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Hi-C embedded polymer model of Escherichia coli reveals the origin
of heterogeneous subdiffusion in chromosomal loci
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Underneath its apparently simple architecture, the circular chromosome of Escherichia coli is known for
displaying complex dynamics in its cytoplasm, with past investigations hinting at inherently diverse mobilities
of chromosomal loci across the genome. To decipher its origin, we simulate the dynamics of genome-wide
spectrum of E. coli chromosomal loci, via integrating its experimentally derived Hi-C interaction matrix within a
polymer-based model. Our analysis demonstrates that, while the dynamics of the chromosome is subdiffusive in a
viscoelastic media, the diffusion constants are strongly dependent of chromosomal loci coordinates and diffusive
exponents (α) are widely heterogenous with α ≈ 0.36–0.60. The loci-dependent heterogeneous dynamics and
mean first-passage times of interloci encounter were found to be modulated via genetically distant interloci
communications and is robust even in the presence of active, ATP-dependent noises. Control investigations reveal
that the absence of Hi-C-derived interactions in the model would have abolished the traits of heterogeneous loci
diffusion, underscoring the key role of loci-specific genetically distant interaction in modulating the underlying
heterogeneity of the loci diffusion.

DOI: 10.1103/PhysRevE.105.064402

I. INTRODUCTION

The chromosome of the prototypical bacteria Escherichia
coli consists of 1.6 mm super-coiled circular DNA of 4.64
Mb. Unlike eukaryotes, it has no nucleus and it is confined
within a (2–4) μm long spherocylinder [1,2]. However, the
perception that bacterial chromosome is a randomly packed
DNA, is fast changing. Precedent investigations have provided
numerous evidences that the “nucleoid” is just not a com-
plex blob of genomic DNA, RNA, and associated proteins.
Rather it is being replaced by a picture of self-organized
architecture with distinctly segregated macrodomains (MDs)
and nonstructured (NS) regions [3,4]. In addition to traditional
molecular biology-based experiments [3–9], the emergence
of Chromosome conformation capture techniques in bacteria
[10–12] are providing a microscopic view of the genome-
level organization of its chromosome. In particular, a high
resolution (5 kb), Hi-C contact map for E. coli has recently
been reported by Lioy et al. [13]. The subsequent integra-
tion of this Hi-C-derived interaction map in a polymer-based
computational model [14], had bestowed a clear chromoso-
mal compartmentalization, a fundamental building block of
E. coli chromosomal architecture. In light of this, the center
of our current investigation is the following: How does the
self-organised nature of the E. coli chromosome impact the
dynamics of its individual loci?

The dynamics of chromosomal loci is generally quanti-
fied by mean-squared displacements (MSD). Generally, for
a diffusive particle MSD ∼ τα , where τ is lag time and α

is called MSD exponent. α = 1 indicates normal diffusion
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[15,16], α > 1 indicates super-diffusion [17–20] and α < 1
implies subdiffusion. Previous interesting experimental and
theoretical investigations by Weber et al. [21–24] and Javer
et al. [25] mainly focused on the spatiotemporal dynamics of
E. coli chromosomal loci. Weber et al. explored the dynamics
of chromosomal loci in a time interval between 1 and 100 s in
LB medium (wt37LB). Their investigations showed that the
movement of individual loci is subdiffusive with a universal
diffusive exponent α = 0.39 and this value was reported by
them to be robust for both E. coli and Caulobacter crescen-
tus with different drug treatments. A key conclusion of the
investigations by Weber et al. [21,22] was that this univer-
sal value cannot be explained by typical Rouse-like polymer
model [26,27]. Their measurement of velocity autocorrelation
function with a negative peak indicated a viscoelastic nature of
cytoplasm. A subsequent study by the same group had shown
that ATP dependent biological activities do not change these
robustness of MSD exponent but mobility of loci changes
significantly [24]. However, in a later crucial investigation,
Javer et al. [25] had investigated the dynamics of a large set
of chromosomal loci across the genome within very short
timescale (0.1–10 s) in minimal medium, using high reso-
lution tracking method. While this investigation also found
that the MSD exponents of all loci indicate a subdiffusive
motion even in short time, there is a large variation of mobility
across the chromosome loci. More importantly, the diffusivity
of Ter macrodomain was found to be very low compared to
other macrodomains. Together, these investigations bring out
the complexity in the dynamics of the E. coli. chromosome
and allude to a heterogeneous loci dependence. However,
a microscopic picture of the origin of such observations
are yet to emerge, especially at individual chromosome loci
level.
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Based on these precedent investigations and particularly
the observation of the heterogeneous diffusivity across the
loci, we surmised that the interloci cross-talk and specific
identity of loci pair might play an important role. There
have been multiple previous modeling attempts [28–36] but
the present work is the first attempt to explore and ex-
plain the loci-dependent diffusivities using a Hi-C integrated
model. Toward this end, we planned on employing our recent
model of E. coli chromosome [14], which had integrated
the high-resolution (5 kb) Hi-C interaction map [13] in an
excluded-volume polymer-based framework, for investigating
the dynamics of the chromosomal loci. Specifically we use
this Hi-C-encoded model to explore the mobility of each of 30
loci (same set of loci as investigated by Javer et al.’s tracking
experiments) via Brownian dynamics (BD) simulations. Our
analysis of the simulation trajectories reveal that both the
diffusion constant and the exponents are loci-coordinate de-
pendent and indicate a heterogeneous distribution. The result
is found to be robust in presence of active noise. Interestingly,
our control simulations via turning off the Hi-C-derived inter-
actions in the model abolishes this heterogeneity, suggesting
that the loci-specific intergene interactions, as encoded in
the Hi-C map, hold the key to the complex dynamics of the
bacterial chromosome.

