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Cell motility as an energy minimization process
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The dynamics of active matter driven by interacting molecular motors has a nonpotential structure at the local
scale. However, we show that there exists a quasipotential effectively describing the collective self-organization
of the motors propelling a cell at a continuum active gel level. Such a model allows us to understand cell motility
as an active phase transition problem between the static and motile steady-state configurations that minimize
the quasipotential. In particular, both configurations can coexist in a metastable fashion and a small stochastic
disorder in the gel is sufficient to trigger an intermittent cell dynamics where either static or motile phases are
more probable, depending on which state is the global minimum of the quasipotential.
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I. INTRODUCTION

In three-dimensional biological matrices, cell migration
usually does not rely on the formation of focal adhesions [1]
and, taking advantage the external confinement, uses the non-
specific friction between the cell and its environment [2] to
exert traction forces that break the system symmetry and lead
to motion. Depending on the force production mechanism of
the traction forces, several physical models have been put
forward to shed light on this instability setting the onset of
motility [3–10]. In such models, the interaction with the sub-
strate is present in the form of a friction coefficient that can
be modulated depending on the affinity of the cell and its
environment.

Recently, several two- or three-dimensional models have
been put forward to show that the limit of a vanishing friction
coefficient, where the power exerted by the traction forces on
the substrate is negligible compared to other sources of bulk
dissipation, can still lead to cell motion [11–13]. In such limit,
motility is possible because of the turnover property of the
cell skeleton which can build up through polymerization in
the vicinity of the leading edge and depolymerize in sinks,
while the building blocks required to do so are not connected
to the substrate [14]. The cell material is then continuously
renewed ahead of the cell front and can support a traction-free
motion. Interestingly, in such paradigmatic situation, motility
becomes an intrinsic property of the cell that is independent of
the environment’s biophysical details. One can also speculate
on the biological role of such a mechanism as it would render
cell motion robust with respect to change of the environment
chemistry and rheology.

Assuming that cell propulsion in a confined environment
such as a track or a channel [15,16] is mainly driven by
its molecular motors [1], we study one of the most simple
one-dimensional model of this substrate independent type of
cell motility. We show that, despite its active nature, our model
has a variational structure with an effective quasipotential
that is minimized in the course of the cell motion and that
the minima of the quasipotential correspond to the model

metastable steady states. These minima represent a static sym-
metric configuration or a motile asymmetric configuration of
the cell and their appearance and relative level is controlled
by two nondimensional parameters driving the motors’ self-
organization: a global contractility coefficient and a parameter
representing the steric hindrance between the motors.

Next, by introducing a small stochastic perturbation in the
active stress, we show that the metastability of the determinis-
tic system leads to intermittent cell dynamics which can be
either dominated by static phases or by motile phases, de-
pending on which state is the global or local minimum of the
quasipotential. Although our minimal model aims at establish-
ing a physical paradigm rather than reproducing some specific
experimental data, this result may have importance to phys-
ically rationalize some experimentally observed phenomena
such as the intermittency of individual cell dynamics [17,18]
or the fact that in a population of similar cells, a proportion is
motile while others are static [19].

II. CONTRACTION DRIVEN MOTION

A simple physical paradigm describing contraction-driven
cell motility on a stiff substrate is presented in Refs. [5,20]. In
this model, the cell skeleton can be represented as a segment
with a fixed length moving on a one-dimensional track. More
generally, for a deformable substrate [21], the stress balance
in the skeleton reads

∂xσ = ξ (v − vs), (1)

where x ∈ [l−(t ), l+(t )] is the spatial coordinate labeling ma-
terial points of the cell skeleton, t > 0 is the time, l−(t ) and
l+(t ) are the moving fronts of the cell, σ (x, t ) is the axial
stress, ξ is a friction coefficient, v(x, t ) is the velocity of the
skeleton, and vs(x, t ) is the velocity of the substrate. Suppos-
ing that the two moving fronts are connected by a stiff spring
representing the cell volume regulation mechanism [22], we
can associate the following boundary conditions to (1):

σ (l−(t ), t ) = σ (l+(t ), t ) and L = l+(t ) − l−(t ), (2)
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where L > 0 is the fixed cell length. Since the incoming fluxes
of skeleton at the cell boundaries vanish, we have

