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Intervention of resource allocation strategies on spatial spread of epidemics
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Medical resources are crucial in mitigating epidemics, especially during pandemics such as the ongoing
COVID-19. Thereby, reasonable resource deployment inevitably plays a significant role in suppressing the
epidemic under limited resources. When an epidemic breaks out, people can produce resources for self-protection
or donate resources to help others for treatment. That is, the exchange of resources also affects the transmission
between individuals, thus, altering the epidemic dynamics. To understand factors on resource deployment and
the interplay between resource and transmission we construct a metapopulation network model with resource
allocation. Our results indicate actively or promptly donating resources is not helpful to suppress the epidemic
under both homogeneous population distribution and heterogeneous population distribution. Besides, strength-
ening the speed of resources production can significantly increase the recovery rate so that they reduce the final
outbreak size. These results may provide policy guidance toward epidemic containment.
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I. INTRODUCTION

Curbing the spread of epidemics is vital to human society
today. During the past decades, humanity has experienced
several major pandemics, such as severe acute respiratory
syndrome (SARS) in 2003 [1–3], Middle East respiratory
syndrome (MERS) [4,5], West African Ebola [6–8], and so on.
Currently, the ongoing novel corona virus disease (COVID-
19) has diffused to almost every country in a short period of
time, which has been characterized as a public health emer-
gency of international concern (PHEIC) by the World Health
Organization [9–12]. With the increase of new infected cases,
there is an enormous demand for medical resources, such
as ventilators, medical equipment, medicine, and so on [13].
Some countries (regions or cities) have excessively consumed
medical resources because of curing massive infected cases,
leading to healthcare systems being overwhelmed [14,15].
Importantly, medical resources play a crucial role in curbing
the epidemic, and greatly affect the spread process. However,
faced with the outbreak of the epidemic, it is necessary that
countries (regions or cities) produce medical resources for
self-protection, as well as contributing (receiving) resources
to (from) others cannot be ignored. Thus, there is an urgent
need to better deploy limited medical resources to restrain the
spread of epidemic.

The studies about the effects of medical resources
on suppressing epidemic through network science are
widespread [16–20]. Worby et al. [21] studied the distribu-
tion of protective resource, namely face masks, during the
COVID-19 pandemic, and found that random distribution of
masks is not optimal, and prioritized coverage of the elderly or
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asymptomatic carriers is more effective. In addition, different
from the protective resource, some studies have investigated
how best to allocate limited curative resources for curing
infected cases based on single layer networks [22,23]. Fur-
ther, considering different effects such as epidemic spreading
and information diffusion, a number of studies have investi-
gated the coevolution dynamics coupling resource allocation
with multilayer networks [24–27]. However, these studies
are mainly carried out via contact networks in which nodes
represent individuals and links denote the contacts between
individuals. Nowadays, due to frequent spatial activities of
humans and convenient traffic such as airline networks, epi-
demics especially COVID-19 can rapidly diffuse through the
migration of population. Therefore, the deployment of cura-
tive resources for treating a large number of infected cases to
curb epidemics between locations is crucially important.

Metapopulation network model can be well used to in-
vestigate the spatial spread of epidemic due to the mobility
of individuals [28–33]. In this framework, nodes represent
subpopulations (e.g., regions, cities, or countries), while links
represent the migration routes between subpopulations. The
infection occurs by the interaction of individuals within a
subpopulation and the diffusion corresponds to their mi-
gration along the links between subpopulations, which is
called reaction-diffusion (RD) process [31,34,35]. Some stud-
ies have explored the effects such as mobility rate and
nonuniform intervention for suppressing epidemic [28,36,37],
whereas factors such as medical resources for treatment in-
evitably playing the uttermost role in suppressing epidemic
have been ignored. With the outbreak of COVID-19 in Wuhan,
China, the government promptly deployed medical resources
for curing vast infected individuals from other cities to Wuhan
and consequently controlled the epidemic. Hence, when fac-
ing an epidemic, deploying limited resources reasonably to lo-
cations plays a fundamental role in suppressing the epidemic.
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FIG. 1. Schematic diagram of the migration-interaction-return (MIR) metapopulation network model with resource allocation. First,
local individuals may move to neighboring subpopulations along the links (solid arrow). Once individuals moved, they will react in a
well-mixed way according to the SIS model. Susceptible individuals in subpopulation i get infected at rate λi(t ) while infected individuals
get recovered at rate μi(t ). The parameters λi(t ) and μi(t ) dynamically change with time due to the exchange of resources between
subpopulation i and its neighbors, ωi→ j or ω j→i (dotted arrow). After reaction, they return to their resident subpopulations and the next time
step starts.