II. MODEL AND METHODS

A. Model details

In Hi-C measurement, the cells are in an ensemble of
different replication stages with their respective cell cycles.
Here we are interested in short-time chromosomal loci dy-
namics in minimal medium (wt30MM), i.e., there is only one
single chromosome and no replication fork. We model the E.
coli chromosome as a bead-in-a-spring polymer chain, with
each bead representing 5 × 103 bp (5 kb), the same as our
previous work [14] which provides the details of the model-
ing aspect. Here we provide essential features of the model.
The resolution of the model is the same as Hi-C interaction
maps reported by Lioy et al. [13]. To mimic the confine-
ment in the E. coli cell, we have taken the polymer chain
in a spherocyllindrical confinement with average length L =
3.08 μm (including two end caps) and diameter d = 0.82 μm.
By taking approximate volume fraction of chromosome fr =
0.1 [37], we have calculated the bead diameter σ to be
0.06731 μm (see Supplemental Material [38]). Nonbonded
interactions of the polymer beads are modeled by the repulsive
part of Lenard Jones (LJ) potential i.e., Vnb(r) = 4ε(σ/r)12

(where ε is in the unit of kBT and r is in the unit of σ ). Bonded
interactions between adjacent beads have been modeled by
harmonic springs with a spring constant kspring = 300kBT/σ 2.
In a similar fashion, Hi-C contacts are also modeled as har-
monic springs with distance dependent force constants and
probability dependent bond lengths.

From the Hi-C contact probability matrix we can calculate
the distance matrix D as Eq. (1):

Di j = σ/Pi j, (1)

where i and j are row and column index of the matrix, re-
spectively. From this distance matrix we define a restraining
potential between a pair of Hi-C contacts at a separation of

ri j , as VHi-C(ri j ) = 1
2 ki j (Di j − ri j )2. Here ki j is a distance-

dependent force constant that can be calculated from Eq. (2):

ki j = k0e− (Di j −σ )2

w2 . (2)

This relation implies that the force constant becomes smaller
for larger distances and the k0 value is the upper bound of the
force constant. We have used a value of k0 = 10kBT/σ 2 [14].
For optimization of w we have calculated the Pearson Cor-
relation coefficient between the experimental and simulated
contact probability matrices with varying w2. Pearson corre-
lation coefficient values show a maximum (88%) at w2 = 0.3.
Nonetheless, as would be revealed afterwards, we have also
varied the value of k0 to ascertain the robustness or trend
of observed results. For the spherocylindrical confinement
mimicking the cell wall, we have used a restraining potential
in the form of Eq. (3):

Vres (r; R0) = 1
2 kres |�r − �R0|2H(|�r − �R0). (3)

Here R0 is the center of the spherocylindrical confinement and
kres is the force constant depicting the relative “softness” of
the confinement. We have used a value of kres = 310kBT/σ 2.
H is a step function that will activate if a polymer bead gets
out from the spherocylindrical confinement. Therefore, the
Hamiltonian can be written as Eq. (4):

Vtot = Vb(r) + Vnb(r) + VHi-C(ri j ) + Vres(r; R0), (4)

where Vb(r), Vnb(r), VHi-C(ri j ), and Vres(r; R0) are bonded,
nonbonded, Hi-C restraining, and confinement restraining po-
tential, respectively.

We have also carried out control simulations with a set
of variants of the present model. In particular, to investigate
the effect of Hi-C-derived interactions, we have done sep-
arate simulations by switching off the Hi-C related terms
[VHi-C(ri j )] from the model potential functions.

B. Simulation method details

To study the dynamics of chromosomal loci, here we have
used Brownian dynamics (BD) simulations (overdamped con-
dition), by integrating Eq. (5) (Euler scheme):

d�ri

dt
= − Di

kBT
�∇Vtot + �Ri(t ), (5)

where Di is diffusion coefficient of ith bead and �Ri(t ) is a
random noise, satisfying fluctuation dissipation theorem, i.e.,
〈 �Ri(t ) · �Rj (t ′)〉 = 6Diδi jδ(t − t ′). We can calculate Di from
the Stokes-Einstein equation Di = kBT

γ
= kBT

3πησ
, Where η is the

E. coli cytosol viscosity and value is 17.5 Pa s [39,40]. Here all
simulations time in the unit of τBD = σ 2

D ≈ 12 s. Integration
of the 5 was performed with a time step δt = 1 × 10−4τBD by
setting kBT = 1.

To simulate the effect of ATP-dependent active forces,
we have done additional control simulations by modulating
the BD simulation protocol such that random noise does
not follow fluctuation-dissipation theorem. The fluctuation
dissipation theorem has been changed to 〈 �R(t ) · �R(t ′)〉 =
12Dδ(t − t ′) instead of the usual expression 〈 �R(t ) · �R(t ′)〉 =
6Dδ(t − t ′). We have also systematically explored the trend of
the dynamics by considering other values of noise strengths.
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All simulations were performed using the open source
package GROMACS 5.0.6 [41] and we have modified the
source code to introduce the spherocylindrical confinement.
For data analysis and visualization, we have used python
libraries [42–46] and visual molecular dynamics (VMD) [47],
respectively. We have taken 200 different initial configura-
tion (ensemble) of the polymer chain and minimized the
energy of topology by steepest descent algorithm. After en-
ergy minimization, we allow the chain for equilibrium with
1 × 106τBD time steps. Then we collected the data with time
step 1 × 103τBD (data saving frequency).

As a central metric, the simulation trajectories have been
utilised to compute the MSD of a set of thirty loci [25] across
entire chromosome. The MSDs were analysed in details for
extracting diffusive exponents and diffusion constants. The
details of all analysis (including the MSDs) performed in
the present work have been provided in the Supplemental
Material [38].

