcription [20,21,26]: Either both signals
or their products within the signal processing pathway can
occupy the same promoter, a regulation scheme modeled by
the SUM rule, motivated by Ref. [27]. Or there is a different
promoter for each signal such that either both have to be
occupied to switch on gene transcription, representing the
AND rule, or occupation of one is sufficient implying an
OR rule. The global threshold a thereby corresponds to the
binding affinity of the transcription factor stemming from the
morphogen signal to its promoter and the local thresholds
to the binding affinity of the transcription factor related to
the local direct neighbor signaling. However, the model is
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not limited to regulation of a cell’s transcriptional state by
chemical signaling. It also applies to bioelectrical signaling
during embryogenesis for patterning processes involving a
long ranged electric gradient, where cell-cell signaling is per-
formed via ion channels and gap junctions [13], for instance.
Or to mechanical cues as long as the cell neighborhoods are
not altered.

5. Transforming and reducing the parameter set

The parameters characterizing the model are the grid
length L, morphogen gradient slope m, global threshold a,
and the standard deviations of the global and local noise σ G

and σ L. In order to arrive at a description in more natural
parameters, we transform m, a to m, a

m as a
m corresponds to the

spatial position where the morphogen signal equals its global
threshold. Also, we transform the independent noises to a total
noise and the relative contributions. The total noise is defined
as ξ := ξL + ξG with standard deviation σ and local to total
noise ratio α defined as

σ 2 := (σ G)2 + (σ L )2, and α := (σ L )2

σ 2
. (7)

If not stated otherwise, then we set the local to total noise ratio
α to α = 2

mL+2 as 2 is the maximal deterministic local signal
and mL the maximal global signal.

6. Simulation scheme

For simplicity and computational efficiency, we chose the
dynamics to consist of synchronous updates of the complete
grid at equidistant, discrete time steps. We checked that the
stationary state results qualitatively agree with a random up-
date of all grid cells for the boundary position and fuzziness,
see Supplemental Material [22].

B. Observables

We are interested in a correctly positioned boundary be-
tween different cell types that is straight and sharp. To make
these notions quantitative, we define the boundary position
B(t ) of a grid at time t to be the average number of cells in
Off state, per row,

B(t ) := 1

L

∑
i, j

δ

(
ci j,−1

2

)
, (8)

with δ the Kronecker delta. This definition is related to the
magnetization in Ising models and circumvents problems of
other measures as discussed in Supplemental Material [22].

The fuzziness F (t ) of a grid at time t is then defined as the
number of sites in the wrong state with respect to the boundary
position, rounded to its closest integer, in percentage of the
total number of cells,

F (t ) := 1

L2

[ ∑
i<B, j

δ

(
ci j,

1

2

)
+

∑
i>B, j

δ

(
ci j,−1

2

)]
. (9)

Note that this definition combines two notions characterizing
the quality of a boundary, its roughness and its softness. Given
a unique boundary line, i.e., a grid configuration without

holes, the roughness quantifies the boundaries’ deviation from
a straight line. In case of frequent holes, the softness measures
the width of the holey region that constitutes the boundary.
In the system presented here, holes do occur but are rare,
and thus we do not account for them separately. The chosen
definition of boundary fuzziness counts both types of bound-
ary errors equivalently. Exemplary grids visualizing boundary
position and fuzziness can be found in Supplemental Material
[22]. The ensemble averages of the boundary position 〈B〉 and
the fuzziness 〈F〉 are approximated by their time averages in
the stationary state.

III. RESULTS

For a boundary established by a global signal in the form of
a gradient with slope m and local signaling between neighbor-
ing cells, we want to measure the dependence of the boundary
position B and its fuzziness F on the total noise. The total
noise with standard deviation σ sums independent Gaussian
noise on the global and the local signal.

A. Kinetics of approaching the stationary state

We start our investigation of the correction mechanisms
SUM, AND, and OR by studying the boundary position B(t )
and fuzziness F (t ) as a function of time using a synchronous
update scheme of the whole grid. Toward that end, we con-
sider an arbitrary but fixed threshold a, morphogen slope m,
and grid length L, here chosen such that the boundary position
of the pure gradient mechanism is in the middle of the grid.

1. AND and OR rule

We characterize the evolution under the AND rule, plotted
in Fig. 2(a) for three different initial conditions: a random
initial grid, a grid of all cells in state Off (“all Off”), and a
grid of all cells in state On (“all On”). The first column shows
for an exemplary low noise level the boundary position in the
first row and the fuzziness in the second row in dependence of
time.

Starting from an all Off grid the boundary position B
moves roughly one cell per time step until it reaches its
stationary value [see Fig. 2(a), first row]. The fuzziness F
increases until it drops sharply when the stationary boundary
position has been reached. Note that already for low noise the
fuzziness time trace remains wiggly for all times, implying
that the stationary boundary is fuzzy. Remarkably, for larger
noise the boundary position moves at the same rate. Only the
stationary boundary is more fuzzy compared to the bound-
ary in the low noise regime [see right column of Fig. 2(a)].
Consequently, the transition time to the initial condition in-
dependent, stationary, boundary position does not depend on
the noise level. We also observe that the transition time is on
the order of magnitude of the stationary boundary position.
The last row of Fig. 3 confirms this independence more
generally.