V (t )
def= ∂t l−(t ) = ∂t l+(t ) = v(l−(t ), t ) = v(l+(t ), t ), (3)

where V is the velocity of the cell. The skeleton constitutive
behavior is assumed to be that of a viscocontractile active
gel [14]

σ = η∂xv + χc, (4)

where η is the skeleton viscosity, χ is the motor contractility,
and c(x, t ) is the concentration of motors cross-linking the
skeleton filaments. Notice that this simple description only
models the contraction-driven skeleton flow setting the cell
front velocity. Although the skeleton building block polymer-
ization and depolymerization is not described, as this process
follows the skeleton flow without impacting it in our perspec-
tive (see Appendix D), such turnover is nonetheless essential
to reconstruct a realistic skeleton density [5]. Following
Appendix A, we assume that the motor concentration follows
the nonlinear drift-diffusion equation

∂t c + ∂x(cv − D∂x( f (c/c0)c)) = 0, (5)

where D is an effective diffusion coefficient, f is a nondi-
mensional positive and nondecreasing function that accounts
for the inhibition of the motors’ attachment to the skeleton
at a high concentration due to a steric hindrance constraint
[23] and

c0 = 1

L

∫ l+

l−
c(x, t )dx (6)

is the average concentration of motors. Because the fluxes of
motors through the cell boundaries vanish

∂xc(l±(t ), t ) = 0, (7)

c0 is a constant set by the initial concentration.
Finally, the substrate is assumed to be viscoelastic so a

certain functional L relates its velocity with the traction forces
exerted by the cell, vs = L[∂xσ ]. Clearly, if the traction forces
∂xσ vanish, the substrate velocity is also zero: L[0] = 0.

III. SUBSTRATE INDEPENDENT REGIME

In this paper, we consider the case of a vanishing friction
coefficient, ξ → 0. This limit physically means that the dis-
sipation due to the interaction with the substrate is negligible
compared to the bulk viscous dissipation. More specifically,
combining (1) and (4) with boundary conditions (2) and (3),
we obtain the following balance of powers [24]:

−χ

∫ l+

l−
c∂xvdx = η

∫ l+

l−
(∂xv)2dx + ξ

∫ l+

l−
(v − vs)vdx.

The left-hand side of the above relation is the active power
performed by the molecular motors to deform the cell skele-
ton meshwork. It is dissipated at the right-hand side by the
skeleton viscosity and its interaction with the substrate, which
can itself be decomposed into the dissipation due to the rela-
tive frictional velocity and the viscoelastic dissipation in the
substrate bulk. Denoting v̄ the typical scale of velocities, in

the regime that we consider, we therefore have the scaling
relations

χc0v̄/L ∼ η(v̄/L)2 and ξ v̄2 � η(v̄/L)2.

Thus, v̄ ∼ χc0L/η and L � √
η/ξ and the vanishing friction

limit correspond to the situation where the cell length is much
smaller than the hydrodynamic length

√
η/ξ screening the

stress propagation in the skeleton [25]. In this situation, the
propagation of the stress locally created by a bundle of molec-
ular motors is long range as it spans over the whole skeleton
meshwork. This approximation is not directly applicable
to the well-characterized case of fish keratocytes crawling on a
two-dimensional surface for which it can be roughly estimated
that η � 105 Pa s and ξ � 1016 Pa m−2 s [26], rather leading
to

√
η/ξ ∼ L. But we anticipate that this limit, aside from its

conceptual interest, can be important for other cell types that
move in the bulk of an extracellular matrix [27], where the
adhesion with the environment is usually weaker.

When the friction with respect to the substrate can be
neglected compared to the internal friction represented by
viscosity, as the skeleton and substrate velocities remain
bounded, we locally have ∂xσ � 0 in (1), leading to vs = 0.
In the case where ξ = 0, the mechanical problem is ill-posed
as any arbitrary rigid body motion can be superimposed to
the movement. However, from the boundary conditions (2)
imposing the same stress at the two fronts, we obtain the
global constraint

ξ

∫ l+

l−
(v − vs)dx = 0,

which we use, supposing that ξ is not exactly zero, to impose
the condition ∫ l+

l−
vdx = 0.