III. RESULTS AND DISCUSSION

A. An integrative computer model recapitulates
E. coli’s Hi-C contacts

The chromosome of E. coli grown in minimal media
at 30◦C (wt30MM) forms the basis of our investigation of
the dynamics of its loci. Majority of the relevant experi-
ments involving dynamics has also been performed on this
growth condition. The cytoplasm of E. coli at this particu-
lar growth condition, contains a single chromosome, is not
complicated by the fast replication process, and hence is de-
void of replication forks. As a result, the chromosome serves
as a prototypical system which can be investigated for its
short-time dynamics (20 min in real physical unit), without
worrying about the chromosome segregation. Toward this end,
we implemented a computer model of the E. coli chromosome
by integrating beads-spring polymer topology with recently
reported Hi-C interactions matrix of E. coli [13] chromosome
at this particular condition (wt30MM). For this purpose, we
employ a recently proposed protocol by our group [14]. As
detailed in the Sec. II, the excluded volume interaction, Hi-C
contacts and a spherocylindrical confinement form the key
interactions of the model. We generated an ensemble of dy-
namical trajectories of the time-evolution of the chromosome
model via BD simulations under over-damped condition (see
Sec. II). Figure 1(a) renders a representative snapshot of the
chromosome with color-coded encircled beads referring to
various loci for different macrodomains and various nonstruc-
tured regions, as obtained in the simulations. The segregation
of chromosome into six key macrodomains, a signature fea-
ture of E. coli, is clearly evident. To assess the precision
of the simulated model, we first compare the ensemble-
averaged interbead contact probability with the experimental
Hi-C matrix. Figures 1(b) and 1(c) depict the heat maps
of experimental and simulated contact probability matrices.
The occurrence of an intense diagonal in both experimen-
tally derived and simulated matrices represents that there is
a higher contact probability between the chromosomal region
for lower distances. Figures 1(d) and 1(e) demonstrate the heat
map difference between experimental and simulated contact

FIG. 1. (a) Snapshots of an equilibrated chromosome, taken from
a particular trajectory. The different color-coded regions represent
corresponding macrodomains (MD) and nonstructured (NS) regions
and various colored coded encircled beads represent assorted loci
for different MDs and NS regions. (b) Heat map of experimen-
tal Contact probability matrix. (c) Heat map of simulated contact
probability matrix. This matrix is an ensemble average over 200
different initial configurations. (d) Heat map of difference matrix
(simulated-experimental). R value is the Pearson correlation co-
efficient between simulated and experimental contact probability
matrix values. (e) Histogram of absolute difference between simu-
lated and experimental contact probability matrices with a mean of
∼0.067.

probability matrices and a histogram of this difference value,
respectively. A Pearson correlation coefficient (PCC) value of
0.88 between experimental and simulated contact probability
matrices and an absolute difference of the mean value of 0.067
between them imply reasonably good concurrence with in vivo
and in silico chromosomal interactions.

To get better insight into the extent of agreement between
simulated and experimental Hi-C matrices, we first removed
diagonal (i, i) and nearby diagonal (i + 1, i + 1; i − 1, i − 1)
terms from the simulated and experimental Hi-C matrices,
as these elements are contributing more and can potentially
mask the contributions of other terms away from the diago-
nal. Then we calculated the PCC using the rest of the terms
and plotted a linear fit between experimental and simulated
contact probabilities (Fig. S1(a) in the Supplemental Material
[38]). A PCC of R = 0.90 and slope of linear fit m = 0.94
provides a good concurrence between simulated and experi-
mental Hi-C matrix. To get closer insight between these two
Hi-C matrices, we divided these matrices into different MD
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FIG. 2. (a) Different loci position in a circular chromosome according to their genomic coordinates. Different color chunks represent the
macrodomains and nonstructured regions (NSR, NSL). (b) Time-averaged MSD from single trajectory as a function of lag time for different
loci. (c) Power-law fitting of ensemble-average MSD for two loci (Ori2 and Ter3) with time lag (0.1–10)τBD. Scatter points (red for Ori2 and
orange for Ter3) are simulated data and dotted lines (gray fit for Ori2 and green fit for Ter3) are fitted data. Ori2 and Ter3 have subdiffusive
exponents 0.49 ± 0.0042 and 0.55 ± 0.0007, respectively. (d) Power-law fitting same as panel (c), with a lag time of (10–100)τBD. Here Ori2
and Ter3 have MSD exponent 0.40 ± 0.0002 and 0.54 ± 0.0001, respectively, less than as mentioned in panel (c). For all the plots MSD and
time are in units of σ 2 and τBD, respectively, and these are in log scale.

segments (NSR-NSR, NSR-Right, NSR-Ter, Right-Ter, etc.)
in accordance with their genomic coordinate and calculated
the PCC between experimental and simulated Hi-C submatri-
ces. Figure S1(b) in the Supplemental Material [38] represents
the experimental Hi-C matrix and the PCC of the different
segments with the simulated Hi-C matrix are highlighted in
each of them. From this figure, it is clear that the PCC of the
MDs and nearby MDs are relatively high compared to the far
MDs region. A close look at Fig. S1(a) in the Supplemental
Material [38] reveals small deviations in high and low contact
probability in simulated matrix relative to the experimental
one. We believe that these deviations appear mainly due to
the confinement and the repulsive nature of the interbead
interaction. In the present model, the contact probability (Pi j )
is computed by calculating the distance (Di j ) between two
beads and then converting them to probability as Pi j = σ/Di j .
Since in the current model, the maximum distance between
any two pairs, separated by significantly large contour length,
is bounded by the total length of the confinement, there is
always a low but nonzero contact probability for two such
bead pairs, which are otherwise lower or zero in the exper-
imentally processed Hi-C interaction map. As a result, the
current model slightly overestimates those low contact proba-
bilities due to this spherocylindrical confinement. However,
due to the current resolution (5 kbp) of the model and the
interbead excluded volume interaction of the polymers being
modeled via purely repulsive interaction, the model system-

atically overestimates the hardness of each of the polymer
beads. This leads to inherent repulsion even among the beads
that are close-by along the contour of the polymer. A higher
repulsion in turn tends to place these beads a bit farther away
than they should be in cellular environment (where other
attractive interactions are possibly present), causing slightly
lower contact probabilities along the diagonal of the simulated
matrix when compared to the experimental contact probability
matrix.