An intuitive picture, explained in more detail in Supple-
mental Material [22], for the dynamics is the following: By
definition, the AND rule only allows cells to switch on if they
have at least one On neighbor and the gradient signal exceeds
its threshold a. The second condition is satisfied for all cells
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j+6
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(ii)(i) 

(a)
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FIG. 2. Exemplary boundary position B and fuzziness F (in
terms of number of wrong cells) time traces starting from different
initial conditions at t = 0, depicted in different colors, for the AND
rule in the upper panel (a) and the SUM rule in the lower panel
(b) subject to a small (first column) and a large (second column) noise
value. Note that for the AND rule time is measured in terms of grid
length. The grid length L = 255 is odd and a = 64.5 and m = 0.5 are
chosen such that the stable boundary is in the grid center, only t � 1
are shown for better visibility. Inserts (i)–(iii) provide a zoom in of
6 × 6 sites to the grid for few time steps. For the AND rule, starting
from an all Off initial grid, zoom in (i) sketches the first three time
steps, while zoom in (ii) provides a potential time trace of reaching
the stable boundary position, which is L/2 here. For the SUM rule,
zoom in (iii) sketches boundary destabilization and transition to a
straight and sharp boundary.

to the right of position i = 	 a
m 
 by the deterministic part of

the gradient signal. When starting from an all Off grid, the
first condition implies that only cells at the right boundary
can switch on due to cells at i = L + 1 being On (fixed grid-
boundary condition choice). Each boundary cell can move at
most one cell forward per time step [see Figs. 2(i) and 2(ii)].
Quantitatively, a cell with exactly one On neighbor switches
on with probability 1/2 independent of the total noise level.
A cell with more than one On neighbor switches on with a
probability close to 1. Note that our choice of grid-boundary

FIG. 3. Overview of different stationary state behavior of the
pure gradient, SUM, AND, and OR rule depending on noise level
regime, exemplary for L = 256, a = 64.5, m = 0.5. On the x axis,
we use noise level

√
3σ instead of σ for better intuition of the

strength of the total noise: More than 90% of all noise realizations
are within the interval [−√

3σ, +√
3σ ]. Also, a uniform distribution

within [−√
3σ, +√

3σ ] has variance σ 2. In the first row, the time-
averaged boundary position B for each rule is shown, where dashes
indicate that the lines overlap. The light green and red lines show the
analytical estimate of the boundary position for the AND and OR
rule. In the second row, time-averaged fuzziness F in % of the total
number of grid sites is plotted. The last row shows the transition time
T until the initial condition independent state was reached, where a
value of 106 implies that it has not converged within the simulation
time. The light yellow line depicts the T approximation for the SUM
rule for small noise levels, see Eq. (10).

conditions, c0, j = 0 and cL+1, j = 1 for all rows j, does not
substantially simplify the patterning task for the rules. The
AND rule (and also the OR and SUM rule as we will see
later) cannot just shift the sharp cell state boundary at L to
its stationary position. Even if we had only one cell in On
state at i = L + 1 the rules could still establish a boundary at
the center of the grid. However, this choice of grid boundary
would artificially destabilize the correct stationary pattern due
to local signaling, as the correct pattern requires that cells at
i = L are On.

For the “all On” initial grid, convergence to the stationary
boundary position occurs within the first time step, as the
deterministic part of the neighborhood signal exceeds aAND =
−1 everywhere in the grid and the AND rule essentially re-
duces to the pure gradient mechanism. For a random initial
grid, at t = 0, the neighborhood signal exceeds aAND for about
3/4th of the cells in each column, thus convergence is fast, as
well.

The OR rule by definition can only switch off one cell
width at a time when starting from an initial grid of On cells.
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Consequently, the time traces of the OR rule qualitatively
correspond to the ones of the AND rule with On-Off inverted
initial conditions, see Fig. 9 in the Appendix. This was to be
expected from the AND-OR relationship, Eq. (6).

2. SUM rule

Figure 2(b) shows evolution under the SUM rule and
exhibits qualitatively different dynamics. The right column
shows the large noise regime. We see that already within 20
time steps the different boundary position traces have con-
verged. We also note that the boundary is fuzzy in contrast
to the low noise regime. For a low noise level, as depicted in
the left column of Fig. 2(b), the dynamics is more complex.
While for all initial conditions, the boundary quickly reaches
a position close to its stationary value, full convergence is
very slow. Thus, in contrast to the AND and OR rule the
transition time strongly depends on the noise level. Starting
from any initial condition, the boundary reaches a position
close to its stationary value within few time steps. Movement
toward its final position happens when noise induces a seed
at the boundary linearly spreading until all cells within the
same column have switched state. As sketched in Fig. 2(iii),
one seed induces a switch of both of its neighbors in the next
time step and so forth until the complete column of former
boundary cells has switched state, in case of an odd grid
height. Then the boundary remains straight until the next seed
occurs. In case of an even grid length, the pattern with every
second boundary cell switched on corresponds to a metastable
state, see Appendix D. The waiting time distribution for the
next seed to destabilize the metastable boundary is strongly
noise level dependent. In fact, the transition time until the
stationary state at 	 a

m 
 is reached can be approximated by

T (σ ) ≈ 12

L
exp

( √
3

2σ 2

)
(10)

for sufficiently small σ , as shown in Supplemental Material
[22], and plotted in Fig. 3. This functional form clearly shows
the nonlinear dependence of the transition time on the noise
level. As expected, the transition time is inversely proportional
to the system length as a seed is more likely the more sites in
the column next to the boundary noise is acting on.

