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Universal mean-field upper bound for the generalization gap of deep neural networks
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Modern deep neural networks (DNNs) represent a formidable challenge for theorists: according to the
commonly accepted probabilistic framework that describes their performance, these architectures should overfit
due to the huge number of parameters to train, but in practice they do not. Here we employ results from replica
mean field theory to compute the generalization gap of machine learning models with quenched features, in
the teacher-student scenario and for regression problems with quadratic loss function. Notably, this framework
includes the case of DNNs where the last layer is optimized given a specific realization of the remaining
weights. We show how these results—combined with ideas from statistical learning theory—provide a stringent
asymptotic upper bound on the generalization gap of fully trained DNN as a function of the size of the dataset
P. In particular, in the limit of large P and Nout (where Nout is the size of the last layer) and Nout � P, the
generalization gap approaches zero faster than 2Nout/P, for any choice of both architecture and teacher function.
Notably, this result greatly improves existing bounds from statistical learning theory. We test our predictions on a
broad range of architectures, from toy fully connected neural networks with few hidden layers to state-of-the-art
deep convolutional neural networks.
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I. INTRODUCTION

In the last ten years deep neural networks (DNNs) [1] have
revolutionized the field of machine learning, outperforming
traditional methods in tasks that include image classifica-
tion, speech recognition, and time series prediction. Despite
the enormous success in applications, the size of these ar-
chitectures represents a puzzle for theorists. When AlexNet
won the ImageNet competition in 2012 [2], it had roughly
60 million parameters. In the following years, another DNN,
the Visual Geometry Group (VGG) architecture delivered
the state-of-the-art performance with more than 138 mil-
lion parameters [3]. Nowadays, convolutional DNNs such
as ResNet or Inception work by training about 10 million
weights [4,5]. According to common intuition, models with
such a high number of degrees of freedom should overfit the
training data and perform poorly on previously unseen data
samples. Statistical learning theory (SLT) is regarded as the
established probabilistic framework to quantify the general-
ization performance in machine learning [6,7]. In particular,
it provides uniform bounds on performance degradation when
generalizing to previously unseen data, based on capability
or complexity measures such as the Vapnik-Chervonenkis
dimension [8] or the Rademacher complexity [9]. Unfortu-
nately, these bounds do not provide any guarantee that the
severely overparametrized state-of-the-art models should have
any predictive power on test data.

Overcoming this conceptual puzzle engages computer
scientists, mathematicians, and physicists alike [10–12]. In

Ref. [13] the authors provide a mean field view of the stochas-
tic gradient dynamics of one-hidden layer networks by using
the theory of gradient flows in Wasserstein spaces [14]. Sim-
ilar results for one-hidden layer networks can be found in
Refs. [15–17]. Unfortunately, it is challenging to extend this
approach to deeper networks, although for a recent attempt in
a simplified setting one may check Ref. [18] . Other groups
are studying the role of overparametrization and related phe-
nomena such as the double descent in the regime of lazy
training [19–25]. Also the statistical physics of kernel learning
(originally started in Ref. [26]) has undergone a revival in
the last few years [27], mainly due to the discovery of the
Neural Tangent Kernel (NTK) limit of deep neural
networks—a mathematical equivalence between neural net-
works and a certain kernel that arises in the limit of large layer
size [28,29]. Despite all these major conceptual advances in
the field, it is fair to say that a unified framework to investigate
and understand the generalization performance of DNNs is
still missing.

On the mathematical side, it is instructive to rationalize
why the theorems proven in the framework of statistical learn-
ing theory often yield very loose bounds when applied to
practical problems (as brilliantly put forward in Ref. [30]
by Bottou or in the recent review [31] by Belkin). The goal
of theorems in SLT is to provide distribution-independent
uniform bounds on the deviation between the generalization
and training errors, which are mostly based on the uniform
law of large numbers and on techniques for capacity control
[31]. The formulation and the derivation of these theorems
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reveal a source of possible reasons for their poor quantitative
performance: (1) empirically relevant data distributions may
lead to smaller typical deviations than the worst possible case
[32–36] and (2) uniform bounds hold for all possible functions
in the model, but better bounds may hold when one restricts
the analysis to functions that perform well on specific (and
significative) training sets.

In this paper we build upon these considerations to develop
a mean field theory for the generalization gap (GG) of deep
neural networks. First, we employ nonrigorous but standard
statistical physics tools of disordered systems [37], together
with a key Gaussian approximation on the statistics of the
features known as Gaussian Equivalence Principle [20], to
compute the generalization and training errors of machine
learning models with quenched features, obtaining simple
formulas in the regime of large training dataset size P. In
particular these results hold in the teacher-student scenario
for a broad class of input-output distributions when the em-
ployed loss function is the mean squared error. Notably, this
setup includes the case of DNNs where the Nout weights in
the last layer are optimized given any specific instance of
the remaining weights. Analogous results have been derived in
the recent literature [25,27,38,39]; here we show how to em-
ploy them to derive a universal mean field upper bound for the
generalization gap of fully trained DNNs. In the limit Nout �
P (a condition satisfied by most state-of-the-art DNNs, even
in the overparametrized regime where P is small compared
to the total number of weights), a simple asymptotic upper
bound emerges, according to which the gap should approach
zero faster than 2Nout/P. This is our central result, which in
the large P limit greatly improves existing estimates. Finally,
we check the validity of our mean field bound against several
synthetic and empirical data distributions and across a variety
of different architectures, ranging from toy DNNs with few
fully connected layers to state-of-the-art ones employed for
challenging computer vision problems.

Although these results lack the mathematical rigor of for-
mal theorems, they take a concrete step towards understanding
why overparametrized DNNs work in practice and may guide
us to the formulation of more informed and accurate bounds
for the generalization gap of modern DNNs.