B. Loci mobility and diffusive exponents are chromosome
coordinate dependent

Figure 2(a) shows the genomic position of different loci
in the circular chromosome [3,4,25]. Each of the color seg-
ments in Fig. 2(a) represents an individual macrodomain and
nonstructured region (NSR, NSL). Every macrodomain and
nonstructured region contains its own corresponding loci po-
sition, giving rise to a total number of 30 loci. To study
the dynamics of chromosomal loci, here we have used BD
simulations in over-damped condition with a time step δt =
1 × 10−4τBD. We simulate a time-range of (0.1–100)τBD,
which corresponds to (1.2 s–20 min) (significantly shorter
than the doubling time of the bacteria at 30◦C in MM).
First we have calculated the time-averaged MSD for each
trajectory (total 200 initial configurations) and subsequently
have performed an average over all the trajectories, which
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we define as “ensemble-average” (MSDn). The time profiles
of MSD and the MSD exponents enable us to character-
ize the type of diffusion i.e., how fast the particles are
spreading in space. The time-average MSD for a particu-
lar loci (n) defined as (MSD)n(τ ) = 〈|�rn(t + τ ) − �rn(t )|2〉t =

1
Ttot

∑
t |�rn(t + τ ) − �rn(t )|2, where τ and Ttot are lag time and

total simulation time, respectively. For a more appropriate
power-law fitting of the ensemble-average MSD, we have
used ((MSDn) = Dτα , D is constant). Generally, (MSDn) =
6Dappτ

α (in 3D), Dapp is the apparent diffusion coefficient,
so we denote D = 6Dapp and α is the MSD exponent. We
have divided the lag time into two regions: (0.1–10)τBD and
(10–100)τBD. We have also cross-checked that instead of the
whole time lag, power-law fitting is better in these two divided
regions.

Figure 2(b) demonstrates the time-averaged MSD, from a
single trajectory as a function of lag time for different loci.
The figure shows that there is a large spread in the time
profiles of MSD across all loci. We first focus our attention
on mobilities of two particular loci (Ori2, Ter3). Specifically,
Figures 2(c) and 2(d) compare the ensemble-averaged MSD
(MSD) and its power-law fitting for these two particular loci
(Ori2, Ter3) at (0.1–10)τBD and (10–100)τBD, respectively. In
these two figures the scatter points are simulated data and the
dotted lines are fitted data. From these figures, it is evident that
there is a significant difference in individual mobility between
Ori2 and Ter3 loci. More importantly, the individual power-
law fitting of the MSD profiles of these two loci reveal that
the diffusive exponent is significantly lower than 1, thereby
confirming their subdiffusive behavior. In particular, consis-
tent with the loci-dependent trend in MSD, the power-law
fitting indicates a significant difference in the exponent values
between Ori2 and Ter3. We have also plotted the MSD values
with an error bar (which is the standard error; see Fig. S2
in the Supplemental Material [38]), in which the mutual dif-
ferences in the mobilities of these two loci are apparent. For
very short time lag [(0.1–10)τBD] MSD exponents are given
by α = 0.49 ± 0.0042 for Ori2 and α = 0.55 ± 0.0007 for
Ter3, which are slightly higher compared to the long time
lag [(10–100)τBD] MSD exponents (α = 0.40 ± 0.0002 for
Ori2 and α = 0.54 ± 0.0001 for Ter3). Experiment reports
[25] that at shorter timescales, the lower and upper limit of
these exponent as 0.4 and 0.5, respectively, which is in line
with what we also observe from our simulations.

Together, the aforementioned observations of considerable
difference in Ori2 and Ter3 movements reveal that both the
loci mobility (as characterized by MSD values) and the re-
spective values of MSD exponents are significantly dependent
on the relative coordinates of these two loci. These results
prompted us for a comprehensive investigation of the mobil-
ity and the diffusive exponents for thirty chromosomal loci
[see Fig. 2(a) and characterize their trend. Accordingly, we
calculated the MSD exponents and apparent diffusion con-
stants from each time-averaged simulation trajectories (total
30 × 200 = 6000) by fitting two different lag time regions
[(0.1–10)τBD and (10–100)τBD]. Subsequently, we made a
box plot and histogram plot for all of the loci to get a more
comprehensive insight into the loci-dependent behavior of
mobility. Figures 3(a) and 3(b) depict the box plot of apparent
diffusion coefficient values of each of the thirty loci as a func-

tion of chromosomal coordinates, with lag time [(0.1–10)τBD]
and [(10–100)τBD], respectively. From these two figures, it
is evident that there are significant differences in diffusion
coefficients that vary across chromosomal genomic positions
in both timescales (short and long). In particular, it is also
evident that among all the loci, Ori1 and Ori2 have substan-
tially high diffusion coefficients and most of the Ter loci show
lower diffusion coefficients. Figures 3(c) and 3(d) illustrate
the box plot of diffusion exponents (α) of individual loci for
short and long lag times, respectively. For short lag time,
the median values of the exponents lie higher than α = 0.5
and for long lag time these median values range between
α = 0.4 to α = 0.5 for most of the loci. This results are well
corroborated with experimental findings by Javer et al. [25],
which reported that these median values lie around 0.4. In a
similar fashion, Figs. 3(e) and 3(f) depict the histogram plot of
MSD exponent for all trajectories of 30 loci for two different
lag times. For short lag time, the mean value of the exponent
αmean ∼ 0.502 ± 0.067 and for long lag time this value is
lower αmean ∼ 0.447 ± 0.158. In both cases, the distribution
of MSD exponent (α) values is very wide.

To understand the effect of k0 on the loci dynamics, we
have performed a fresh set of simulations for different values
of k0 = 1.0, 100.0kBT/σ 2 and compare the results with our
simulation k0 = 10.0kBT/σ 2. Figures S3(a) and S3(b) in the
Supplemental Material [38] represent the MSD exponent and
diffusion constants of the chromosomal loci for the lag time
(0.1–10)τBD. From these figures, it is clear that there are
no dramatic changes in the dynamics of chromosomal loci
with different values of k0 and the trend of heterogeneity in
loci dynamics is retained across the range of k0. The MSD
exponents for all the loci are almost the same but the diffusion
constants change. For k0 = 1.0kBT/σ 2, the Hi-C bonds are
less stiff compared to k0 = 100.0kBT/σ 2. So the chromosome
becomes less compact compared to k0 = 100.0kBT/σ 2, which
escalates the values of diffusion constants.