Such global constraint is sufficient to eliminate the rigid body
motions and define unambiguously the vanishing friction limit
which leads to a generic cell dynamics that is independent of
the mechanical interaction between the cell and the substrate.

IV. MODEL FORMULATION

Combining the constitutive relation (4) with the no-flux
boundary conditions (3), we obtain that the homogeneous
stress in the skeleton is σ = χc0. As a result, χ (c0 − c) =
η∂xv which leads by integration to

v(x, t ) − V (t ) = χ

η

∫ l+

l−
H(x − z)(c0 − c(z, t ))dz,

where H denotes the Heaviside step function.
Defining the nondimensional traveling coordinate y =

[x − (l− + l+)/2]/L and rescaling the concentration by c0, the
space by L and the time by L2/D, we obtain the following
nondimensional coupled problem:

α(1 − c) = ∂yw
(8)

∂t c + ∂y(cw − ∂y( f (c)c)) = 0,

with no-flux boundary conditions on c, ∂yc(±1/2, t ) = 0 and
w, w(±1/2, t ) = 0. In (8), there is a single nondimensional
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parameter α = χc0L2/(ηD) that sets the importance of the
contractile activity compared to the two dissipative mecha-
nisms of diffusion and viscosity. As w = v − V represents the
flow of skeleton in the cell frame of reference, the cell velocity
is given by the condition

V (t ) = −
∫ 1/2

−1/2
w(y, t )dy. (9)

System (8) can also be written as a single nonlinear and
nonlocal drift-diffusion equation by solving for w in (8)1

w(y, t ) = α

∫ 1/2

−1/2
H(y − z)(1 − c(z, t ))dz, (10)

such that (8)2 becomes

∂t c + ∂y

(
cα

∫ 1/2

−1/2
H(y − z)(1 − c(z, t ))dz

)
= ∂yy( f (c)c).

(11)

In this nondimensional formulation of the problem, the total
mass conservation constraint (6) becomes∫ 1/2

−1/2
c(y, t )dy = 1. (12)

Combining (9) and (10) and using condition (12), we obtain
the following formula directly relating the velocity and the
first moment of the distribution of motors

V (t ) = −α

∫ 1/2

−1/2
zc(z, t )dz, (13)

showing that the cell motion is supported by the global asym-
metry of c.

When α = 0, (11) represents a purely passive system
where the motors only diffuse and the solution of (11) is
a homogeneous motor distribution c ≡ 1 associated with
V = 0 (and w ≡ 0). However, when α becomes larger than
the critical value αc = π2( f (1) + f ′(1)), where ′ denotes
the derivative, multiple steady states become possible (see
Appendix B) and the question of their local and global sta-
bility properties arises. We shall address this question in the
following section by exhibiting a Lyapunov functional that is
minimized during the evolution of (8).

V. VARIATIONAL STRUCTURE

We define the Lyapunov functional [28,29], F = E − αS
where the energetic and entropic terms are

E[w] = −1

2

∫ 1/2

−1/2
w2dy and S[c] = −

∫ 1/2

−1/2
s(c)dy.

Note that F is not directly interpretable as a free energy of
the system in a classical active gel thermodynamics perspec-
tive [24]. In the above formula, the entropy per unit volume
s(c) is defined in the following way:

s′′(c) = f ′(c) + f (c)

c
,

where we impose that s(0) = 0 and s(∞) = ∞. As f is
a positive and nondecreasing function, these conditions im-
ply the existence of a minimum smin � 0 such that s � smin.

When f (c) = 1, we recover the Boltzmann’s entropy s(c) =
c ln(c) − c while for our choice

f (c) = 1 + rc2, (14)

where r is a nondimensional parameter controlling the
strength of the steric hindrance (see Appendix A), we obtain

s(c) = rc3/2 + c ln(c) − c.

For the homogeneous solution, only the entropic term con-
tributes to F = F0 = α(r/2 − 1).

Using (8), the inequality

∂tF = −α

∫ 1/2

−1/2

(cw − ∂y( f (c)c))2

c
dy � 0

shows that F necessarily decays during the dynamics and
that ∂tF = 0 implies that ∂t c = 0. Using (10), we can check
that |w| � α; we also obtain that F � −(α2/2 − αsmin) is
bounded from below insuring via Lyapunov theory [28] that
system (8) converges to an equilibrium state.