B. Characterizing the stationary state’s dependence
on the noise level

Figure 3 shows the characteristic stationary state properties
of the three correction mechanisms SUM, AND, and OR as
a function of the total noises’ standard deviation σ for an
exemplary threshold a and morphogen signal slope m choice.
For direct comparison, the results without correction mech-
anism (pure gradient) are plotted in blue. Each row shows
a different observable—the time-averaged boundary position
B, fuzziness F , and, in the last column, the transition time
T . For simplicity, we here use the maximal number of time
steps until reaching the stationary state from an all On and an
all Off grid as a measure of T . We will discuss the different
phenomenologies starting from low noise levels and ending
with large noise levels.

1. Small noise levels

In the last row of Fig. 3 we observe that the SUM rule
results have not converged to stationary state within the sim-
ulation time of 106 time steps in the regime of very low
noise levels. This is expected from the previous transition time
discussion. Loosely speaking, noise is needed to forget the
initial grid state. In contrast, the AND and OR rule’s transition
time T scales linearly with the boundary position, irrespective
of the noise level as discussed in Sec. III A 1. The transition
time from a particular initial condition, e.g., “all On,” can be
significantly smaller, see Fig. 2. Turning to the second row of
Fig. 3, we note that the boundary fuzziness for the SUM rule is
remarkably close to zero for small yet sufficiently large noise
levels to allow for convergence of the SUM rule pattern. An
effectively nonfuzzy regime is not observed for other rules. In
the first row, we observe that the SUM’s boundary position
agrees well with the pure gradient rules’ for zero noise, while
the AND and OR rules’ boundary position slightly deviate up
to a cell width. Indeed, we can derive analytic approximations
for the stationary boundary positions, as outlined below, and
refer to Appendix E for further details. For the SUM rule, the
stationary boundary position is given by

iSUM
c =

⌊
a

m

⌋
= iGrad

c , (11)

with 	·
 denoting the floor operator. Consequently, the sta-
tionary boundary will scale with system size in the same way
as for the pure gradient rule for zero noise. The stationary
boundary position of the AND rule includes an additional term
linear in the noise level,

iAND
c ≈

⌊
a

m

⌋
+ 0.25

√
3σ

m

√
1 − 2

2 + mL
. (12)

We see that iAND
c ≈ iGrad

c +
√

3σ
4m for mL � 2 which agrees

well with simulation results shown in Fig. 3.
For the OR rule, it follows

iOR
c ≈

⌊
a

m

⌋
− 0.25

√
3σ

m

√
1 − 2

2 + mL
, (13)

by the AND-OR equivalence established in Eq. (6). To derive
those expressions for the stationary boundary positions, we
started from the following observation: The probability for
a defect to disturb the boundary at ic needs to be smaller
than the one for a potential boundary one cell width to its
left, at ic−1, or to its right, at ic+1. Those disturbances can
be either an Off cell right of the boundary (Off-in-On defect)
or an On cell left of the boundary (On-in-Off defect). For a
sketch of an Off-in-On defect, see the first grid of Fig. 2(iii).
Consequently, two conditions need to be satisfied such that
the stationary boundary position is at cell index i = ic. To the
left, the probability to destabilize a boundary at ic − 1 by an
Off-in-On defect has to be smaller or equal to the probability
destabilizing a boundary at ic by an On-in-Off defect. To the
right, the probability to destabilize a boundary at ic by an
On-in-Off defect has to be smaller or equal to the probability
destabilizing a boundary at ic + 1 by an Off-in-On defect.
Solving these inequalities with probabilities approximated for
the different rules yields the stationary boundary position; see
Appendix E. From this calculation we can also see that the
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probabilities for an On-in-Off defect and an Off-in-On defect
at ic depend only on m and a

m − 	 a
m 
. These findings suggest

that the fuzziness in stationary state only depends on the
deviation of a

m to the next integer value. This is also confirmed
by numeric results. Intuitively, the morphogen changes at the
same rate everywhere in the system and the local interaction
is independent of the position per definition.

a. Intermediate noise levels. For larger noise levels the
AND and the OR rule qualitatively exhibit the same behavior
as for low noise, in contrast to the SUM rule. In the second row
of Fig. 3 we observe a rapid increase in fuzziness for the SUM
rule. Time-averaged fuzziness seems to arise from alternating
between time intervals of a straight, sharp boundary and time
intervals with a disturbance, seeded by a single defect cell,
that grows and shrinks for some time before it decays. The
probability for a seed is highly nonlinearly, but smoothly,
increasing with noise level [22].

b. Large noise levels. In the regime of large noise we see
in the second row in Fig. 3 that the SUM rule yields a less
fuzzy boundary than the AND and OR rule, which behave
similarly. Indeed, all correction mechanisms outperform the
pure gradient rule. We will show that this result is robust for
all a, m parameter combinations determining the three rules
in Sec. III D, for all grid lengths (Sec. III C) and for a surpris-
ingly large range of local to total noise ratios α (Sec. III E).