Generally, infected individuals consume medical resources
for treatment, while susceptible individuals are responsible
for producing resources to support infected ones. So, subpop-
ulations which contain susceptible individuals will generate
resources to help each other to restrain the epidemic. Without
a doubt, after exchange of resources between subpopulations,
the infection rate and the recovery rate will alter. Naturally,
a subpopulation becomes risky to be infected after donation,
while it is helpful for treatment when holding more resources.
Thus, we can formulate the epidemiological process with the
resource donation process. In other words, one subpopula-
tion gets a higher infection rate when it donates resources
to others. Instead, it gets a higher recover rate when holding
more resources, i.e., it produces or receives more resources.
In short, by producing and donating resources to infected sub-
populations, the epidemic process coevolves with the resource
donation dynamics.

Here, we construct a metapopulation network model
with Migration-Interaction-Return (MIR) to investigate the
coevolution dynamics of epidemic spreading and resource al-
location (Fig. 1). Specifically, we model the spatial spreading
of the epidemic through the reaction-diffusion process based
on the classical susceptible-infected-susceptible (SIS) [38]
model. Besides, the microscopic Markov chain theory is ap-
plied to derive the epidemic threshold, and Monte Carlo (MC)
simulation is used to verify the accuracy with the Markov
equations.

II. MODEL DESCRIPTION

A. Metapopulation network model with resource allocation

Faced with the outbreak of the epidemic, each subpopu-
lation can generate resources for battle against the disease
at each time step. Intuitively, infected individuals consume
medical resources, while susceptible ones are responsible for
producing curative resources to treat infected ones. So we

reasonably assume that the amount of resources produced
by one subpopulation is positively correlated to its current
proportion of susceptible individuals. Accordingly, we define
the resources availability ri(t ) of subpopulation i at time t as
follows:

ri(t ) = θ [1 − ρi(t )], (1)

where ρi(t ) is the ratio of infected individuals in subpopula-
tion i at time t , and θ (�1) is the coefficient denoted as the
rate of the resources’ arrival. Higher θ means a faster speed of
resource producing.

When an epidemic breaks out, subpopulation i perceives
the threat intuitively from neighbors. So, to quantify the re-
sponse strength of a subpopulation to the disease, a parameter
α0 ∈ [0, 1] denoting awareness is introduced, and a higher
α0 means that fewer resources will be donated. Usually, the
more infected individuals around a subpopulation, the more
resources are supposed to be donated to them. Hence, we
assume that the donation willingness of subpopulation i in-
creases with the ratio of infected individuals around it. In
addition, considering the reality of self-protection, subpopula-
tion i will not contribute any resources if its current available
resources is below a threshold r0. Thus, we define donation
willingness of subpopulation i at time t qi(t ) as follows:

qi(t ) = q0[1 − αi(t )]
1

1 + e−β[mi (t )−η]
, (2)

where

αi(t ) =
{

α0, i f ri(t ) � r0,

1, else

denotes the donation awareness of subpopulation i at time t .
Besides, q0 is a basic donation factor, mi(t ) is the ratio of
infected individuals in the neighboring set of subpopulation
i, V (i), at time t , and the coefficient β(�0) represents the