The effective energy can be expressed as a functional of c
only by using (10),

E[c] = α2

2

∫ 1/2

−1/2

∫ 1/2

−1/2
max(y, z)(1− c(y, t ))(1− c(z, t ))dydz,

such that F is also a functional of c only. Using this expres-
sion, we compute the gradient of F with respect to c:

δF
δc

(y, t ) = −α2
∫ 1/2

−1/2
max(y, z)(1 − c(z, t ))dz+ αs′(c(y, t )).

Thus, (11) is equivalent to

∂t c = ∂y

(
c

α
∂y

(
δF[c]

δc

))
,

showing that the dynamics of c is driven by its relax-
ation to the minimum of the quasipotential F . The globally
stable steady state is therefore the ceq(y) distribution that
minimizes F under the constraints ∂yceq(±1/2) = 0 and∫ 1/2
−1/2 ceq(y)dy = 1. The local minima of F are locally stable

steady states while maxima and saddle points are unstable
steady states [28,29].

VI. METASTABLE STEADY STATES

We begin by characterizing the critical points of F which
correspond to the possible steady states of system (8). To do
so, we implement a continuation method starting from the ho-
mogeneous solution at α = 0 using the software AUTO [30]
and follow into the nonlinear regime the bifurcations branch-
ing from this state as α increases. The critical values at
which these nontrivial solution emerge are given by α = αk

0 =
(1 + 3r)k2π2, where k � 1 is an integer (see Appendix B).
The first of these values is αc = α1

0. We show the first three
branches obtained this way in Fig. 1 for r = 0. As solu-
tion measures, we show the values of F − F0 and V . For
each solution bifurcating at an odd bifurcation point (i.e., k
is odd), there is a symmetric solution with respect to the
center of the segment associated with the opposite velocity
(see Ref. [20]). The value of the quasipotential for these
two symmetric solutions is the same and we only show the
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FIG. 1. Three first bifurcations from the homogeneous state for
r = 0. (a) and (b) are bifurcation diagrams for the quasipotential and
the cell velocity. They have a pitchfork supercritical structure. Black
dots localize the bifurcation points. (c) and (d) show the profiles of c
and w for some special points labeled with the corresponding colored
circles on (a) and (b). Full lines correspond to locally stable branches
or solutions while dashed lines are locally unstable.

solution leading to a positive velocity in Fig. 1. Each solution
bifurcating at an even bifurcation point (i.e., k is even) has
an even symmetry with respect to zero and is thus associ-
ated with a zero velocity [see (13)]. As we show in Fig. 1,
when the bifurcation order increases, the number of patterns
in the motor concentration increases. We check in Appendix C
that, except for the first bifurcation, all the bifurcating solu-
tions are locally unstable. Added to this, the homogeneous
solution ceases to be locally stable past the first bifurcation
point.

However, the stability status of the first bifurcation branch
is still interesting. We can analytically show using a normal
form expansion (see Appendix B) that the bifurcation is pitch-
fork supercritical if r < rc = (7 + √

57)/12 or subcritical if
r > rc. In the supercritical case, a local stability of the bifur-
cating branch is found, leading to a simple situation where
the cell converges to either a motile or static (homogeneous)
state depending whether α � αc or α � αc. The subcritical
case is more complex. As we illustrate in Fig. 2, there is a
turning point located at α = αt � αc along the bifurcating
branch leading to a fold. We can then again check numerically
that solutions before the fold are numerically unstable while
solutions after the fold are linearly stable again, although they
look qualitatively similar with motors self organizing at the
trailing edge of the cell, see Fig. 2. Thus, there is a choice of
parameters (r > rc and α ∈ [αt , αc]) for which the static and
motile configurations can be both locally stable, the globally
stable solution being the one corresponding to the minimum
of the quasipotential. We show in Fig. 3 the resulting phase
diagram where the motile and static phase are shown as well
as the third metastable phase where the two configurations
can coexist. In this phase, a Maxwell line separates the re-
gion of parameters space where the motile state is the global

FIG. 2. Structure of the first bifurcation from the homoge-
neous state for r = 3. (a) and (b) are bifurcation diagrams for the
quasipotential and the cell velocity showing the subcritical nature
of the bifurcation. The black dot localizes the first bifurcation point
and the red dot the turning point. The thin dotted vertical lines
represent the domain where both the static and motile configurations
are locally stable. (c) and (d) show the profiles of c and w for
some special points labeled with the corresponding colored circles
in (a) and (b). Full lines correspond to locally stable branches or
solutions while dashed lines are locally unstable.

minimum of F and those where it is the static (homogeneous)
state.