II. GENERALIZATION GAP OF QUENCHED
FEATURE MODELS

We start by briefly describing the setting of the super-
vised learning problem that we will study throughout the
paper. Let us consider a training set T made of P inde-
pendent identically distributed (IID) random observations,
T = {(xμ, yμ)}P

μ=1, where the xμ’s are D-dimensional vec-
tors drawn by an input probability distribution ρ(x) and the
yμ’s are scalar outputs provided by a real-valued teacher
function fT, i.e., yμ = fT(xμ). Under these assumptions, the
joint input-output probability distribution ρI/O(x, y) is given
by ρI/O(x, y) = ρ(x)δ(y − fT(x)).

Our first goal is to compute the generalization per-
formance of a model (the so-called student) of the

following form:

fS(x) =
N∑

α=1

vαφα (x) = v · φ(x), (1)

where φ is an N-dimensional feature map and v is an
N-dimensional vector of real weights to be optimized. The
average generalization and training errors are defined as

εg =
〈∫

dDxρ(x)[ fT(x) − f ∗
S (x)]2

〉
T

, (2)

εt =
〈

1

P

P∑
μ=1

[ fT(xμ) − f ∗
S (xμ)]2

〉
T

, (3)

where 〈·〉T indicates the average over all the possible realiza-
tions of a training set of size P, and the optimized function
f ∗
S corresponds to the choice of the vector v∗ that minimizes

the quadratic loss P−1 ∑P
μ=1[ fT(xμ) − fS(xμ)]2 for a given

instance of the dataset T . Although in principle this approach
can be developed for arbitrary loss functions [25], here we will
consider only quadratic loss and regression problems, which
are considerably simpler to deal with analytically [27,40,41].

The generalization power of a machine learning model can
be measured by its generalization gap,

�ε = εg − εt, (4)

which expresses the average performance difference of a
trained model between its training dataset and unseen data
drawn from the same distribution. Crucially, it is possible to
express the generalization and training errors as a function of
the features; as we will discuss in the following, this ingre-
dient is fundamental to provide insight on the generalization
gap of fully trained DNNs. Here the calculation of the average
generalization and training errors is performed using the well-
known replica method, a standard statistical physics technique
developed to study disordered systems [37]. Optimization is
addressed introducing an effective Hamiltonian given by the
sum of the training loss with a regularization term,

L = 1

2

P∑
μ=1

[ fT(xμ) − fS(xμ)]2 + λ

2

N∑
α=1

(vα )2, (5)

gauged by the regularization parameter λ > 0. Given the
convexity of our problem, we can make use of the replica
symmetric ansatz, which is known to deliver the correct result
for convex optimization when P � 1 [26]. The ground state
of the effective Hamiltonian, given by the optimized f ∗

S , is
finally evaluated from the replicated partition function in the
large P limit via the saddle-point method. This approach is
rather similar to that developed for the random features model
(RFM) [42] and for kernel regression [27], and it is discussed
in detail in the Appendixes. In order to derive a closed ex-
pression for the generalization and training errors, one has to
assume the features to be Gaussian distributed, at least for the
purpose of the present calculation (further details are found
in Appendix A). While this assumption, a sort of generalized
central limit theorem, has been proven only for specific types
of feature maps [13], empirical observations suggest that it
holds in much broader contexts [25].

064309-2



UNIVERSAL MEAN-FIELD UPPER BOUND FOR THE … PHYSICAL REVIEW E 105, 064309 (2022)

Under this mean-field-like approximation, also known as
Gaussian Equivalence Principle [20], the analytical expres-
sions for the generalization and training errors depend only on
second-order moments, given by the following integrals over
the input probability distribution:

Jα =
∫

dDxρ(x) fT(x)φα (x),

	αβ =
∫

dDxρ(x)φα (x)φβ (x),

T =
∫

dDxρ(x) f 2
T (x),

(6)

with α, β = 1, . . . , N . The vector J and the matrix � depend
on the specific choice of the feature map φ and respectively
represent a teacher-feature and a feature-feature overlap,
whereas the scalar quantity T is by definition the trivial pre-
dictor [43] of the regression problem, and it provides a natural
scale to compare different learning problems. Using these def-
initions, we find the following compact representation for the
generalization and training errors (valid in the thermodynamic
limit of large D, N, P as discussed in Appendix A):

εg = εR
g + (κλ)2JT �−1G−2J

1 − PTr(�2G−2)
,

εt = εR
g

κ
+ εg

κ

(
κ − 1

κ
− N

P

)
,

(7)

where the matrix G = κλ1 + P� is invertible and the variable
κ is self-consistently defined via the following equation:

κ = 1 + κTr
(
�G−1). (8)

The residual generalization error εR
g corresponds to the best

possible performance of the quenched model on the dataset,
under the assumption of full knowledge of the input-output
probability distribution, and it is given by

εR
g = T − JT �−1J. (9)

It is worth noticing that for strictly infinite size of the
dataset P, κ → 1 and it is easy to prove that εg → εR

g and
εt → εg, which provide a first consistency check of the valid-
ity of the mean field theory. Additionally, the self-consistent
definition of κ and the way it enters in the expression for
the generalization error are the same as in the recent work
on kernel regression by Pehlevan’s group [27]. This should
not come as a surprise, since one could specialize the general
quenched features that we employ here to the case of polyno-
mial, Gaussian or NTK kernels. For these particular choices
of the quenched features, Eq. (7) just provides a different
representation of the generalization error formula given in
Ref. [27]. A generalization of Eq. (7) has been recently proved
in Ref. [25].

Starting from Eq. (7) it is possible to perform an asymptotic
analysis for large size of the training set P. This is particularly
simple if we assume that both P and N are large, N � P and
the regularization parameter λ is finite. In this case we easily
obtain that κ ∼ 1 + N/P and G ∼ P�. Using these asymp-
totic expressions, and normalizing by the natural scale of the
problem—i.e., the trivial predictor T defined in Eq. (6)—we

can compute the normalized generalization gap:

�ε̃ ≡ �ε

T

 2

εR
g

T

N

P
. (10)

Note that Eq. (10) does not necessarily imply a linear scaling
with N since εR

g may still retain a dependence on N [as
implied from Eq. (9)]. Moreover, it is worth stressing that the
derivation of Eq. (10) assumes that all but a finite number of
the N eigenvalues of the covariance matrix � are different
from zero.