Taken together, our Hi-C integrated computer model elu-
cidates two key traits of E. coli chromosome: (a) slow
subdiffusive dynamics and (b) heterogeneous chromosomal
loci mobility. These results prompt us to elucidate the under-
lying mechanism of these features.

C. Hi-C contacts as the source of the heterogeneity
in E. coli. chromosomal diffusivity

The preceding discussions pointed out to a significant
loci-coordinate-dependent subdiffusive motion of chromo-
some, largely consistent with the previous measurements by
Javer et al. [25]. These experimentally consistent observations
of heterogeneous mobility across chromosomal loci in our
computer model demand a more microscopic physical inter-
pretation. We noted that one of the key features of the current
model, that sets it apart from other excluded-volume interac-
tion model or other generic polymer-based “Rouse model,”
is the integral presence of “Hi-C” interaction potentials to
capture the experimentally obtained interbeads contact matri-
ces. We speculated that these Hi-C contact might have a role
in dictating the loci-dependent heterogeneity. Accordingly,
to dissect its specific role, if any, we performed a fresh set
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FIG. 3. Box plot of Diffusion constant as a function chromosomal loci in presence of Hi-C with lag time (a) (0.1–10)τBD and (b)
(10–100)τBD. In both case the value of diffusion constants vary from loci to loci, so mobility of chromosomal loci depend on their genomic
coordinate. Box plot of MSD exponent for each and individual loci, by taking MSD exponent from individual trajectory of loci, with lag
time (c) (0.1–10)τBD and (d) (10–100)τBD. For most of the loci median values of the exponent lies higher than α = 0.5 for short time lag
and between α = 0.4 to α = 0.5 for long time lag, respectively. Histogram of MSD exponent by taking all of the trajectory of 30 loci
[total (200 × 30 = 6000 trajectory)] with lag time (e) (0.1–10)τBD and (f) (10–100)τBD. From the histogram mean vale of the exponent is
αmean ∼ 0.502 ± 0.067 for short time lag and αmean ∼ 0.447 ± 0.158 for long time lag, respectively.

of control dynamical simulations by removing Hi-C contacts
from our computer model.

Figures 4(a) and 4(b) (red) plot the MSD exponents of
all loci, as derived from the simulations trajectories of the

model in absence of Hi-C-derived interaction potential, at
short and long two lag times. For the purpose of comparison,
we also reproduced the MSD exponent of same set of loci
as derived in simulations with Hi-C contacts [Figs. 4(a) and

FIG. 4. Bar plot for MSD exponent as a function of chromosomal loci in presence (blue) or absence (red) of Hi-C with lag time
(a) (0.1–10)τBD and (b) (10–100)τBD (red). There is a clear heterogeneity in subdiffusive exponents with respect to different loci.
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4(b) (blue plots)]. The comparison indicates that the MSD
exponents are uniformly similar across all loci in absence of
Hi-C contacts. However, turning on these interactions in the
model recapitulates the loci-dependence of MSD exponents.
On a similar spirit, to investigate this loci-specific hetero-
geneity in diffusion coefficients, we have also calculated this
diffusion constant value from simulated trajectories in the
absence of Hi-C-derived interactions. Figures S4(a) and S4(b)
in the Supplemental Material [38] demonstrate the apparent
diffusion coefficient values as a function of chromosomal
coordinates, in the absence of Hi-C-derived interactions at lag
time [(0.1–10)τBD] and [(10–100)τBD], respectively. When
compared with the results of simulated data in presence of
Hi-C contacts (Figs. S4(c) and S4(d) in the Supplemental
Material [38]), it is obvious that without Hi-C contacts, all
the loci display nearly the same diffusion constant values,
at two different time regions. In combination, these analysis,
based on control simulations, dissect the decisive role of spe-
cific Hi-C contacts in capturing the inherent loci-dependent
mobility.

The resolution of our model and the explicit incorporation
of the Hi-C-derived interaction potential allowed us to track
specific inter-loci contacts and pinpoint the underlying reason
for the coordinate-dependent loci dynamics. In the current
protocol, the intergenomic distance is modeled as inversely
proportional the Hi-C contact probability (Di j = σ/Pi j). Ac-
cordingly, the number of interbeads contacts connected to
each loci gets modulated.

To get a closer insight on why Ter macrodomain demon-
strates comparatively lower mobility compared to other MDs,
we have computed the fraction of connections between dif-
ferent MDs and NS regions (total six) in our model. We
have mapped the (928 × 928) matrix into the (6 × 6) matrix
in accordance with their genomic coordinate and computed
the fraction of mutual contacts among any pairs of MDs.
Figure S5 in the Supplemental Material [38] highlights the
heat map of the fraction of Hi-C contact formed within MDs
and NS regions. This suggests that the fraction of intra-
chromosomal connections within the Ter MD is relatively
higher compared to other MDs, which slows down the mo-
bility of Ter and its loci.

In a bid to investigate how frequent and which particu-
lar pair of chromosomal loci meet with each other for the
first time. we have calculated first-passage time (FPT) for
the chromosomal loci from each of the total 200 trajecto-
ries. Figures 5(a) and 5(b) compare the distribution of FPT
for all the loci with all trajectories simulated with Hi-C and
without Hi-C-derived interaction, respectively. In presence of
Hi-C-derived interactions, numerous loci meet each other sig-
nificantly more frequently for the first time compared to that in
absence of Hi-C, resulting in much shorter mean first-passage
time (MFPT) of 27.14τBD. (compared to almost double value
in absence of Hi-C). More importantly, a wide distribution of
FPT (with long tail) [Fig. 5(a)], evident in presence of Hi-C,
reflects an inherently heterogenous, Hi-C-derived interaction-
modulated encounter between the loci. Figures 5(c) and 5(d)
demonstrate the network plots of FPT of chromosomal loci
in presence and in absence of Hi-C, respectively, with the
thickness of the lines representing the value of average FPT.
The presence of nonspecificity, largely uniform encounters

between the loci is clearly evident when the Hi-C-derived
interactions are turned off.