This property entails interesting consequences when the
contractility is no longer deterministic but is subjected to
small stochastic fluctuations as the cell can switch between
the two configurations leading to stop-and-go dynamics.

VII. STOCHASTIC CONTRACTILITY

To simply illustrate the effect of metastability on the cell
dynamics, we consider a source of noise in the model by
changing (4) into

σ = η∂xv + χc + 
s,

where 
s(x, t ) is a small (|
s| � χc0) stochastic spatiotem-
poral noise. As an example, we take

∂t
s − �∂xx
s = Ẇ ,

where � is a diffusion coefficient and Ẇ (x, t ) is a spatiotem-
poral white noise. Thus, 
s represents small variations of the
mechanical stress in the cell skeleton due to some existing ran-
dom disorder. The nondimensional model (8) then becomes

α(1 − c − δσs) = ∂yw

∂t c + ∂y(cw − ∂y( f (c)c)) = 0 (15)

∂tσs − θ∂yyσs = eω̇,

where the new nondimensional variables are θ = �/D that
quantifies the spatiotemporal correlation of the noise and
e � 1 that represents the small noise magnitude in the system.
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FIG. 3. Phase diagram in the parameter space (α, r) characteriz-
ing the steady state of system (8). The black line is the locus of the
first bifurcation point and the red line the one of the turning point
along the first bifurcating branch (when it exists). The blue dashed
line represents a Maxwell line. Above this line, the homogeneous
solution is the global minimum of the Lyapunov functional F while,
below this line, it is the nontrivial polarized solution. We use exp(r)
instead of r to better graphically visualize the separation between the
bifurcation, turning point, and Maxwell lines.

ω̇ is a normalized white noise such that, denoting 〈.〉 the
ensemble average,

〈ω̇(y, t )〉 = 0 and 〈ω̇(y, t )ω̇(y′, t ′)〉 = δ(y − y′)δ(t − t ′).

The stochastic stress σs = 
s/(χc0) is shifted by

δσs(y, t ) = σs(y, t ) −
∫ 1/2

−1/2
σs(y

′, t )dy′,

such that it has a zero spatial average.
Next, we chose r = 3 and numerically simulate (15) for

four values of α = 96, 96.7,97.5, and 100. The two central
values correspond to a metastable regime, see Fig. 2, where
either the static state or the motile state is the global minimum
of the quasipotential while the other state is a local minimum.
We show in Fig. 4 the typical dynamics as well as the probabil-
ity densities of the cell velocities for all four cases. When the
static state is the only existing—and stable—steady state of
the deterministic system, the velocity is peaked around V = 0.
Then, as we reach the metastable regime, the distribution
has three peaks corresponding to a static state and the two
symmetric motile configurations. The size of the peaks of the
probability density of V depends on which state is the global
minimum of F and the system may predominantly feature
fluctuations around the static state with rare motile excursions
or, on the contrary, a motile dynamics rarely alternating the
sign of the velocity and spending a small duration around
the static state. As α increases such that the system leaves the
metastable domain, the unstable static state disappears from
the velocity distribution.

It is potentially interesting to interpret these results at the
collective level as metastability can qualitatively explain why,

FIG. 4. Effect of stochastic fluctuations on the cell metastable
dynamics defined by system (15). (a) Probability densities of the
distribution of velocity of a moving cell in four typical cases: In red
the static configuration is the only steady state of the deterministic
cell dynamics, in green both static and motile states are locally stable
but the static state is the global minimum of the quasipotential, in
blue the motile state becomes the global minimum and in black only
the motile state is locally stable. (b) shows samples of the velocity
dynamics in the four cases. Parameter r = 3 and parameters defining
the noise are � = 0.01 and e = 0.001. The simulations to obtain the
probability densities start from the homogeneous distribution and
are run over a nondimensional time of 1000. The transient state is
removed and the distributions are symmetrized with respect to V = 0
to minimize the computation cost.

in a cell population with the same parameters defining their
molecular motors dynamics, most of the cells may be almost
static with only a certain proportion moving at a large velocity
or, on the contrary, most cells can be motile and a few of the
them static depending which state is the global attractor of the
deterministic system.