III. GENERALIZATION GAP OF FULLY TRAINED DNNs

Let us now suppose that the quenched features of the
model under consideration are given by a DNN. For instance,
in the special case of a fully connected architecture with
one hidden layer, we have that the function implemented is
f1HL(x) = ∑N

α=1 vασ (Wα · x), where for simplicity we have
set all the biases to zero. The Wα’s are the D-dimensional
vector weights of the hidden layer and σ is a generic well-
behaved activation function. Here the quenched features are
given by φ1HL

α (x,W ) = σ (Wα · x). More in general, let us
consider a DNN with a fully connected last layer. The specific
architecture of the first layers is uninfluential. This class in-
cludes all the relevant state-of-the-art architectures. Let us fix
the dimension of the last layer to N = Nout, and let us split the
weights ϑ of the network as ϑ = {v,W} where v is the vector
of Nout-dimensional weights of the last fully connected layer,
whereas W is a short notation for all the remaining weights of
the DNN. We introduce the feature map notation φDNN

α (x,W )
to indicate the corresponding quenched features.

We now reconsider the results provided by Eq. (7) when
specialized to the quenched features of a DNN. The crucial
observation is that this mean field theory provides the average
generalization and training errors for each realization of the
weights W . In other words, given a specific configuration W̄ ,
our theory predicts the corresponding average generalization
and training errors, supposing that the weights v of the last
layer are set to the optimal value that minimizes the training
loss at fixed W̄ . From now on, we use the notation εg(W ),
εR

g (W ), εt(W ) to stress that the generalization and training er-
rors depend on W via the teacher-feature J and feature-feature
� overlaps.

Therefore, the result in Eq. (10) holds for each given re-
alization of the weights W of the DNN if we assume perfect
training over the last layer. See also the recent conjecture put
forward in Ref. [25]. In particular, this equivalence holds for
a fully trained configuration θ∗ ≡ {v∗,W∗} that is a local
minimum of the loss. Unfortunately, such local minimum
may depend on the size P of the training set, and so it does
εR

g (W ). However, since the residual generalization error (9)
is positive by definition and bounded by T , it follows that
0 � εR

g (W )/T � 1 for every W . As such, this provides us
with the following asymptotic mean field upper bound for the
(normalized) generalization performance of a DNN:

�ε̃(W ) � 2Nout

P
, (11)

which is the central result of this paper. It should be com-
pared with the classic SLT result where the generalization
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FIG. 1. Generalization gap in the lazy-training regime. The behavior of the normalized GG for a one-hidden layer student architecture is
displayed for the three different classes of teacher outlined in the main text: linear (blue symbols), quadratic (green), and one-hidden layer
(red). The solid black line marks our mean field upper bound. (a) Normalized GG (rescaled by Nout) as a function of the training dataset P.
Data points are the result of an average over 50 different realizations of the teacher and of the input (of dimension D = 50) with Nout = 400.
We observe that the functional form of the rescaled GG �ε̃ is compatible with y0/P over two decades. In the inset we consider different
input dimension for the linear teacher case, showing that by increasing D, the residual generalization gap converges exponentially fast to the
bound, i.e., the prefactor y0 (which is obtained by a standard fitting procedure) converges exponentially from below to 2 as D → ∞ with a
rate γ ≈ 0.0014 (see also Appendix B). (b) The normalized GG (multiplied by P) is shown as a function of the size of the hidden layer Nout.
Simulations are performed with P equal to 2 × 104 (linear teacher), 4 × 104 (quadratic), and 8 × 104 (1HL), and by averaging over 20 different
teacher and input realizations (D = 50). Error bars in both panels correspond to one standard error. Typical (rescaled by T ) training errors in
the lazy-training regime are of order 10−1 and are systematically smaller for the linear teacher.

gap is bounded by
√

dVC/P, where we have introduced the
Vapnik-Chervonenkis dimension dVC, a compact measure of
the architecture capacity. In the case of deep neural networks
it is roughly proportional to the total number of parameters
Ntot of the architecture.1

IV. NUMERICAL EXPERIMENTS

A. Toy DNNs with synthetic datasets

We start by testing our bound on a fully connected ar-
chitecture with one-hidden layer and ReLU activations. We
have chosen three different teacher classes of increasing com-
plexity: (1) a linear function fT(x) = t · x, (2) a quadratic
polynomial fT(x) = t · x + (t · x)2, (3) a fully connected
one-hidden layer (1HL) architecture with ReLU activations,
fT(x) = ∑M

α=1 qαReLU(Sα · x). See also Appendix B for de-
tails on these architectures and on the input choice.

We first consider DNNs where only the last layer is trained
and the remaining weights are kept fixed to their initialization
values W̄ , i.e., we consider the lazy training regime [45].
Since the W̄’s do not change during training, the residual gen-
eralization error εR

g (W̄ ) is independent of P, and one expects
not only the bound (11) to hold but also the generalization gap
to scale precisely as 1/P for P large enough. This is verified
in Fig. 1(a) for the three different teacher classes introduced
above. On the other hand, as already noted, εR

g (W̄ ) may still
retain a dependence on the last layer size Nout. In particular,
one may expect that increasing Nout will decrease the residual

1Classic Vapnik-Chervonenkis dimension is defined for classi-
fication problems, but generalization to regression (the so-called
pseudo-dimension) is straightforward [44].

generalization error, as this increases the number of functions
available to approximate the target fT(x). Therefore, for large
P and Nout we expect �ε̃ to increase at most linearly as
a function of Nout. The numerical behavior of the GG as
a function of Nout is shown in Fig. 1(b). Once again, our
mean field bound holds, but different scaling with Nout can
be appreciated. In particular, the GG is almost constant for the
linear teacher, whereas it has an approximately linear behavior
for the quadratic one, reflecting different dependencies of the
residual generalization error from the last layer size. Note also
that in both panels of Fig. 1 the GG is systematically lower for
the linear teacher case, confirming the intuitive expectation
that the linear problem should be the easiest to learn.