064308-2



INTERVENTION OF RESOURCE ALLOCATION … PHYSICAL REVIEW E 105, 064308 (2022)

donation sensitivity. The sigmoid function 1
1+e−β(mi (t )−η) , which

is plotted as shown in Fig. 9, Appendix A 3, on the right side of
Eq. (2) represents donation sensitivity to the infection, where
η ∈ [0, 1] controls the horizontal shift of the function, and
a higher η induces a lower initial value of qi(t ). A smaller
β means that the subpopulation is more sensitive to degree
of infection around the neighbors of set V (i). Besides, the
smaller β indicates that donation willingness gets a higher
initial value and increases steadily with mi(t ) in a less slope.
That is, how many resources will be donated depends on the
infected degree around the subpopulation i, denoted as mi(t )
and expressed as follows:

mi(t ) =
	Ik (t )
k∈V (i)

	Nk
k∈V (i)

, (3)

where 	Nkk∈V (i) and 	Ik (t )k∈V (i) are the total population and
the total of infected population in the neighboring set of sub-
population i, V (i).

With the emergence of infected individuals in neighbors
of subpopulation i, it would release part of its resources to
help neighbors curb the disease. Additionally, we assume
that not all the subpopulations receive resources, only those
with infection scale higher than some value will receive
resources, and the amount of resources that a subpopula-
tion receives is proportional to its infection degree, that is,
a subpopulation j with infection rate higher than i0 would
receive sources. Accordingly, the resource flow that subpop-
ulation i releases to one neighbor j at time t can be denoted
as follows:

ωi→ j (t ) =

⎧⎪⎪⎨
⎪⎪⎩

ri(t )qi(t )
I j (t )

	Ik (t )
k∈V (i)

, i f I j (t )/Nj � i0,

0, else,

(4)

where i0 is the threshold for infection ratio, V (i) is the neigh-
boring set of i, 	Ik (t )k∈V (i) is the total infected population in
set V (i), Nj and I j (t ) are the number of population and that of
the infected population of j, respectively, and qi(t ) is donation
willingness of subpopulation i at time t .

When infected individuals emerge around subpopulation i,
it intends to donate resources to neighboring subpopulations
to suppress diseases, while protecting itself from infection.
However, donating resources may lead to an increasing risk
of infection due to the lack of sufficient awareness for self-
protection. We connect the infectivity within a subpopulation
with the donation willingness for the resources. Hence, we
consider a modified infection rate after donating resources at
time t λi(t ) with a penalty coefficient c ∈ [1, 3], and λi(t ) is

expressed as

λi(t ) = qi(t )cλ + [1 − qi(t )]λ, (5)

where λ is the basic infection rate, and qi(t ) is the donation
willingness of subpopulation i at time t as mentioned above.
Apparently, the infection rate recovers a constant λ if c = 1,
i.e., there is no impact when donating resources to others. On
the contrary, if c > 1, then there is a relatively higher infection
rate in subpopulation i when donating resources. The above
definition means that the infection rate usually varies from
subpopulation to subpopulation with time.

In general, a subpopulation can generate resources by itself
or receive them from others. So, the resources that a subpop-
ulation i holds at time t are expressed as follows:

ωi(t ) = ri(t )[1−qi(t )]+
∑

j∈V (i)

ω j→i(t ), (6)

where the first term denotes its remaining resources after
donation and the second denotes the resources received from
others. Generally, a subpopulation has a higher recovery rate if
it holds more resources. So, the recovery rate of subpopulation
i at time t, μi(t ), can be defined as

μi(t ) = 1 − (1−μ)1+εωi (t ), (7)

where μ is the basic recovery rate, and ε ∈ [0, 1] is resource
utilization rate. Apparently, we can see that recovery rate of
subpopulation i keeps the constant value μ if ε = 0 or without
resources; otherwise, the recovery rate will be affected in a
limited scope with further growth resources ωi(t ). Similarly,
the recovery rate generally varies from subpopulation to sub-
population with time.