D. Tracking the origin of subdiffusive motion:
Spatial and temporal coherence

Correlation functions are popular approaches, which pro-
vide dynamical insights for a system. Mathematically, veloc-
ity autocorrelation function (VAF) is defined as, C
t

v (τ ) =
〈�v(t + τ ) · �v(t )〉t , where angular brackets denote the time av-
erage and v(t ) = 1


t (�r(t + 
t ) − �r(t )), 
t are the different
time intervals for velocity calculation, and τ is the lag time.
Physically VAF provides the strength of correlation between
two velocities of the particle separated by a time interval τ .
Here we have calculated an ensemble-averaged VAF for the
genomic midpoint of the chromosome. Previous experimental
and simulation studies on E. coli chromosome [21,22,48] have
revealed the presence of a negative correlation peak at τ = 
t
[49], which slowly goes to zero (τ 
 
t ), due to the vis-
coelastic nature of cytoplasm and when rescaled, τ as τ/
t ,
all of the curves collapsed onto a single curve (i.e., similarity
in motion). Figures 6(a) and 6(b) manifests VAF of E. coli.
chromosome for small and large time intervals (
t), respec-
tively. Similarly Figs. S6(a) and S6(b) in the Supplemental
Material [38] show rescaled VAF for small and large time
intervals (
t ). The observation of negative correlation peaks
in our model is qualitatively consistent with the previous
experiments and implies that our model effectively mimics a
viscoelastic cytoplasm, even without explicit incorporation of
viscoelasticity as well as a memory kernel [50]. We believe
that the presence of long-range interbead connectivity in the
form of “Hi-C” contacts, an essential trait of our model, is
decisive in furnishing the memory and viscoelasticity in an
implicit way. Instead of the genomic midpoint of the chro-
mosome, we have also calculated VAF for Ori2 and Ter3 loci
(Figs. S7(a)–S7(d) in the Supplemental Material [38]), which
also show the same type of behavior.

To get a better insight into how stress is propagated be-
tween two chromosomal loci, [51,52] we have calculated
the velocity-velocity correlation (VVC) function between
two different chromosomal loci i and j. VVC, between
two chromosomal loci i and j, is defined as C
t

vv (τ ) =
〈�vi(t + τ ) · �v j (t )〉t , where angular brackets denote the time
average and vi(t ) = 1


t [�ri(t + 
t ) − �ri(t )], 
t are the differ-
ent time intervals for velocity calculation and τ is the lag
time. Figures S8(a)–S8(h) in the Supplemental Material [38]
demonstrate C
t

vv (τ ) as a function of lag time and rescaled lag
time for two different loci with increasing genomic distance,
respectively. For two loci, separated by a smaller genomic
distance, stress gets communicated quickly (within 
t) be-
tween each other. After that, they behave like a single loci
(Figs. S8(a)–S8(f) in the Supplemental Material [38]). For
loci, which are separated by larger genomic distances, stress
cannot be propagated within this time interval (
t = 90τBD)
and their motion is seen to be uncorrelated (Figs. S8(g) and
S8(h) in the Supplemental Material [38]). We have also veri-
fied the scaling argument by Polovnikov et al. [52] with fractal
globule scaling [53] that there is a timescale t∗, from which
two loci become strongly coupled (Fig. S9 and Table S1 in
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FIG. 5. (a), (b) distribution of first-passage time (FPT) with all the trajectories in the presence of Hi-C and in the absence of Hi-C,
respectively. For Hi-C cases, the count of first-time meetings at a small time is very large compared to the absence of Hi-C case. (c), (d),
represent the network plots of averaged FPT for different loci in presence of Hi-C and no Hi-C, respectively. Loci are denoted with different
colors and placed in a circular orbit according to their genomic coordinate sequence and the connection between them represents the value-
averaged FPT. Color bars are drawn with respect to the value of the averaged FPT. All length and time values are in units of σ and τBD,
respectively.

the Supplemental Material [38]) and this scaling argument is
more or less well corroborated with the simulations results.

Motivated by Zidovska et al.’s work [54], where they have
used displacement correlation spectroscopy (DCS) to study
spatiotemporal evolution of the global chromatin dynamics
in vivo in nuclei of human HeLa cells, we also used the same
method for spatial correlation calculation. Spatial correlation
of the chromosomal loci defined as (Eq. (6) [55])

C
t
s (r) =

〈∑
i> j [
�ri(t ; 
t ) · 
�r j (t ; 
t )]δ(ri, j (t ) − r)∑

i> j δ(ri, j (t ) − r)

〉
t

,

(6)

where i, j are the monomer indices, and 
�ri(t ; 
t ) = �ri(t +

t ) − �ri(t ) and 
t are the differences in time. Physically this
correlation function provides the information on how the dis-
placements of the chromosomal loci, separated by a distance

r, over time interval 
t , are correlated. Figure 6(c) shows
this spatial correlation C
t

s (r) as a function of r. As time
difference 
t increases, the correlation function decays more
slowly. We have also fitted C
t

s (r) by exponentially decay
function as Eq. (7):

f (r) = Aexp

(
− r

ζ

)
, (7)

where A is a constant and ζ is the dimension of length,
called correlation length (all fitting plots and parameters are
given in Fig. S10 and Table S2 in the Supplemental Material
[38]). Figure 6(d) demonstrates the correlation length (ζ ) as
a function of time difference 
t . For small values of 
t , ζ

values are increasing with 
t , but for large values of 
t , ζ

values are almost saturated. To quantify the spatial correlation,
we have projected the displacement vector (
�r(t = 0; 
t )
with 
t = 1τBD and 
t = 90τBD) onto the xy plane with a
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(a) (b) (c)

(d) (e) (f )

FIG. 6. Velocity autocorrelation function(VAF) as a function of lag time for different time interval (a) 
t = (1.0–9.0)τBD and (b) 
t =
(10–90)τBD. Both curve shows that there is a negative correlation peak at τ = 
t and slowly goes to zero (τ 
 