The boundary position B resulting from the SUM rule
agrees well with the boundary position from the pure gradient
as analytically deduced in Appendix E. Although the bound-
ary positions from the AND and OR rules deviate linearly
with the standard deviation of the total noise σ , we will show
in Sec. III C that both nevertheless scale linearly with system
size.

C. All rules conserve scaling of the boundary position
with system size

In embryogenesis, proportions commonly remain the same
irrespective of different embryo or compartment sizes (see
Ref. [28] for a review). The pure gradient mechanism also
exhibits this scaling behavior, provided that the maximal mor-
phogen concentration and the threshold remain constant. In
our model these conserved proportions translate to a fixed
fraction of On to Off cells within grids of different size for
a fixed maximal morphogen signal mL. In Fig. 3 we have
observed that the stable boundary position formed by the
AND and OR rule deviates from the position established by
the pure gradient rule. Thus we need to investigate if also the
AND and OR rule ensure this property, just with a different
fraction. For an exemplary parameter set, a = 2, mL = 8 at a
large noise level

√
3σ = 2, we can see in Fig. 4 that this is

indeed the case. The reason that AND (OR) rules’ boundary
position tends to larger (smaller) B values is that it discourages
(encourages) On cells. As the slope m becomes smaller and
smaller (mL fixed) the regime around the boundary in which
this effect plays a role increases linearly with system length.
This leads to a constant boundary position B over grid length
L ratio. The deviation of this value from the pure gradient
rules’ result can be approximated by Eq. (12) and Eq. (13),
respectively. For small grid sizes, we see that the relative
boundary position of any rule has not yet converged to its large

FIG. 4. Upper panel: Relative time-averaged boundary position
B for all three rules and pure gradient for increasing grid lengths
L for a fixed noise level of

√
3σ = 2, a = 2, mL = 8, and all Off

initial grid. Bottom panel: Time-averaged boundary fuzziness F in
percentage of the number of cells in the grid. For sufficiently large
grids the relative fuzziness converges to a constant value that is
smallest for the SUM rule, larger for the AND and OR rule, and
highest for the pure gradient rule.

grid limit. The reason is of technical nature: Our parameter
choices imply that defect cells at the left of the boundary are
more common than at its right, see Appendix F for a more
detailed argument.

Figure 4 shows that the fraction of sites in the wrong state
converges to a stable value for large system lengths. Conse-
quently, the improved boundary sharpness is not only a finite
grid size effect. The observation that the SUM rule performs
best, the AND and OR rule not as well but better than pure
gradient, also holds true for all tested grid lengths.

D. Systematic exploration of the parameter space

We want to know how much smoother the boundary es-
tablished by the correction mechanisms is compared to the
boundary established by the pure gradient rule. Until now, we
have shown results for isolated points in the parameter space.
Now we want to study the whole parameter space spanned by
threshold a and morphogen signal slope m. It is equivalent to
varying m and a

m from 	 a
m 
 to 
 a

m � as discussed in Sec. III B.
Let us fix a high noise level,

√
3σ = 2. We measure the

boundary smoothing capability of a correction rule in terms of
the ratio of the boundary fuzziness resulting from a correction
mechanism to the boundary fuzziness caused by the pure
gradient rule, FLOGIC(

√
3σ = 2)/FGRAD(

√
3σ = 2). In order

to show the full range of fuzziness ratios caused by varying a
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FIG. 5. For a fixed noise level
√

3σ = 2 and grid length L = 256
the fuzziness F fraction of the boundary formed by a correction rule
(SUM, AND, OR) and the boundary fuzziness due to pure gradient
is shown in dependence of the gradient slope m. Single markers
correspond to the average fuzziness fraction over all a values and
are interpolated by a solid line. The shaded area is restricted by the
interpolation of the minimal (lower edge) and maximal (upper edge)
fuzziness fraction with respect to all threshold a values.

and m in Fig. 5, we choose for each m to display the ratios’
minimal and maximal value for any a (interpolated by the
lower and upper edge of the shaded area), as well as the ratios’
average over a (data points interpolated by sold line).

We observe that F ratios are below one and that the SUM
ratio is smallest for all morphogen slopes m. This implies
that all three rules perform better for every threshold a and
gradient slope m than the pure gradient rule with respect to
fuzziness reduction. The performance gap between the pure
gradient and the correction rules is smaller for larger mor-
phogen slopes, and thus the most conservative choice for m
is m = 1.0. Intuitively, this is because the steepest gradient
provides the largest signal differences between neighboring
cells in i direction.

E. Variation of local to total noise ratio

The magnitude and ratio of local to global noise repre-
senting a variety of different processes as mentioned in the
Introduction is not known. Still, for a fixed maximum mor-
phogen signal mL, we have only considered one particular
ratio of the local noise ξL to total noise ξL + ξG ratio α,
α = (σ L )2

(σ L )2+(σ G )2 = 2
2+mL so far. Intuitively, the pure gradient

rule should perform better than the correction mechanisms for
large α. By definition, the pure gradient rule only experiences
noise on the global signal, which approaches zero for the local
to total noise ratio α approaching 1. The correction mech-
anisms, however, process an additional highly error-prone
signal, the local signal. To test this intuition, we vary the local
to total noise ratio α between 0.1 and 0.9, see Fig. 6 for all
different a

m combinations with m = 1.0, depicted in differ-
ent colors. The maximal slope m = 1.0 is chosen to ensure
the best relative pure gradient performance, as discussed in
Sec. III D.