B. Microscopic Markov chain method and threshold analysis

Based on the above model description, we construct a
metapopulation network model composed a total of N subpop-
ulations. Each subpopulation i has a number of ni individuals,
∀i = 1, 2, · · · , N . At the migration stage, an individual leaves
its resident subpopulation i with probability p, and migrates
to one of its neighboring subpopulations j in terms of the
transition matrix R, whose entries are Ri j = Wi j∑N

j=1 Wi j
, where

Wi j denotes the weight between subpopulation i and j. Then,
once individuals have moved, they interact in a well-mixed
pattern in each subpopulation i and change their epidemic
status in terms of current infection rate λi(t ) and recovery rate
μi(t ) at time t based on SIS model. Finally, they return to
their resident subpopulation and next time step starts. Here,
we derive the epidemic threshold with r0 = 0.0 and i0 = 0.0
for simplicity. In the following, we find that there are no
obvious impacts of them on the final results with simulations
(see Appendix A 1).

There are N variables ρi(t ) denoting the ratio of infected
individuals associated with subpopulation i at time t . The time
evolution of ρi(t ) can be written as follows:

ρi(t + 1) = ρi(t )

{
(1 − p)[1 − μi(t )] + p

N∑
j=1

Ri j[1 − μ j (t )]

}
+ [1 − ρi(t )]�i(t ), (8)
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where the first term on the right side is the fraction of infected
individuals who do not recover. The infected individuals are
those who remain in subpopulation i and those who migrate to
neighboring subpopulations and then return back to subpop-
ulation i. The second term on the right side accounts for the
ratio of susceptible individuals associated with subpopulation
i that are infected at time t . In this second term, �i(t ) denotes
the probability that susceptible individuals associated with
subpopulation i become infected at time t , and reads

�i(t ) = (1 − p)Pi(t ) + p
N∑

j=1

Ri jPj (t ), (9)

where the first term on the right side is the probability that
susceptible individuals, who do not move, get infected in the
resident subpopulation i at time t , and the second term denotes
the probability that individuals get infected when migrating to
any neighboring subpopulation. And Pi(t ) is denoted as

Pi(t ) = 1 −
N∏

j=1

[1 − λi(t )ρ j (t )]n j→i , (10)

where n j→i denotes the population flux moving from subpop-
ulation j to subpopulation i, and reads

n j→i = δi j (1 − p)ni + pRjin j, (11)

with δi j = 1 if i = j and otherwise δi j = 0.

To analyze the steady state of the dynamics when t →
∞, namely, ρi(t + 1) = ρi(t ) = ρi, we can simplify Eq. (8)
as

[1 − (1 − p)(1 − μi ) − p
N∑
j

Ri j (1 − μ j )]ρi = (1 − ρi )�i,

(12)
where ρi is the steady density of infected individuals associ-
ated to subpopulation i.

When close to the critical point, let us denote ρi = ε∗
i � 1

for any subpopulation i. We estimate μi = μ(1 + εωi ) ne-
glecting second- and higher-order terms from Eq. (7), and
ωi ≈ θ [1 + kiq0(1−α0 )

1+eηβ ]. We denote left side of Eq. (12) as fol-
lows:

[1 − (1 − p)(1 − μi ) − p
N∑
j

Ri j (1 − μ j )]ε
∗
i = T ε∗

i , (13)

where T =1 − (1 − p){1 − μ[1 + εθ (1 + kiq0(1−α0 )
1+eηβ )]} −

p
∑N

j Ri j{1 − μ[1 + εθ (1 + k j q0(1−α0 )
1+eηβ )]}. On the right

side of Eq. (12), we have Pi(t ) ≈ ∑N
j=1 λiρ jn j→i, n j→i =

δi j (1 − p)ni + pRjin j , and �i ≈ (1 − p)
∑N

j=1 λiρ jn j→i +
p
∑N

j=1 Ri j
∑N

l=1 λ jρl nl→ j , so

�i=λ

N∑
j=1

{
(1 − p)2δi jn j + p(1 − p)Rjin j + p(1 − p)θ

[ q0(1−α0 )
1+eηβ (c − 1) + 1

]
Ri jn j

+p2θ
[ q0(1−α0 )