T ), due to the viscoelastic
nature of cytoplasm. (c) Spatial correlation C
t

s (r) as a function of distance (r) for different time interval 
t . As time difference 
t increases,
the correlation function decay more slowly. (d) Spatial correlation C
t

s (r) fitted with exponentially decay function as f (r) = Aexp(− r
ζ

), where
A is the constant value and ζ is correlation length. ζ increases with small values of 
t , but for large values of 
t , ζ values are almost saturated.
(e) Vector field of displacement vector for time interval 
t = 1. (f) Vector field of displacement vector for time interval 
t = 90. Color bars
represent the angle (θ ) of the displacement vector. For a small value of time interval, 
t displacement vectors are more irregular compare to
large time interval 
t . All length and time values are in units of σ and τBD, respectively.

condition (−σ � z � σ ), and represented them by a vector
field. Figures 6(e) and 6(f) depicts the vector field of displace-
ment vector with 
t = 1τBD and 
t = 90τBD, respectively.
From these two figures it is clear that displacement vectors
are more random for small 
t compared to large 
t , which
assist to increase the correlation length with 
t .

E. The Heterogeneity in loci mobility is robust
in presence of active noise

The in vivo cellular condition routinely involves numerous
ATP-dependent biological activities (transport, metabolism)
which prompts the cells to proceed far from equilibrium. A
series of numerous past experiments [56–61] on eukaryotic
cells and polymer model [62–65], have divulged the role of
these biological active processes that initiate nonthermal fluc-
tuations. On a related note, an important experiment by Weber
et al. [24] has revealed that ATP-dependent fluctuation (non-
thermal) control the in vivo dynamics of E. coli chromosomal
loci. However, the investigation of dynamics of chromo-
some inside the untreated and ATP-depleted E. coli cells
suggested that the subdiffusive scaling exponent (αuntreated =
0.39, αtreated = 0.40) is almost unchanged irrespective of pres-
ence or absence of ATP. However the MSD and Dapp (apparent

diffusion coefficient) values are significantly reduced in ATP-
depleted cell.

In light of present investigations’ observation that chromo-
somal loci display a heterogeneous and coordinate-dependent
mobility, we wanted to explore if this result would be
replicated in presence of active noise, which is a better rep-
resentative of in vivo environment. To introduce this into our
computer model, we increased the strength of the thermal
noise and performed a fresh set of dynamical simulations of
the chromosome. In particular, the fluctuation dissipation the-
orem was accordingly changed to 〈 �R(t ) · �R(t ′)〉 = 12Dδ(t −
t ′) [55,66–68] instead of the usual expression 〈 �R(t ) · �R(t ′)〉 =
6Dδ(t − t ′). We term our original simulations (which obey
fluctuation dissipation theorem) as “passive” and current sim-
ulations (which violate fluctuation dissipation theorem) as
“active.” Figures 7(a) and 7(b) show the MSD value as a
function of lag time for two loci Ori2 and Ter3, respectively,
with active and passive noise. From these two figures, it is
evident that the MSD values of these loci are notably higher in
presence of “active” noise than that of “passive” noise. A more
complete comparison across all 30 loci is presented in Fig. 8.
We find that the apparent diffusion constant (Dapp) of each
chromosome locus is significantly increased (almost double)
in presence of “active noise” [Figs. 8(a) and 8(b)] in both short
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FIG. 7. (a) Log-log plot of MSD values as a function of lag time
for Ori2 loci with active (red) and passive (blue) noise. (b) Log-log
plot of MSD values as a function of lag time for Ter3 loci with
active (red) and passive (blue) noise. MSD values of these loci are
significantly different when compared with active and passive noise.

[(0.1-10)τBd ] and long [(10-100)τBD] time lag, respectively.
However, very interestingly, as demonstrated by Figs. 8(c) and
8(d), the respective subdiffusive exponent (α) for individual
loci remains unchanged in presence of active and passive
noise, at both short [(0.1–10)τBd ] and long [(10–100)τBD]
time lags.

For gleaning into the systematic role of noise with different
strengths, we have simulated additional trajectories with noise
strengths 3 and 18 along with 6 and 12. Figures S11(a) and
S11(b) in the Supplemental Material [38] represent the diffu-
sion constant for different chromosomal loci for two distinct
time lag (0.1–10)τBD and (10–100)τBD. From this figure, it
is clear that the diffusion constants increase remarkably with
the increase of the strength of the noise. Figures S11(c) and
S11(d) in the Supplemental Material [38] demonstrate the
MSD exponent for different loci with two different lag times,

respectively. Interestingly, at a short lag timescale (0–10)τBD,
the MSD exponents are almost the same for all the loci. But
for long lag timescale (10–100)τBD, there is a small deviation
in the exponents with respect to different strengths of the
noise. Surprisingly, for higher strength of noise, the MSD
exponents decrease for most of the loci which tells us that
for a longer time the loci motions are damped. One of the
possible reasons behind this is the potential interplay be-
tween noise-induced activity and the topology of the polymer
chain (DNA). This noise-induced activity provides topolog-
ical constraints to the DNA which damps the mobility of
chromosomal loci slightly more than the passive ones at a
larger lag timescale (10–100)τBD. Internal polymer topology
plays a crucial role to control its spatiotemporal dynamics.
DNA topoisomerases are the enzyme which are the regulator
of DNA topology. They help to perform numerous functions
on DNA such as unwinding, rewinding, linking, unlinking,
knotting and unknotting the DNA [69–71], etc. Depending on
the topological constraints of the polymer chain, various static
and dynamic properties have been observed e.g. kinetically
arrested state by random pinning [72,73], activity-induced
polymer collapse [74], genome folding [75,76], tuning of
DNA mobility [77], activity-driven topological glass transi-
tion [78–80], etc. Our observation bears resemblance with
activity-driven topological glass transition in which this noise-
induced activity brings various topological constraints which
can be thought of in the form of effective attraction or random
pinning which increases the relaxation time and escalates the
system to transform to the glassy state.