FIG. 6. Fuzziness F at
√

3σ = 2 in dependence of the local to
total noise variance, α for m = 1.0, one row for each correction
mechanism. The blue line depicts the pure gradient performance,
while the differently colored lines correspond to the correction mech-
anism result for different a/m combinations, L = 256.

Per definition, the SUM rule (first row) is independent
of α, as it adds up the Gaussian distributed local ξL ∼
N (0, (σ L )2) and global noise ξG ∼ N (0, (σ G)2), yielding
ξL + ξG ∼ N (0, σ 2). The AND and OR rule perform worse
relative to the SUM rule the larger α is. Surprisingly, the
α value, where pure gradient (blue line) performs equally
well than the correction mechanisms (other colors) is well
beyond one half. This implies that a correction mechanism
can sharpen the boundary, even if it is subject to more than
twice as much noise than the pure gradient rule.

IV. DISCUSSION

Precise boundary formation is a remarkable phenomenon
in developing systems and aspiring goal in synthetic systems.
Here our objective was not to study any specific system, but to
systematically explore how different logical couplings of cell-
cell communication with a gradient signal can aid boundary
formation.

In a minimal model of boundary formation consisting of
cells that are either signaling (On) or inactive (Off), we studied
three different correction mechanisms using this nearest-
neighbor interaction in addition to a global (grid spanning)
signal gradient. Those three rules either sum both signals
(SUM) and subsequently compare the result to a global thresh-
old a or compare each signal to a local and global threshold
separately (AND, OR). Consequently, for a signal processing
cell to switch to or maintain an On state, in case of the SUM
rule the sum of both signals has to exceed the global threshold.
The AND rule requires both signals to exceed their respective
thresholds independently, while the OR rule requires only
one signal to exceed its threshold. We examined which rule
performs best in which regime of total noise, consisting of
additive Gaussian noise on the local and the global signal.
As motivated in the Introduction, performance is measured
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in terms of (i) reduction in boundary fuzziness, (ii) short
transition time to stationary boundary position, (iii) position
tuneable by threshold, and (iv) scaling with system size.

We found that (i) the SUM rule achieves the strongest
fuzziness reduction, while the AND and OR rule yield com-
parably less reduction. Only if the noise on the global signal
is much smaller than the noise on the local signal, the pure
gradient ensures a sharper separation of cells with different
gene expression states. (ii) However, transition to stationary
state takes more time for any correction mechanism than
for the pure gradient rule, which establishes the stationary
boundary within one time step. The SUM rule generates a
boundary position that deviates by few sites within one time
step for sufficiently steep morphogen slopes. Exact conver-
gence strongly depends on the noise level—the smaller, the
slower. Qualitatively different, convergence of the AND and
OR rule does not depend on the noise level but on the initial
state of the grid. In the best case it happens within one time
step, in the worst case in order of grid length L time steps.
A short transition time is desirable in development, as bound-
ary cells often act at organizing cells for the next patterning
process [1]. Also, fast morphogenesis is favorable to protect
against predators. (iii) The boundary position can be tuned by
changing the global threshold value a in a similar manner than
for the pure gradient mechanism. This programmability is of
biological significance, as the threshold a was motivated by
the binding affinity of the signals’ transcription factor to the
promoter of the gene, that is switched on. Possibly, variations
of same theme among related species, such as a stripe that
differs in width, can be explained as variations of the binding
affinity. (iv) For fixed threshold value a and morphogen signal
slope m the SUM rule yields the same boundary position as
the pure gradient, while the AND and OR rules’ boundary po-
sitions deviate by a small amount. Nevertheless, the boundary
position established by any rule scales linearly with system
size. The scaling property ensures compatibility with the ob-
servation that embryos of the same species differ (slightly) in
size, but pattern ratios are often conserved [28].

What is the underlying reason that the SUM rule outper-
forms the AND and OR rule in terms of fuzziness reduction?
We believe this is because the SUM rule first averages the
involved noises allowing them to cancel before applying the
nonlinearity in the form of comparing to a threshold. The
deterministic signal is summed, while the Gaussian noise’s
standard deviations only add in quadrature. For the AND
and OR rule it is the other way around: They threshold each
signal separately before combining the pieces of information.
However, there are biological problems where this signal pro-
cessing scheme—first thresholding and then combining—is
actually optimal, for example in case of a rare signal. Rod
cells in the retina specialized to detecting very dim light first
threshold before transmitting information to their common
bipolar cell, which consecutively sums those digitized signals
[29]. If the bipolar cell would first sum the signal of its
numerous rod cells, then the simultaneously summed noise
would make it likely for the bipolar cells to confuse total
darkness (no photon) with dim light (three or more photons).
Consistent with the system presented here, it has been found
that only those rod cells specialized for dim light detection
process signal by thresholding before summing [30].