VIII. CONCLUSIONS

We have exhibited one of the simplest models of cell mo-
tion that is independent of its interaction with the substrate as,
while they exert vanishingly small traction forces, the molec-
ular motors still produce an internal flow of skeleton that can
propel the cell boundary. Such flow has to be coupled with
a physical process that insures the recycling of the skeleton
building blocks and which is not solved for in this minimalist
model. This can be achieved by considering a backflow [11] or
a chemical turnover reaction that depolymerizes the skeleton
at the back and polymerizes it at the front [22]. We show in
detail in Appendix D that the present model can emerge from
such perspective. This substrate independent motion mode
has a variational structure with a quasipotential that allows
us to characterize the local and global stability of its steady
states. In particular, we find that there exists a region in the
nondimensional parameter space where a static and motile
configuration can coexist in a metastable fashion. In the pres-
ence of an additional small stochastic stress, this leads to the
possibility of an intermittent cell dynamics where the static or
motile phases of motion dominate, depending on which state
is the global minimum of the quasipotential.
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It may be interesting to generalize our results outside of the
vanishing friction limit where the power of the traction forces
is not negligible compared to the internal viscous dissipation.
While an intermittent dynamic can still be observed in a cer-
tain parameter range in this case, it remains unclear whether it
is possible or not to find a quasipotential that would precisely
specify the stability of the steady states.
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APPENDIX A: EFFECTIVE DIFFUSION OF MOLECULAR
MOTORS WITH STERIC HINDRANCE

We consider two concentrations of molecular motors:
c(x, t ) the concentration of motors that cross-link two
fibers of the cytoskeleton (concentration c) and m(x, t )
the concentration of motors that are free to diffuse (co-
efficient Dm) in the cytoplasm [31]. There is an attach-
ment (rate ka) and detachment (rate kd ) dynamics between
these two populations that lead to the following coupled
system:

∂t c + ∂x(cv) = kam − kd c,

∂t m − Dm∂xxm = kd c − kam. (A1)

While we assume that the rate of detachment kd is fixed,
the rate of attachment ka = k0

ag(c) decreases with the con-
centration c because of steric hindrance. The function g(c) is
therefore a positive and decreasing to zero as c becomes large.

Assuming that the system remains close to its chemical
equilibrium because the rates are large compared to the trans-
port and diffusion (ka, kd 
 v/L, D/L2), we have that

m ≈ kd

k0
a

c

g(c)
.

Plugging this approximation in (A1) and assuming that kd/k0
a

is a small parameter while D = Dmkd/k0
a remains finite, we

obtain Eq. (5) by setting that f (c/c0) = 1/g(c), where the
scaling parameter c0 is the average concentration of motors
that is constant during the dynamics.

APPENDIX B: NORMAL FORMS OF THE SOLUTIONS
BIFURCATING FROM THE HOMOGENEOUS SOLUTION

The steady states of (8), for which ∂t c = 0 correspond to
the solutions of the equation

∂y

(
∂y( f (c)c)

c

)
+ α(c − 1) = 0, (B1)

with Neumann boundary conditions at y = ±1/2.
Equation (B1) has the homogeneous solution c ≡ 1. From this
solution, nontrivial solutions bifurcate at specific values of α.
These bifurcation points and the behavior of the bifurcating
solutions can be investigated by plugging a Taylor expansion
of c and α in Eq. (B1),

c(y, t ) = 1 + εc1(y) + ε2c2(y) + ε3c3(y)

+ · · · α = α0 + εα1 + ε2α2 + ε3α3 + · · · , (B2)

where the root mean square of the ci is fixed to one and ε is a
small parameter.

At first order, we find that the operator

( f (1) + f ′(1))∂yyc1 + α0c1 = 0,

with Neumann boundary conditions, becomes degenerate at
the values of α0 indexed by the integer k � 1:

αk
0 = ( f (1) + f ′(1))k2π2.