It is worth remarking that the input dimension D only
enters the theory through the residual generalization error
(9). Interestingly, as one increases the input dimension D,
the normalized generalization gap seems to saturate the unit
bound with an exponential convergence in D, as shown in the
inset of Fig. 1(a) for the linear teacher case (see more details
in Appendix B). Currently we have no theory for this.

We next consider fully trained DNNs. Here the weights
W are trained and the residual generalization error εR

g (W )
may depend on the training set size P. Suppose for instance
that there exists a configuration of the weights W† such that
the residual generalization error εR

g (W†) = 0, i.e., the DNN
can learn the teacher function perfectly. Intuitively, as the
size of the dataset P grows, we expect that the DNN will
be capable of finding configurations W that are closer to the
optimal one W†. This means that the residual generalization
error will decrease in some way towards zero as a function
of P for P large enough, and that the the GG will decrease
faster than 1/P.

In the complementary case where the DNN is not capable
of learning the target function, there will be a nonzero residual
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FIG. 2. Generalization gap of fully trained toy DNNs with one [left columns in (a) and (b)] and two (right columns) fully connected hidden
layers for the three different teacher classes outlined in the main text. From top to bottom: linear (blue symbols), quadratic (green), and 1HL
teacher architectures (red). The solid black line marks the mean field upper bound. (a) Normalized GG (rescaled by Nout as a function of the
size of the training set P. Data points are the result of an average over 50 realizations of the teacher and of the input (D = 50) with Nout = 100.
(b) Normalized GG (multiplied by P vs the size of the last hidden layer Nout. Data are averaged over 20 different teacher and input (D = 50)
realizations with P = 4 × 104. Error bars in both panels correspond to one standard error. Typical training errors are of the order of 10−6 for
each teacher-student pair, except in the case 1HL/1HL, where the training error is of order 10−3.

generalization error εR
g (W ) = ε̂R even for P → ∞: the 1/P

scaling of the GG will thus be restored asymptotically.
Numerical simulations for fully trained DNNs are shown

in Fig. 2. As expected from the considerations raised above,
and differently from the lazy training regime, here we do
not observe a simple 1/P scaling of the gap [Fig. 2(a)]. On
the contrary, the GG curves display two learning stages as a
function of P, with the GG falling systematically below the
mean field bound above P ∼ 104. Once we enter in the second
learning stage (for P of the order of 104) the gap, however,
seems to approach zero as fast as 1/P for both one and two
hidden layer architectures and across the different synthetic
datasets, suggesting a fine constant residual generalization
error in this second learning stage. In Fig. 2(b) we analyze
the generalization performance as the width of the last layer
Nout grows. According to our predictions, the bound holds,
and a linear or sublinear degradation of the generalization
performance is systematically observed across the different
student and teacher architectures.

B. State-of-the-art architectures

As an additional and more challenging test, we present
the results for the generalization gap obtained by train-
ing three different state-of-the-art convolutional architectures
(ResNet18, DenseNet121 and VGG-11) on the MNIST
dataset of handwritten digits [46]. Notice that this problem is
in principle a classification problem, but our theory has been
formulated for regression. For this reason we implemented the
learning problem as a regression task: for each digit vector x,
the associated output is simply the integer number, between 0
and 9, corresponding to its class. Coherently, the performance
of the network is not measured using the standard accuracy
(i.e., the fraction of correctly classified digits), but as the

mean square deviation between the network’s output and the
class index.

A summary of the simulations is found in Fig. 3 (de-
tails on the learning protocols are provided in Appendix B).
Remarkably, our bound is also satisfied in the case of state-of-
the-art architectures trained on a dataset of practical relevance
for computer vision. Moreover, notice that in the regime
we are exploring the generalization gap approaches zero
faster than 1/P.

V. DISCUSSION AND FUTURE PERSPECTIVES

Our mean field analysis, while lacking the full rigor of
theorems, establishes a much more stringent bound for the
generalization gap w.r.t. the ones obtained in the strict context
of statistical learning theory. For instance, SLT predicts an
upper bound roughly proportional to

√
Ntot/P with Ntot being

the total number of network parameters [47] (in the setting of
regression problems this can be found using the Rademacher
complexity [9]), while our upper bound depends on the num-
ber of parameters of the network only through the width of the
last layer; this may lead to speculate that the width of the last
layer plays a special role in DNN architectures. The reason
why we have been able to obtain this improved nonrigorous
upper bound on the generalization gap is related to taking op-
timization into account, at least in the last layer. Whereas SLT
attempts to find results for the generalization gap that hold for
every function in the model class, here we are restricting to
special (but significative) elements of the class. In particular,
for the specific case of a DNN with parameters ϑ = {v,W},
classic SLT bounds hold for every realization of ϑ . On the
contrary, our approach assumes that at fixed W the weights v
of the last layer are optimized w.r.t. the training set.

It is fair to stress the major limitations of our mean field
bound. (1) Crucially the bounds in SLT hold for any size of the
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FIG. 3. Generalization gap for three state-of-the-art architectures
trained on the MNIST dataset of handwritten digits. The dependence
of the normalized generalization gap on the size of the training set P
is qualitatively similar for ResNet18 (blue symbols), DenseNet121
(green), and VGG-11 (red). The solid black line marks the mean
field upper bound. Notice that by rescaling the GG by Nout we can
better compare architectures with different last layer size. Averages
have been performed over three different initial conditions for the
architecture weights, and error bars measure one standard error.
Typical training errors are of order 10−4.

dataset and of the architecture (although it looses predictivity
when the latter is larger than the former). On the contrary,
we have no control on finite-size corrections, since our results
hold only in the limit of large P and Nout, but our bound
retains predictive power in the overparametrized regime. (2)
As observed in Fig. 2, there are cases in which the bound
starts to hold only after a threshold Pt ≈ 104–105, which
the theory does nothing to predict. However, our numerical
experiments (e.g., those in Fig. 3) show that the threshold
is rather small in many empirically relevant cases. (3) A
Gaussian approximation was performed at the level of the
replicated partition function (for details see Appendix A).
Despite similar assumptions have been successfully employed
in the past to study the statistical physics of kernels and
of random feature models (where excellent agreement with
numerics has also been found) [26,27], we cannot guarantee
that this approximation is always quantitatively correct. (4)
These results hold for regression only. It would be interesting
to understand whether the same nonrigorous tools could also
be used to study classification problems [25]. (5) In the spirit
of SLT, we have investigated the generalization gap, but it
would be interesting to understand if our results have some
interpretation in terms of the classic bias-variance decom-
position of the generalization error, as done, for instance, in
Ref. [19].