In a synthetic setup it is feasible to experimentally test our
predictions as all necessary components have already been
designed. On the one hand, tuning of local interactions has
been successfully realized in multicellular systems, for exam-
ple, AND-like, OR-like, and in between, graded, SUM-like,
regulatory behavior in yeast [31]. A remarkably customiz-
able signal processing scheme in the form of a synthetic
Notch pathway is presented in Ref. [16] and also reviewed
in Ref. [32] among other protein based synthetic circuits in
eukaryotic cells. On the other hand, tuneable processing of
synthetic gradients has been demonstrated, such as toggle
switch processing of a signal gradient in Escherichia coli
[17]. A setup close to developmental biology was constructed
within Drosophila wing primordia [15]. A combination of a
synthetic gradient and a signal processing pathway that can in
principle be customized to the rules discussed in this paper
is the synthetic GFP morphogen that regulates target gene
expression by a synNotch circuit [14].

Remarkably, the study presented in Ref. [15] raises the
question of which additional mechanisms are required for
sharp boundary formation as the explored setups did not give
rise to sharp boundaries [2]. The toolboxes listed above might
be able to test whether the three different rules studied in
this paper are candidates for the actual boundary correction
necessary to ensure the exact results observed in nature. Also,
insights about the potential of local signaling as a correction
mechanism might find applications in synthetic biology more
generally, as boundary and stripe formation are fundamental
tasks in patterning and morphogenesis. To better meet such
applications, the presented model can be trivially extended
to stripe generation by introducing extra thresholds accord-
ingly. It can be further generalized or modified by including
more complex rules or smoothing the hard threshold via Hill-
type functions, by considering irregular and dynamic cell
grids, or by including additional mechanisms such as cell
sorting.
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APPENDIX A: OTHER RULE FUNCTIONS

SUM, AND, and OR rules are not the only options to
process two signals. Others are XOR and PROD, but we can
argue that they are not suited for the boundary formation
problem as we modeled it.

Let us start from an all Off grid with an XOR logic. In
the next time step without noise it would form the correct
boundary. In the consecutive update step, all On cells except
those at the boundary would switch Off though, as each is
subject to a local neighbor signal greater than any (sensible)
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local threshold value. Consequently the boundary would not
be stable.

The product rule PROD in the presence of noise reads
if (global signal(i) +ξG)· (local signal(i,t) + ξL) > a2:

cell(i, t + 1) = On
which implies that the noise would be multiplied by the signal.
Consequently, we expect this rule to perform poorly in the
presence of sufficiently large noise.

APPENDIX B: alocal OPTIMIZATION

We want the AND and OR rules to be able to produce a
boundary from an arbitrary initial grid for all noise levels,
equivalently to the pure gradient mechanism. Here we show
that the initial grids all Off and all On are sufficient to fix the
additional local thresholds aAND and aOR.

Let us consider an all Off initial grid. At the right bor-
der, i = L, the global signal exceeds the global threshold a
(otherwise the pure gradient rule could not form a nontrivial
boundary either). For the AND rule to exit the initial condi-
tion, we need aAND to be smaller or equal than the local signal
sL

i j (t ) = −1 + ξL
i j (t ). Thus, we need aAND � −1. Similarly,

for an all On initial grid it follows that aOR
l � 1. The second

condition to determine the optimal local threshold comes from
demanding that it stabilizes a straight boundary. To this end,
consider a straight boundary, implying that the global signal
is close to a but with one On cell left of the boundary. For
the AND rule, we want aAND � −1 in order to switch Off the
defect cell. Taken together this suggests choosing aAND = −1.
The opposite scenario, one Off cell right of the boundary,
yields aAND < 1, which is well satisfied by our choice. Equiv-
alent reasoning yields aOR = 1.

We confirmed these analytic arguments numerically for an
exemplary small and large noise level, see Fig. 7 and Fig. 8.
We observe that the fuzziness decreases with increasing aAND

values. In the small noise example, aAND = −1 is the largest
aAND value such that the AND rule forms a nontrivial bound-
ary (i.e., B

L �= 1 or 0) independent of starting from an all On
grid (red line) or an all Off grid (green line). If we drop the
initial grid independence condition, e.g., if it suffices that the
AND rule only patterns when starting from an all On initial
grid, then the optimal choice of aAND would depend on the
magnitude of deviation of boundary position from the one
generated by pure gradient rule (dashed gray line) we are
willing to accept. This is deviation is particularly pronounced
for large noise as shown in Fig. 8. Results for the OR rule are
depicted in the right column and findings are analogous.