The smallest value of α0 corresponding to k = 1 is denoted
αc. At each αk

0, a solution bifurcates along the two symmetric
eigenvectors:

ck
1(y) = ±

√
2 cos(πk(y + 1/2)).

At the second order in ε, we obtain using the Fredholm
alternative that αk

1 = 0 and

ck
2(y) = ck

1(y)
√

22 f (1) f ′(1) + 7 f ′(1)2 + 4( f (1) − f ′(1)) f ′′(1) + 7 f (1)2 − 2 f ′′(1)2 + √
2ck

1(2y)( f (1) − f ′′(1) − f ′(1))

3( f ′(1) + f (1))
.

Finally, the value of αk
2 fixing the local nature of the bifurcation is classically given by the third-order expansion:

αk
2 = π2k2(−4 f ′′(1)2 − 10 f ′(1)2 + f (1)(3 f (3)(1) + 11 f ′′(1) + 8 f ′(1)) + f ′(1)(3 f (3)(1) − 5 f ′′(1)) + 2 f (1)2)

12( f ′(1) + f (1))
.

Taking the simple form f (c) = 1 + rc2, where r is a nondimensional parameter fixing the strength of the steric hindrance, we
obtain

αk
2 = π2k2(−18r2 + 21r + 1)

18r + 6
,

which is positive for r < rc = (7 + √
57)/12, indicating a supercritical pitchfork bifurcation, while it becomes negative when

r > rc, indicating a subcritical pitchfork bifurcation.
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APPENDIX C: LOCAL STABILITY

The local (or linear) stability of a certain steady state ceq(y)
is given by the second variation of F at this point. Based on
the expressions of E and S , we obtain the following quadratic
form:

δ2F[h] = α2

2

∫ 1/2

−1/2

∫ 1/2

−1/2
max(y, z)h(z)h(y)dydz

+ α

2

∫ 1/2

−1/2
s′′(ceq(y))h(y)2dy. (C1)

If δ2F is strongly positive for all test functions h that satisfy
the Neumann boundary conditions at ±1/2 and the constraint

∫ 1/2

−1/2
h(y)dy = 0,

the steady state ceq is linearly stable. It is unstable otherwise.
Such a condition is equivalent to checking the positivity of the
eigenvalues of the polar form associated to δ2F . This leads to
the eigenvalue problem

α2
∫ 1/2

−1/2
max(y, z)h(z)dz + αs′′(ceq(y))h(y)dy = μh(y),

where μ is the eigenvalue and h the eigenvector. Differentiat-
ing twice this relation, we obtain the boundary value problem:

α2h(y) = ∂yy((μ − αs′′(ceq(y)))h(y)) with ∂yh(±1/2) = 0.

(C2)

Each eigenvector being defined up to a constant, we addition-
ally impose the normalization

∫ 1/2

−1/2
h(y)2dy = 1.

The local stability of the homogeneous solution ceq(y) ≡ 1
can be resolved analytically since the solution of (C2) is
explicit in this case and we obtain

μ = −α2

k2π2
+ α( f (1) + f ′(1)),

where k � 1 is a positive integer. As a consequence, there
exists at least one negative eigenvalue as soon as α > αc, indi-
cating the loss of local stability of the homogeneous solution
past the first bifurcation point.

For the nonhomogeneous branches, it is not straightfor-
ward to solve (C2) and we investigate the local stability
properties numerically by using the test function combining
the first Q modes

h(y) =
Q∑

k=1

hkck
1(y)

in (C1). We thus have to test the positivity of the eigenvalues
of the symmetric matrix δF = δE − αδS with

δEi, j = α2

2

∫ 1/2

−1/2

∫ 1/2

−1/2
max(y, z)ci

1(y)c j
1(z)dydz = − α2δi j

2i2π2

and

δSi, j = −1

2

∫ 1/2

−1/2
s′′(ceq(y))ci

1(y)c j
1(y)dy,

and where δi j is the Kronecker symbol and i, j are integers in
the interval [1, Q].