Some of these drawbacks may be addressed by a more
rigorous approach, for instance, by the use of random matrix

theory to avoid replicas (as done, for instance, in the case of
kernel learning in Refs. [38,48–51]). This may shed light on
the dependence of the GG on the input dimension D, which we
have shown numerically in the lazy training regime to saturate
exponentially to the mean field bound.

In conclusion, we would like to point out an apparently
intriguing consequence of our findings: since our mean field
bound suggests a (linear or sublinear) degradation of the gen-
eralization performance with the last layer size Nout, we might
be led to surmise that, to improve generalization performance,
it may be convenient to design architectures with a small
last layer. A more systematic investigation on state-of-the-
art architectures is needed to understand whether this insight
may lead to design more performant deep neural networks in
the future.
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APPENDIX A: SKETCH OF THE REPLICA
SYMMETRIC CALCULATION

We now discuss the salient aspects of the replica calcula-
tion. Further technical details can be found in Appendix C.
Our goal is to evaluate the generalization and training errors
defined in Eqs. (2) and (3) for arbitrary teacher function fT(x)
and using as a student a function of the form (1).

1. Replicated partition function

In order to evaluate these observables, one introduces a
Gibbs distribution pG(v) = 1

Z e−βL(v), where L is the effective
Hamiltonian defined in Eq. (5) and β can be thought as the
inverse of an effective temperature. The partition function Z
is given by

Z =
∫

dN ve− β

2

∑P
μ [ fT(xμ )− fS(v,xμ )]2− β

2 λ‖v‖2
. (A1)

In the β → ∞ limit, the Gibbs measure is dominated by
the minimum of the Hamiltonian, which corresponds to the
minimum of the training loss. As for many other problems in
disordered systems, meaningful results can be obtained only
by quenched averages, that is, by averaging the logarithm of
the partition function over all the possible realizations of the
training set T . Physically, this amounts to optimizing first the
student weights for any given instance of the dataset T and
then averaging over all dataset realizations [52]. In order to
perform this quenched average we exploit the standard replica
method [37],

〈log Z〉T = lim
m→0

〈Zm〉T − 1

m
, (A2)

where one first computes the average of Zm for an inte-
ger number of replica m and only later one performs the
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analytical continuation to m → 0. Since the inputs are drawn
as iid variables, the integral over the training set factorizes to
yield

〈Zm〉T =
∫ m∏

a=1

dNvae− β

2 λ
∑m

a ‖va‖2

[∫
dDx ρ(x)e− β

2

∑m
a (qa )2

]P

,

(A3)

where a is a replica index and we introduced a set of aux-
iliary random variables qa ≡ fT(x) − va · φ(x) with mean

μa
q({va}) = 〈qa〉ρ and covariance matrix:

Qab({va}) = 〈qaqb〉ρ = T + (va)T � vb−JT · (va+vb) (A4)

(with J, �, and T given by Eq. (6)). To proceed further we
note that each of the random variables qa is the sum of N
random variables. For a large last layer size N and input di-
mension D we approximate their probability distribution with
a multivariate Gaussian with mean μa

q and covariance matrix
Qab (an order parameter which measures the overlap between
replica a and b). This allows us to perform the integration in
the square brackets in Eq. (A3) to get

∫
dDx ρ(x)e− β

2

∑m
a (qa )2 =

∫ m∏
a

dqae− β

2

∑m
a (qa )2

∫
dDxρ(x) δ

(
qa −

N∑
α

va
αφα (x) + fT(x)

)



∫ m∏

a

dqa e− β

2

∑
a(qa )2− 1

2

∑
ab(qa )T Q−1

ab qb

√
(2π )m det Q

=
(

det(I + βQ)

)− 1
2

, (A5)

where we have assumed μa
q = 0 without loss of

generality [27].
It is worth noticing that this Gaussian approximation is

crucial in order to make progress, but rather uncontrolled, as
we lack a formal result demonstrating its validity. Nonethe-
less similar nonrigorous approximations are quite standard in
the literature on kernel learning, which include the seminal
work on support vector machines by Dietrich, Opper, and
Sompolinsky [26], more recent findings on kernel regres-
sion [27] or works on the so-called random feature model,
where this approximation goes under the name of Gaussian
equivalence principle [20]. These ideas imply that the N fea-
ture maps φα (x) are somehow mutually weakly correlated, an
assumption deemed reasonable for a large class of relevant
architectures in the thermodynamic limit of large N and D
with finite N/D [20].

The integration of Eq. (A3) over the weights va, while
rather convoluted, now follows a standard replica scheme as
detailed in the more technical Appendix C. Due to Eq. (A5)
and making use of the identities

1=
∫

dQab δ
(
Qab − 〈qaqb〉ρ

)

=
∫

dQab
dQ̂ab

2π
e−iQ̂ab(Qab−〈qaqb〉ρ )

(A6)

one may express Eq. (A3) as an integral over the replica or-
der parameter Qab and its conjugated variables Q̂ab. Working
in the replica symmetric ansatz, which holds for our con-
vex problem, Qab = Q0δab + Q(1 − δab) (the same symmetry
holding for the conjugated variable), one may compute the
leading, linear order contribution in m which determines the
limit (A2), to get

〈Zm〉T ≈
∫

dQ0 dQ dQ̂0 dQ̂ e− mP
2 Sβ (Q0,Q,Q̂0,Q̂) (A7)

with the rather complicated expression for the action
Sβ (Q0, Q, Q̂0, Q̂) given by Eq. (C12) of Appendix C.