APPENDIX C: RELATIONSHIP OF AND AND OR RULE
FOR aAND = −aOR

The choice of aAND = −aOR implies close correspondence
of the AND and the OR rule in the stationary state. For an
infinite grid we have〈

cAND
i j

〉 = −〈
cOR

ĩ j

〉
with ĩ = 2

a

m
− i,

where 〈〉 denotes an ensemble average. Visually speaking ĩ
is the mirror reflection of i at the zero transition of the mor-
phogen gradient minus its threshold at a

m . For a finite grid, this

FIG. 7. Left column: Relative boundary position B/L and fuzzi-
ness F with respect to the local threshold aAND for two different a
and m combinations, one plotted full saturation, one light. Green
(red) triangles show results for an initial all Off (all On) grid, inter-
polated by solid lines. The dashed gray line shows the pure gradient
B/L. The first column shows that the all Off initial condition can
only be exited for aAND � −1. The second row shows the fuzziness
decrease with increasing aAND. Right column: Analogous results for
the OR rule. A small noise level of 0.1 = η = √

3σ is used.

relation still holds true for parameter combinations a, m such
that the boundary is distant from edges of the grid. Then we
can assume that cells not covered by the ĩ index, which are
cells close to the grid boundaries, do not change their state.

We can derive the above relation as follows:

cAND
i, j = LAND(

sL
i j (t ), sG

i j (t )
)

= �
[
sL

i j (t ) − aAND]
�

[
sG

i j (t ) − a
] − 1

2 ,

FIG. 8. Same quantities as in Fig. 7 but for a large noise level.
Here both initial conditions yield the same boundary position inde-
pendent of aAND choice, but the boundary position deviates strongly
from the pure gradient value.
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whereas

−cOR
ĩ, j = −LOR

(
sL

ĩ j, sG
ĩ, j

)
= −(

1 − {
1 − �

[
sL

i j (t ) − aOR
]}

{
1 − �

[
sG

ĩ, j (t ) − a
]}) + 1

2

= �
[ − sL

i j (t ) + aOR]
�

[ − sG
ĩ, j (t ) + a

] − 1
2 ,

using that 1 − �(x) = �(−x).
Now observe that

�
[ − sG

ĩ, j (t ) + a
] = �

[ − sG
ĩ, j (t ) + a

]
= �

[ − ĩm − ξG
ĩ, j + a

]
= �

[
im − ξG

i j (t ) − a
]
,

where we can neglect the sign change for ξG
i j (t ) as it is sym-

metric around its zero mean. Thus, the contribution by the
global signal is by construction of ĩ the same as in the case
of the AND rule.

In the stationary state, we have on ensemble average that

〈
−

∑
(k,l )∈V (ĩ, j)

ck,l

〉
=

〈 ∑
(k,l )∈V (i, j)

ck,l

〉
(C1)

as the global signal is mirror antisymmetric with respect to the
vertical i = ic line and the local signal is independent of the
absolute position.

Thus,

〈
�

[ − sL
ĩ, j (t ) + aOR

]〉

=
〈
�

⎡
⎣−

∑
(k,l )∈V (ĩ, j)

ck,l − ξL
ĩ, j + aOR

⎤
⎦

〉

=
〈
�

⎡
⎣ ∑

(k,l )∈V (i, j)

ck,l + ξL
i j (t ) − aAND

⎤
⎦

〉
.

Inserting those observations yields the relation Eq. (6). Exem-
plary time traces from simulation are shown in Fig. 9.

APPENDIX D: TIME TRACES FOR EVEN SYSTEM
LENGTH

In Fig. 10 we show the time traces of the AND and OR
logic as in Fig. 2 of the main text but for an even grid length
of L = 256 instead of the odd L = 255. An even grid length
introduces an additional metastable state for the SUM rule be-
tween each subsequent sharp boundaries: the half-filled state,
as explained in the main text. For simplicity, we thus chose

FIG. 9. Exemplary time traces from simulation with same pa-
rameters as in the main text. For the SUM logic, we observe that the
intermediate meta stable state of a half-filled boundary is realized for
the boundary transition from L/2 − 1 to L/2 (green line).

to show the closest odd state grid in the main text. Here, we
display the even L = 256 version for completeness to show
that except for this additional intermediate metastable state
nothing changes.

APPENDIX E: ANALYTICS FOR THE STATIONARY
BOUNDARY POSITION

1. Condition for stationary boundary position

We have two conditions to be satisfied such that the station-
ary boundary position is at cell index i = ic: The probability to
destabilize a boundary at ic − 1 by an Off-in-On defect has to
be smaller or equal to the probability destabilizing a boundary
at ic by an On-in-Off defect. For a sketch, see the first grid
of Fig. 2, insets (iii) and (iv), respectively. For the right-hand
side of ic we can formulate the conditions as:

(i) P(OffInOn |b = ic − 1) > P(OnInOff |b = ic)

(ii) P(OffInOn |b = ic) < P(OnInOff |b = ic + 1)

with, e.g., P(OffInOn |b = ic − 1) denoting the probability of
an Off-in-On defect if the sharp boundary position is at b =
ic + 1.
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FIG. 10. Exemplary time traces from simulation with same pa-
rameters as in the main text, except from the grid length, here
L = 256 sites.

a. Stationary boundary position for the SUM rule.

For the SUM rule the individual probabilities are given by

P(OnInOff |b = i) = P[sG(i) + sL(i) � a]

= P

⎡
⎣mi +

∑
(k,l )∈V (i, j)

ck,l + ξ � a

⎤
⎦

= P[ξ � a + 1 − mi],

with V (i, j) the Von Neumann neighborhood of the cell at
(i, j), i.e., its upper, lower, right, and left neighbor and ξ =
ξL + ξG the total noise. We at first used that with a straight
boundary at i a cell at (i, j) ( j arbitrary) has one On and three
Off neighbors.