APPENDIX D: MODEL OF THE SKELETON TURNOVER

In this Appendix, we expand the model formulation to
represent the implicit material turnover of the cell skeleton
that is coupled to its retrograde flow. While in the main text,
we consider for simplicity only the skeleton and the molecular
motors which actuate it, we shall consider here two additional
components in the system: a fluid phase (the cytosol in a
cell context) that permeates the skeleton meshwork and the
skeleton building blocks that are in solution in the permeating
fluid phase (such as actin monomers in a cell context).

Relying on the porous medium active gel theory presented
in Ref. [32] and considering that the volume fraction of fluid
is fixed, we can express the mass balance laws of the skeleton,
fluid, and skeleton building blocks as

∂tρ + ∂x(ρv) = k+b − k−ρ, (D1)

∂tρ f + ∂x(ρ f v f ) = 0, (D2)

∂t b + ∂x(bv f − Db∂xb) = k−ρ − k+b, (D3)

where ρ(x, t ) is the density of skeleton, ρ f (x, t ) that of the
permeating fluid, and b(x, t ) is the concentration of building
blocks in the fluid. Thus, k± are the assumed fixed polymer-
ization and depolymerization rates of the skeleton, v f (x, t )
is the fluid velocity, and Db is a diffusion coefficient char-
acterizing the mobility of the monomers with respect to the
fluid. As we do not consider any flux of skeleton, water, or
skeleton building blocks through the cell membrane during
the motion, we have that ∂t l±(t ) = v(l±(t ), t ) = v f (l±(t ), t )
and ∂xb(l±(t ), t ) = 0.

The total stress in a representative volume element is


 = −p f + η∂xv + χc, (D4)

where we have neglected the skeleton compressibility assum-
ing that on a long timescale, it behaves as a viscous fluid and
p f (x, t ) is the pressure in the permeating fluid. In the absence
of inertia, force balance imposes that

∂x
 = ξ (v − vs), (D5)

where ξ is a friction coefficient encompassing both passive
friction and the active friction stemming from the engagement
and disengagement of focal adhesions coupling the skeleton
and the substrate [33,34] as introduced in (1). To the force
balance (D5), following Ref. [35], we associate the following
boundary conditions 
(l±(t ), t ) = −γ (l+(t ) − l−(t )) that ac-
count for the presence of a membrane tension γ . Finally, the
fluid motion through the skeleton is described by a Darcy law,

v f − v = − κ

η f
∂x p f , (D6)

where κ is the meshwork permeability and η f the fluid
viscosity.
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Using the fact that the permeating fluid is incompressible,
we obtain from (D2) that ∂xv f = 0 which, using the associ-
ated boundary conditions, leads to (3) of the main text. In
particular, this implies that the length L = l+(t ) − l−(t ) is a
constant. Added to this, it is also considered that the fluid
permeation is fast compared to the velocity of the meshwork
itself at our (long) timescale of interest. This can be quantified
by the nondimensional number

κχc0

η f D
� 4×103 
 1,

where we used the rough estimates derived from experi-
ments on fish keratocytes [20,32]: κ � 2×10−16 m2, χc0 �
103 Pa, η f � 2×10−3 Pa s, and D � 0.25×10−13m2s−1. We
then assume that ∂x p f � 0 (while the product κ∂x p f remains
undetermined) and p f is approximately constant in (D4)
and (D5). Setting σ = 
 + p f , we thus obtain (1) and (4)
with the associated boundary conditions (2) where the residual

stress at the boundaries σ (l±(t ), t ) = −γ L + p f . Along with
the dynamical equation for the molecular motors, we there-
fore recover the model presented in the main text. This
model is augmented with the dynamics for the cytoskele-
ton density (D1) and that of its building blocks (D3). More
specifically, using the above-formulated assumptions and the
nondimensionalization of the main text, we can couple

∂tρ + ∂y(ρw) = ν+b − ν−ρ

∂t b − d∂yyb = ν−ρ − ν+b (D7)

to our model system (8). In (D7), we have kept the same
notations for the densities rescaled by the constant ρ f : ρ :=
ρ/ρ f and b := b/ρ f and used the nondimensional quantities
d = Db/D and ν± = L2k±/D. Once w is solved for in (8), we
can solve the coupled drift-diffusion equation, determining ρ

and b in (D7). In particular, the cytoskeleton building blocks
diffuse in the cytoplasm and are polymerized and depolymer-
ized into the meshwork according to a first-order kinetic.
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