We can finally solve this last integral by saddle-point
method in the large P limit. One has to solve a set of four
saddle-point equations to find the action minimum that de-
termines the two order parameters of the problem and their
conjugated variables (see Appendix C). In the β → ∞ limit
the order parameter has the rather simple saddle-point solution

Q∗ = Q∗
0 = T − PJT (2κλ1 + P�)G−2J

1 − PTr[�2G−2]
, (A8)

where the variable κ and the invertible matrix G have been
introduced in the main text.

2. Generalization and training errors

The generalization εg and training εt errors can be eas-
ily related to the saddle-point replica order parameters.
To see this, first consider the generalization error. From
Eqs. (2) and (1),

εg =
∫

dDxρ(x)[ fT (x) − v∗ · φ(x)]2

= T − 2JT v∗ + v∗T
�v∗ = Q∗,

(A9)

where in the last equality we used Eq. (A4) and the replica
symmetric ansatz. In the limit P → ∞, it is easy to show that
κ → 1 and G ∼ P� so that the generalization error converges
to the residual generalization error introduced in the main
text, Eq. (9),

εg → εR
g = T − JT �−1J. (A10)

Notice that this result is not surprising, and it provides a first
consistency check of our replica mean field theory: one could
also obtain it by directly minimizing Eq. (A9) with respect to
the parameters v. In fact, ∂vεg = −2JT + 2�v implies v∗ =
JT �−1, so that εg(v∗) ≡ εR

g = T − JT �−1J. Furthermore, by
isolating the residual generalization error in Eq. (A8), we
finally find the compact formula for the generalization error
quoted in Eq. (7) of the main text.
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Using the theory developed so far, we can also have access
to the average value of the training error. We notice that the
average training error is by definition the average loss function
defined in Eq. (5), evaluated in λ = 0 (up to a factor P). This
means that one can extract its value by evaluating the action
on the saddle-point solution and performing the limit β → ∞:

εt = lim
β→∞

1

β
Sβ (Q∗, Q∗

0, Q̂∗, Q̂∗
0 )|

λ=0. (A11)

After some straightforward but lengthy algebraic manipula-
tions, one recovers the training error given in Eq. (7).

APPENDIX B: NUMERICAL EXPERIMENT DETAILS

In this section we give a detailed report of all our numerical
procedures. The code to replicate our experiments can be
found at [53].

1. Teacher-student architectures

Student architectures. We considered six types of student
architectures: two toy networks with one and two hidden
layers (size of the second hidden layer Nhid = 200) and three
state-of-the-art convolutional ones (ResNet18, DenseNet121,
and VGG11). The toy architectures have fully connected
layers and ReLu activation functions at every layer but the
last; the convolutional networks are the standard PyTorch
[54] models modified to yield a scalar output suitable for
regression through a last fully connected linear layer with
parameters v, instead of the LogSof tMax that is employed
for classification. All these architectures have several convo-
lutional layers before a last fully connected one that counts
respectively Nout = 512, 1024, 4096 hidden units. The total
number of trainable parameters in the first two networks
(weights and biases) is approximately 10 million, while vgg11
counts 10 times as many.

Teacher architectures and inputs for toy DNNs. Each linear
or quadratic teachers (see Results) is defined by a random uni-
form vector t ∈ RD of unitary norm. 1HL teachers are defined
by parameters qα ∈ Rand Sα ∈ RD (α = 1, . . . , M = 200).
They are drawn from a normal distribution with zero mean
and variance (respectively) 1/M and 1/D. Inputs x ∈ RD are
also drawn from normal distribution with zero mean and unit
variance.

2. Learning and generalization

Learning algorithm. All the architectures are trained with
the Adam optimizer [55] and a small weight decay (wd =
10−5), while the learning rate α is set to 10−3 for the toy
architectures and 10−4 for the convolutional ones. The weight
decay wd is related to the regularization parameter λ via
wd = λα, and we have verified that our results do not change
quantitatively by varying λ in a reasonable range (λ � 10−1).
The regression loss employed is the standard mean-squared
error,

MSE = 1

P

P∑
μ=1

[ fT(xμ) − fS(xμ)]2
. (B1)

FIG. 4. Train (blue) and test (magenta) loss of different teacher-
student tasks as a function of the training epochs. The test loss
reaches a plateau even if the training loss is noisy, due to the different
order of magnitude reached by the two. It is worth remarking that the
losses are normalized with the trivial predictor and therefore at epoch
1 are O(1).

For the MNIST dataset, we consider the labels as integers:
fS(xμ) = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], and the MSE loss is com-
puted as in the other cases.

Estimation of the generalization gap. We first bring the
training procedure to convergence, i.e., we ensure that the
train and test loss have reached a plateau. For synthetic
datasets, this requires a large number of training epochs (3 ×
104), while MNIST is learnt faster (100 epochs). In one epoch
the network is fed all the dataset, arranged in minibatches only
when full batch learning is prohibited by memory limitations.
Once the train loss is steady with respect to the test loss, we
retrieve the generalization gap as the average over the last 100
epochs (50 for MNIST). The size of the train set is Ptest = 104

is all cases.
Several plots of train and test loss vs the number of epochs

are shown in Fig. 4: for different teacher-student pairs the
plateau in the test loss is always reached: even if some noise
is still visible in the train loss, its oscillations are too small to
affect the test loss and therefore the generalization gap.

3. Trivial predictor

To compare results obtained from different teacher-student
pairs, we need to normalise the loss by its natural scale, i.e.,
the trivial predictor T defined in Eq. (6). By doing this, we
make sure that the train and test loss are always of O(1) for a
random architecture (i.e., at epoch 0). T is a property of the
dataset, and its computation changes accordingly.