Further,

P(OffInOn |b = i) = P[sG(i + 1) + sL(i + 1) < a]

= P

⎡
⎣m(i + 1) +

∑
(k,l )∈V (i+1, j)

ck,l + ξ < a

⎤
⎦

= P[ξ < a − m(i + 1) − 1].

Inserting both into conditions (i) and (ii) and that ξ has the
same distribution as −ξ gives

(i) P[ξ < a − mic − 1] > P[ξ � −(a − mic) − 1]

⇒ a − mic � 0,

(ii) P[ξ < a − m(ic + 1) − 1] <

P[ξ � −[a − m(ic + 1)] − 1]

⇒ a − m(ic + 1) < 0.

As ic ∈ N, these two inequalities are satisfied by

iSUM
c =

⌊
a

m

⌋
= iGrad

c . (E1)

The stationary boundary will scale with system size in the
same way as for the pure boundary formation by gradient
mechanism for zero noise.

Note that in the stationary state, implying that i = ic, the
probabilities for an On-In-Off defect and an Off-In-On defect
only depend on the morpophogen slope m and the deviation
of a

m from its subsequent integer:

P(OffInOn |b = ic) = P[ξ < a − m(ic + 1) − 1]

= P

[
ξ < m

(
a

m
−

⌊
a

m

⌋
+ 1

)
− 1

]

and equivalently for P(OnInOff |b = ic).

b. Stationary boundary position for the AND and OR rule.

Let us consider the AND rule. The individual probabilities
are given by

P(OnInOff |b = i)

= P
[
sG

i j (t ) + ξG
i j (t ) > a

]
P

⎡
⎣ ∑

(k,l )∈V (i, j)

ck,l + ξL
i j (t ) � −1

⎤
⎦

= P
[
sG

i j (t ) + ξG
i j (t ) > a

]
P
[
ξL

i j (t ) � 0
]

= P
[
sG

i j (t ) + ξG
i j (t ) > a

]
1
2 ,

where we at first used that with a straight boundary at i a cell
at i has one On and three Off neighbors. Then we observed
that the for nonzero noise the probability of the local noise to
exceed its mean 0 is 1/2, independent of its precise distribu-
tion (as long as it is symmetric).

Further,

P(OffInOn |b = i)

= 1 − P
[
sG

i+1, j + ξG
i j (t ) > a

]

· P

⎡
⎣ ∑

(k,l )∈V (i+1, j)

ck,l + ξL
i j (t ) � −1

⎤
⎦

= 1 − P
[
sG

i+1, j + ξG
i j (t ) > a

]
P
[
ξL

i j (t ) � −2
]

≈ 1 − P[(sG
i+1, j ) + ξG

i j (t ) > a]

Here we used that for an Off-in-On defect given the boundary
is at i, we need to consider a cell at i + 1, which consequently
has one Off and three On neighbors.

064405-12



ROBUST BOUNDARY FORMATION IN A MORPHOGEN … PHYSICAL REVIEW E 105, 064405 (2022)

For the noise level regime,
√

3σ ∈ [0, 2.5] that we consider
in this paper, P(ξL � −2) ≈ 1 is a good approximation.

With that follows from condition (i)

P
[
sG

iAND
c , j + ξG

i j (t ) > a
]

<
2

3
, (E2)

which is easily satisfied for iGrad
c = 	 a

m 
 as sG(iGrad
c ) ≈ 0.

From condition (ii) follows

P
[
sG

iAND
c +1, j + ξG

i j (t ) > a
]

� 2

3
, (E3)

which consequently determines iAND
c . For the Gaussian noise

distribution with mean zero and standard deviation σ G =
σ

√
1 − 2

2+mL , it follows

iAND
c =

⌊
a

m

⌋
−

√
3σ

m

√
1 − 2

2 + mL

[√
2

3
erfc−1

(
4

3

)]

≈
⌊

a

m

⌋
+ 0.25

√
3σ

m

√
1 − 2

2 + mL
. (E4)

We see that iAND
c ≈ iGrad

c +
√

3σ
4m for mL � 2, which agrees

nicely with simulation results shown in Fig. 3.

For the OR rule, it follows

iOR
c ≈

⌊
a

m

⌋
− 0.25

√
3σ

m

√
1 − 2

2 + mL
, (E5)

respectively by the AND-OR equivalence established in
Eq. (6).

APPENDIX F: CONVERGENCE DURING SCALING

The reason the boundary position and fuzziness for small
lengths deviate from the values for large grids is of technical
nature, as our parameter choice yields a boundary at 	 a

m 
 =
a
m = 1

4 L. For the pure gradient rule, for instance, this choice
implies

cic, j = �
[
mic + ξG

i j (t ) � a
] − 1

2 = �
[
ξG

i j (t ) � 0
] − 1

2 ,

and thus on average the cell at ic is switched On every second
time step due to noise. In contrast, for c(ic+1, j) these parame-
ters more stably yield On as

cic+1, j = �
[
mic+1 + ξG

ic+1, j � a
] − 1

2 = �[ξG � −m] − 1
2 .

Thus defect cells at the left of the boundary are more common
than at its right.
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