1+eηβ (c − 1) + 1
]
(RRT )i jn j

}
ε∗

j , (14)

and we define

Mi j = (1 − p)2δi jn j + p(1 − p)Rjin j + p(1 − p)θ [
q0(1 − α0)

1+eηβ
(c − 1) + 1]Ri jn j+p2θ [

q0(1 − α0)

1+eηβ
(c − 1) + 1](RRT )i jn j .

(15)

Accordingly, we derive the epidemic threshold λc as follows:

λc = T

�max(M)
, (16)

where �max(M) is the maximum eigenvalue of the matrix
M. Unfortunately, the detailed expression for the maximum
eigenvalue of the matrix M is difficult to obtain. Nevertheless,
we can obtain the epidemic threshold by numerical iteration.

III. SIMULATION RESULTS

To understand the coevolution of the epidemic dynam-
ics with resources, we systematically explore the impacts of
resource donation, such as the donation awareness α0, the
donation sensitivity β, and the rate of the resources’ arrival θ .
We have performed an extensive set of stochastic simulations
on the scale-free (SF) networks with 1000 subpopulations,
whose average degree is 6.9. The edge weights between sub-
populations are uniformly distributed within the range of [1,
50]. Two types of population distributions, i.e., homogeneous
distribution (HOD) and heterogeneous distribution (HED),
are considered. Under the HOD, each subpopulation equally
contains 100 individuals; under the HED, each subpopulation

i contains a number of population proportional to the sum
of the edge weight, i.e.,

∑N
j=1 Wi j . The microscopic Markov

chain starts by infecting a small fraction of individuals as
seeds in each subpopulation. Without loss of generality, 0.1%
of individuals is set to be infected initially. Correspondingly,
the same initial condition is applied to the Monte Carlo simu-
lations, so each individual is set to be infected with probability
0.001. Considering the general simulations, the parameter η is
set at 0.5, and some other parameters are set at default values
in Table I.

A. Effects of the resource donation awareness
on the epidemic spread

To highlight the effects of each subpopulation’s donation
awareness α0 on the epidemic spreading, we set β = 1 for
the general donation sensitivity, and θ = 1 for the normal rate
of the resources arrival. Figure 2 shows the final prevalence
ρ at steady state versus basic infection rate λ for various
values of α0 under the conditions of HOD and HED, respec-
tively (there is a perfect agreement between the iterations of
Markov equations and Monte Carlo (MC) simulations, and the
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TABLE I. Involved parameters in the MIR metapopulation net-
work model.

Parameter Definition Default value

λ Basic infection rate —
μ Basic recovery rate 0.2
p Migration probability 0.2
c Penalty coefficient after donation 2.0
ε Resource utilization rate 0.6
q0 Basic donation factor 0.8
θ The rate of the resources’ arrival —
α0 Resource donation awareness —
β Resource donation sensitivity —
η The parameter in the sigmoid function 0.5
r0 Threshold for donating resources 0.0
i0 Threshold for receiving resources 0.0
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FIG. 2. The final epidemic prevalence ρ versus the basic in-
fection rate λ for various values of the donation awareness α0.
(a) Homogeneous population distribution (HOD) and (b) heteroge-
neous population distribution (HED, and the inset shows the detail
Markov process as λ between 0.001 and 0.002). The solid curves
correspond to the iterations of the Markov equations, whereas the
dots represent the results of Monte Carlo (MC) simulations. Each dot
is the average over more than 50 MC simulations. The triangles under
x axis are the epidemic thresholds by the iteration of the Markov
equations. The other parameters β and θ are set as β = 1 and θ = 1.