MNIST. The MNIST dataset is intrinsically suitable for
classification problems, since it has 10 classes with discrete
labels, that are simply the first 10 integers. For this reason,
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FIG. 5. Numerical estimate of the trivial predictor T as a func-
tion of the number of points Pnorm used in the approximation. This
values describe a single realization of a random teacher function
(linear, quadratic, 1HL). T converges to a fixed value around Pnorm =
106, that is, the value chosen for all our numerical experiments.

the integral that describes the trivial predictor here becomes
a summation over the classes. Another simplification can be
made considering that MNIST is balanced over the training
labels: the P = 6 × 104 training examples are equally dis-
tributed over the 10 classes. In this case the computation of the
trivial predictor is simple and can be performed analytically:

T = 1

P

9∑
n=0

P

no. classes
n2 = 1

no. classes

9∑
n=0

n2 = 28.5. (B2)

Synthetic datasets. For the other teachers that we employed
T cannot be computed analytically. We therefore perform a
numerical estimation in the following approximation:

T ∼ 1

Pnorm

Pnorm∑
μ=1

f 2
T (xμ). (B3)

Operatively, we draw an independent data sample of Pnorm ele-
ments {xμ}μ=1,...,Pnorm , and average the respective squared true
labels f 2

T (xμ). Pnorm = 106 was chosen as a safe compromise
between computational time and consistency of the estimate.
The convergence of T to a fixed value when Pnorm grows is
shown in Fig. 5.

4. Higher dimensional synthetic inputs

In the main text we show the generalization gap scaling
for fixed input size D = 50, with the exception of the inset in
Fig 1. Here we report the full analysis of higher dimensional
input size and clarify the procedure used to obtain the inset. In
Fig. 6 we plot the generalization gap of of a lazy training
architecture learning the three function considered in the main
text (linear, quadratic, and 1HL), as a function of the number
of training examples and for different sizes of the input D.
Increasing D does not change the asympthotic behavior of
the curves, but has the effect of pushing them closer to the
bound given the same trainset size P. To assert how fast the
curves approach the bound, we have performed a linear fit of
the generalization gap as a function of P:

log �ε̃ = m log P + y0. (B4)

Note that for the bound m ≡ −1 and y0 ≡ log 2Nout. For dif-
ferent values of D, it is verified that m ∼ −1, while y0 − 2Nout

approaches 0 exponentially fast (see also inset in Fig. 1).

APPENDIX C: REPLICA SYMMETRIC ANSATZ AND
SADDLE-POINT EQUATIONS

Due to the Gaussian approximation (A5) and making use
of the identities (A6), the replicated partition function (A3)
may be recast in the following form:

〈Zm〉T =
∫

dQabdQ̂ab K (β, Q)−
P
2 eiQabQ̂ab

×
∫

dN vae− βλ

2

∑
a ‖va‖2−i

∑
a�b Q̂ab

× [
T + (va)T � vb− JT (va + vb)

]
, (C1)

where

K (β, Q) ≡ det(I + βQ). (C2)

The idea is now to explicitly perform the integration over
the replicated weights va and to evaluate the integrals over
Qab and Q̂ab with the saddle-point method. As occurs in stan-
dard spin glass models, we are left with the complication of

FIG. 6. Generalization gap of a lazy training architecture as a function of the number of examples in the training set for different input sizes
D. From left to right the teacher functions are, respectively, linear, quadratic, and 1HL. The size of the hidden layer is kept fixed to Nout = 400.
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performing the tricky limit m → 0, which may lead to the
breaking of the so-called replica symmetry of the matrix Qab.
However, in this specific case the underlying optimization
problem that we are dealing with is convex and this guarantees
that the simplest replica symmetric ansatz for the matrix Qab

will provide the exact solution to the saddle-point equations in
the limit m → 0 [26].

The assumption of replica symmetry amounts to re-
quire that the matrices Qab/Q̂ab take the following
form:

Qab =
{

Q0 a = b
Q a �= b

Q̂ab =
{

Q̂0 a = b
Q̂ a �= b.

(C3)

With a slight abuse of notation, we can specify our analysis to the replica symmetric ansatz already at the level of Eq. (C1), thus
obtaining

〈Zm〉T =
∫

dQ0 dQ dQ̂0 dQ̂ K− P
2 eim[Q̂0(Q0−T )+ m−1

2 Q̂(Q−T )]

×
∫

dN vae− βλ

2

∑
α,a (va

α )2−i(Q̂0− Q̂
2 )

∑
a(va )T �va

e−i Q̂
2

∑
ab(va )T �vb+2i[Q̂0−(1−m) Q̂

2 ]
∑

a JT va
. (C4)

By performing the Gaussian integrals over the replicated weights and using standard mathematical manipulations, we finally get
the following result:

〈Zm〉T =
∫

dQ0 dQ dQ̂0 dQ̂ K− P
2 e− m

2 [Q̂0(Q0−T )+(m−1)Q̂(Q−T )]

× (2π )
m
2 e− m−1

2 Tr{log [βλ1−(Q̂0−Q̂)�]}− 1
2 Tr(log {βλ1−[Q̂0−(1−m)Q̂]�})e

m
2 [Q̂0−(1−m)Q̂]2

JT {βλ1−[Q̂0−(1−m)Q̂]�}−1
J. (C5)

At this point we have managed to integrate both on the
dataset T and on the replicated weights. To find the solution
of the last integrals over the order parameters, we exploit the
saddle-point method, which will deliver the exact solution in
the limit P → ∞.

1. Replica symmetric ansatz

First we notice that assuming replica symmetry, the
contribution K to the partition function simplifies in the
following way:

K (β, Q, Q0) = det[I + βQ]

= [1+β(Q0 − Q)]m−1{1+β[Q0−(1 − m)Q]}.
(C6)

In order to extract the m → 0 limit, we have to keep only
those terms that are linear in m. This is easily done term by

term:

e− P
2 log ([1+β(Q0−Q)]m−1{1+β[Q0−(1−m)Q]})

≈ e− P
2 m{ βQ

1+β(Q0−Q) +log[1+β(Q0−Q)]}
, (C7)

e− m
2 [Q̂0(Q0−T )+(m−1)Q̂(Q−T )] ≈ e− m

2 [Q̂0(Q0−T )−Q̂(Q−T )], (C8)

e− m−1
2 Tr{log [βλ1−(Q̂0−Q̂)�]}− 1

2 Tr(log {βλ1−[Q̂0−(1−m)Q̂]�})

≈ e− m
2 Tr{log [βλ1−(Q̂0−Q̂)�]}+ mQ̂

2 Tr{� βλ1−(Q̂0−Q̂)�]−1}, (C9)

and

e
m
2 [Q̂0−(1−m)Q̂]2

JT {βλ1−[Q̂0−(1−m)Q̂]�}−1
J

≈ e
m
2 (Q̂0−Q̂)2

JT [βλ1−(Q̂0−Q̂)�]−1
J. (C10)