Together these results indicate that due to the active noise
or ATP-dependent biological activities, mobility of chromo-
somal loci change remarkably but subdiffusive exponents are

FIG. 8. (a) Bar plot of Diffusion constant as a function chromosomal loci for lag time (0.1–10)τBD in presence of active (red) and passive
(blue) noise. (b) Bar plot of Diffusion constant as a function chromosomal loci for lag time (10–100)τBD in presence of active (red) and
passive (blue) noise. For active case Diffusion constant is almost double as compared to the passive case. (c) Bar plot of MSD exponent as a
function chromosomal loci for lag time (0.1–10)τBD in presence of active (red) and passive (blue) noise. (d) Bar plot of MSD exponent as a
function chromosomal loci for lag time (10–100)τBD in presence of active (red) and passive (blue) noise. For both cases (active and passive),
subdiffusive exponents are not changing significantly.
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almost fixed in short lag timescale (0.1–10)τBD. The obser-
vation of a robust MSD exponent irrespective of active or
passive cytoplasm is consistent with previous experiment and
might be due to the fact that viscoelastic nature of cytoplasm,
which is effectively captured by our model’s Hi-C-derived
interactions, does not change notably even in presence of
active noise. Nonetheless, Fig. 8 also asserts that the inher-
ent heterogeneity and loci-dependence of the mobility and
MSD exponents, as found in otherwise “passive” simula-
tions, are rigorously preserved even in presence of “active”
noise.

IV. CONCLUDING REMARKS

Our Hi-C data integrated beads-spring polymer model
with Brownian dynamics simulations, reveals spatiotemporal
dynamics which are consistent with previous experimental
and theoretical findings on prokaryotic [21–25] chromoso-
mal loci. We observed that chromosomal loci are moving
subdiffusively but there is clear heterogeneity in subdiffusive
exponents with respect to genomic coordinates as well as
time. Especially Ori2 and Ter3 differ significantly in their
individual displacements. The mobility of each and every loci
is crucially dependent on chromosomal coordinates. We have
also calculated the mean value of subdiffusive exponent by
taking α value from each loci and making a histogram. The
mean value is αmean ∼ 0.502 ± 0.067 for small lag time and
αmean ∼ 0.447 ± 0.158 for large lag time.

To deduce the origin of the heterogeneous, coordinate-
dependent diffusion, we have run a fresh set of control
simulations by turning off the Hi-C-derived interaction
potentials. We found that, in absence of Hi-C contacts, chro-
mosomal loci are moving homogeneously and their mobility
are unchanged with respect to genomic coordinates. This ob-
servation provides strong evidence of long-range inter-loci
communications, as manifested by the “Hi-C-derived inter-
actions,” as one of key modulators of the local dynamics
of the bacterial chromosome. The observation of a negative
peak in velocity auto correlation function around a particular
time difference (τ = 
t ) brings out the underlying vis-
coelastic nature effectively furnished by the Hi-C integrated
model.

The origin of heterogeneous subdiffusion in the chromo-
somal loci can be interpreted by using arguments based on
thermodynamics [81,82]. The free energy of the system can
be written as F = U − T S where F is the Helmholtz free
energy, U is the internal energy, T is the temperature, and S
is the entropy. Chromosome in absence of Hi-C-derived inter-
action has larger conformation entropy (S ↑) as there are no
Hi-C-mediated restrictions. When we switch on Hi-C-derived
interaction, the internal energy (U ) of the system increases.
Now for any deviation from the equilibrium position, there
are penalties from the internal energy term. Accordingly,
Hi-C-derived nonuniform restriction in the form of internal
energy brings out nonuniform conformational entropy, which
escalates the heterogeneous dynamics of chromosomal loci.

Quite gratifyingly, the subdiffusive exponents are robust
with respect to active and passive noise, while the mobility
of loci changes significantly in presence of active noise. This
robust MSD exponent indicates that in presence of active

noise, viscoelastic nature of cytoplasm, effectively captured
by our model interaction, does not change notably.

The self-organization of E. coli chromosome into nonover-
lapping macrodomains has remained a key structural hallmark
of this archetypal bacteria. However, how a domain-separated
nucleoid would be influencing the dynamics of the chro-
mosome has remained a key question for a while. This is
especially complex, considering the intricacies related to seg-
regation and the loci mobilities. In this respect, while the
recent experimental demonstration of coordinate-dependent
loci movements have been an intriguing discovery, underlying
origin has so far been elusive. The current work brings out the
importance of inter-loci encounter, statistically represented
by Hi-C contacts, in dictating the heterogeneity of the local,
coordinate-dependent chromosomal dynamics. The analysis
of statistical encounters in the form of first-passage time of
contacts (Fig. 5) and the graded extent of macrodomain-
dependent fraction of contacts (Fig. S5 in the Supplemental
Material [38]), provide a fair idea on how local chromosomal
dynamics is governed by the long-range contacts. Overall,
we feel that the current set of investigations reported in
this article enriches our understanding of E. coli’s chromo-
somal dynamics, as well as the extent of information Hi-C
captures.

One of the shortcomings of the current model, is that it
overestimates the repulsive nature of the chromosomal loci.
This causes loci which are genomically close by to have
lower contact probabilities with respect to their corresponding
experimental probabilities. As a future direction, one should
consider using soft-core potentials which may perform bet-
ter than the current hard-core repulsive potentials [83]. A
further upgrade to the current model can be introduction of
other macromolecules such as ribosomes and proteins into the
model [84–86]. It will enable investigations into the diffusion
and localization of such macromolecules [87,88] at different
levels of chromosomal compaction which are brought about
by multiple factors such as varying cell sizes [89], induced
stress on the cell [88] and mutations. Investigations on this
direction is a matter of ongoing research in our group

In the present work, we have modeled ATP-dependent
nonequilibrium fluctuations by changing the fluctuation-
dissipation theorem which is a very simple way to model
it. Recent experimental studies [90,91] highlighted that the
number and position of biomolecular condensates in bacteria
can be controlled by ATP-dependent motor. In future, it would
be interesting to incorporate this ATP-dependent motor in our
existing model.
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