similar relationship is no longer emphasized in the following
sections). In addition, there is no resource exchange between
subpopulations when α0=1, and full donation willingness
when α0 = 0. From Fig. 2, the epidemic thresholds under the
HOD are overall higher than the HED. Because under the
HED some subpopulations with more population have more
infected cases initially, the epidemic easily breaks out and
quickly spreads out by migration. But under the HOD, the in-
fected cases are uniformly distributed in each subpopulations
initially, inducing a slower spreading with a higher epidemic
threshold.

For the case of the HOD, we see that lower awareness α0

or stronger willingness of resource donation among subpop-
ulations would promote the epidemic spread with a reduced
epidemic threshold and a larger outbreak size. When an out-
break occurs in a subpopulation, neighboring subpopulations
with high donation willingness would donate more resources
to it, leading to high infection rates in them. In Fig. 7, Ap-
pendix A 2, we find a lower awareness α0 induces a higher
〈λ〉/〈μ〉, which supports the results. Thus, it seems that ac-
tively donating resources to the infected subpopulation is not
helpful to suppress the epidemic.

In contrast, for the case of the HED, we can see that a lower
awareness α0 or a stronger willingness of donation among
subpopulations would delay the outbreak of the epidemic with
a higher epidemic threshold, but induce a larger final out-
break size. Because under the HED the epidemic would easily
break out in subpopulations with more population, a lower
awareness indicates that neighboring subpopulations would
donate more resources to it, leading to the containment of the
epidemic. By grouping the subpopulations according to their
population, we find that a higher donation awareness results in
a larger ratio of infected individuals in large subpopulations,
see Fig. 8, Appendix A 2, for details. But a lower awareness
also induces a larger outbreak size as previous situation. It
suggests that actively donating resources just delays the out-
break at the early time, but is not helpful to suppress the
epidemic while continuously donating resources.

B. Effects of the resource donation sensitivity
on the epidemic spread

To understand the impacts of the donation sensitivity β on
the epidemic, we set α0 = 0 with no awareness namely full
willingness of resource donation, and θ = 1 for the normal
speed of resources availability. Figure 3 shows the final preva-
lence ρ at steady state versus the basic infection rate λ under
various values of β. Particularly, the donation willingness is
constant, i.e., α0 = 0.5, if β = 0. From Fig. 3, the epidemic
thresholds under the HOD are overall higher than the HED.

Under the condition of the HOD [Fig. 3(a)], we see that
higher donation sensitivity (i.e. higher β) can delay the epi-
demic with a higher epidemic threshold, but induce a larger
final break size. This is because a higher β induces a lower
initial donation willingness, that is, neighboring subpopu-
lations donate fewer resources when the epidemic breaks
out, leading to low infection rates in them. In Fig. 10, Ap-
pendix A 3, we testify that a lower β leads to a higher
average effective infection rate 〈λ〉/〈μ〉, which also supports
the above results. However, a higher β induces a larger out-
break size because the rapid growth of donation willingness
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FIG. 3. The final epidemic prevalence ρ versus the basic in-
fection rate for various values of the donation sensitivity β.
(a) Homogeneous population distribution (HOD), and (b) Heteroge-
neous population distribution (HED, and the inset shows the detail
Markov process as λ between 0.001 and 0.002). The triangles under
x axis are the epidemic thresholds by iteration of the Markov equa-
tions. The other parameters α0 and θ are set as α0 = 0 and θ = 1.

leads to high infection rates in neighboring subpopulations.
It seems that donating resources or quickly response to
the infected subpopulation would induce high infected
scale instead.