As such, the leading contribution to the average replicated
partition function in the m → 0 limit reads

〈Zm〉T ∼
∫

dQ0 dQ dQ̂0 dQ̂ e− P
2 m{ βQ

1+β(Q0−Q) +log[1+β(Q0−Q)]}e− m
2 [Q̂0(Q0−T )−Q̂(Q−T )]

× e− m
2 Tr{log [βλ1−(Q̂0−Q̂)�]}+ mQ̂

2 Tr{�[βλ1−(Q̂0−Q̂)�]−1}e
m
2 (Q̂0−Q̂)2

JT [βλ1−(Q̂0−Q̂)�]−1
J, (C11)

and by rescaling the parameters Q̂ → PQ̂ and Q̂0 → PQ̂0, we
recast the partition function in the form 〈Zm〉T = ∫

e− mP
2 Sβ ,

where the action Sβ is defined as

Sβ = βQ

1 + β(Q0 − Q)
+ log[1 + β(Q0 − Q)] + Q̂0(Q0 − T )

− Q̂(Q − T ) + 1

P
Tr{log

[
βλ1 − P(Q̂0 − Q̂)�

]}
− Q̂Tr

{
�

[
βλ1 − P(Q̂0 − Q̂)�

]−1}
− P

(
Q̂0 − Q̂

)2
JT

[
βλ1 − P(Q̂0 − Q̂)�

]−1
J. (C12)
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2. Saddle-point equations

We can now move to the derivation of the saddle-point
equations. First, we notice that direct differentiation with re-
spect to Q and Q0 allows us to find the explicit expressions for
Q̂ and Q̂0:

0 = ∂Sβ

∂Q
= −Q̂ + β2Q

[1 + β(Q0 − Q)]2
, (C13)

which implies

Q̂ = β2Q

[1 + β(Q0 − Q)]2
(C14)

and

0 = ∂Sβ

∂Q0
= Q̂0 + −βQ(β )

[1 + β(Q0 − Q)]2 + β

1 + β(Q0 − Q)
,

(C15)

which gives

Q̂0 = β2Q

[1 + β(Q0 − Q)]2
− β

1 + β(Q0 − Q)

= Q̂ − β

1 + β(Q0 − Q)
. (C16)

Let us look at the derivative of the action w.r.t. Q̂:

0 = ∂Sβ

∂Q̂
= −(Q − T ) + 1

P
∂Q̂Tr

[
log

(
G̃

)] − Tr
[
�G̃−1

] − Q̂∂Q̂Tr
[
�G̃−1

] + PJT P�(Q̂0 − Q̂)2 + 2G̃(Q̂0 − Q̂)

G̃2
J, (C17)

which gives

Q = T + 1

P
∂Q̂Tr

[
log

(
G̃

)] − Tr
[
�G̃−1

] − Q̂∂Q̂Tr
[
�G̃−1

] + PJT P�(Q̂0 − Q̂)2 + 2G̃(Q̂0 − Q̂)

G̃2
J

= T + P Q̂ Tr[(�G̃−1)2] + PJT P�(Q̂0 − Q̂)2 + 2G̃(Q̂0 − Q̂)

G̃2
J, (C18)

where for convenience we have defined the N × N matrix G̃ = βλ1 − P(Q̂0 − Q̂)�. Finally we obtain the saddle-point
equation for Q̂0:

0 = ∂Sβ

∂Q̂0
= (Q0 − T ) + 1

P
∂Q̂0

Tr
[
log

(
G̃

)] − Q̂∂Q̂0
Tr

[
�G̃−1] − PJT P�(Q̂0 − Q̂)2 + 2G̃(Q̂0 − Q̂)

G̃2
J, (C19)

giving us

Q0 = T + Tr
[
�G̃−1

] + P Q̂ Tr[�G̃−1�G̃−1]

+ PJT P�(Q̂0 − Q̂)2 + 2G̃(Q̂0 − Q̂)

G̃2
J

= Q + Tr
[
�G̃−1].

(C20)

Let us now consider the special combination κ = 1 + β(Q0 −
Q). By using Eq. (C20), we obtain

κ = 1 + β(Q0 − Q) = 1 + β
(
Q + Tr

[
�G̃−1

] − Q
)

= 1 + β Tr
[
�G̃−1

]
, (C21)

whereas by considering the difference between Eq. (C14) and
Eq. (C16), we easily show that the difference Q̂0 − Q̂ depends
on κ only as

Q̂0 − Q̂ = Q̂ − β

1 + β(Q0 − Q)
− Q̂ = − β

1 + β(Q0 − Q)

= −β

κ
. (C22)

By inserting this result into the definition of G̃ we can define
the rescaled matrix G = κG̃/β:

G = κ

β

[
βλ1 − P(Q̂0 − Q̂)�

] = κλ1 + P�. (C23)

These observations allow us to show that the new variable κ

satisfies the following self-consistency equation:

κ = 1 + β Tr

[
�

(
β

κ
G

)−1]
= 1 + κTr

[
�G−1

]

= 1 + κ Tr

[
�

κλ1 + P�

]
(C24)

and allow us to recast the solution of the saddle-point
equations in the following very convenient form (notice that
from now on the solutions of the saddle-point equations will
be indicated with an asterisk):

Q̂∗
0 = Q̂∗ − β

κ
.

Q̂∗ = β2Q∗

κ2
,

Q∗
0 = Q∗ + κ − 1

β
,

Q∗ = T − PJT 2κλ+P�
G2 J

1 − PTr[�2G−2]
.

(C25)

It is worth noticing that since G and κ are independent on the
inverse temperature β, the solution for the order parameter Q∗
is also independent on the temperature. Moreover, we easily
get that Q∗ = Q∗

0 in the limit β → ∞.
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