Under the condition of the HED [Fig. 3(b)], we can see
that a lower donation sensitivity (lower β) can suppress
the epidemic outbreak with a higher epidemic threshold and
induces a smaller final outbreak size. This is because under the
HED the epidemic would easily break out in subpopulations
with more population (see Fig. 11, Appendix A 3, for details),
who can receive more resources from neighbors to suppress
the epidemic due to a higher initial donation willingness
with a lower donation sensitivity β, leading to a higher
epidemic threshold. However, a higher β also induces a larger
final outbreak size. It suggests that donating a big amount
of resources earlier just delays the epidemic, and promptly
increasing resource donation is also not conducive to reduce
final infected scale.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10

α0

β

HOD

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35
(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10

α0

β

HED

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03
(b)

FIG. 4. The epidemic prevalence (color value) as a function of α0

and β by Monte Carlo (MC) simulations when close to the threshold.
(a) Homogeneous population distribution (HOD, λ = 0.00325) and
(b) heterogeneous population distribution (HED, λ = 0.0015). The
white solid lines are corresponding epidemic thresholds of α0 and β.

C. The coupling effects of donation awareness
and donation sensitivity

To elucidate the interplay between the donation awareness
α0 and the donation sensitivity β, we plot the epidemic preva-
lence under the cases of HED and HOD, respectively, when
close to threshold as shown in Fig. 4. For the case of HOD,
it shows that high donation awareness and high donation sen-
sitivity can delay the epidemic with a low prevalence, which
clearly indicates that donating more resources (lower α0) may
promote the epidemic, and donating resources fewer initially
(higher β) can validly suppress the epidemic. Therefore, these
results indicate that we need to steadily increase resource
donation, avoiding donating a large amount of resources ini-
tially without protecting ourselves. Instead, under the case of
HED, low donation awareness and low donation sensitivity
can suppress the epidemic outbreak, which indicates that we
need to immediately donate plenty of resources to infected
subpopulations, especially with more population, to rapidly
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FIG. 5. The final epidemic prevalence ρ versus the basic infec-
tion rate λ under various values of the rate of the resources’ arrival θ .
(a) Homogeneous population distribution (HOD), and (b) Heteroge-
neous population distribution (HED). The triangles under x axis are
the epidemic thresholds by iteration of the Markov equations. The
other parameters α0 and β are set as α0 = 0 and β = 1.

suppress the epidemic. But promptly increasing the resource
donation (higher β) with the growth of outbreak scale is not a
valid strategy.

D. Effects of the rate of the resources’ arrival
on the epidemic spread

Generally, individuals can recover to susceptible state by
plenty of curative resources, so the more resources they hold,
the higher recovery rate they get. The rate of the resources’ ar-
rival θ is the parameter used to measure the speed of resources
availability per time step. To interpret the impacts of θ on the
epidemic spread, we set α0 = 0 with no awareness namely full
willingness of resource donation, and β = 1 with the general
donation sensitivity. Figure 5 shows the final epidemic preva-
lence ρ versus basic infection rate λ under various values of θ .
It can be regarded as a normal speed of resources availability
for θ = 1, and higher speed when θ is greater than 1.

From Fig. 5, we see that a higher rate of the resources’
arrival θ delays the epidemic with a higher epidemic threshold

and reduces the final outbreak size under the conditions of
both the HOD and the HED. This is because subpopulations
can produce more resources at each time step so that they
hold more resources averagely, which leads to higher recovery
rates and lower effective infection rates. This observation is
testified in Fig. 12, Appendix A 4. In addition, a higher θ

can clearly decrease the final epidemic prevalence for all the
subpopulations we testified in Fig. 13, Appendix A 4. In SF
networks with a heterogeneous topology, since hub subpop-
ulations generally have more population with more infected
cases initially, the epidemic can easily break out with a lower
threshold under the HED.

As a consequence, higher speed of resource production can
effectively delay the epidemic spread and reduce final infected
ratio regardless of the HOD and the HED, but this effect is
finite because the average recovery rate works in a limited
scope with further increase of resources. Therefore, properly
reinforcing the speed of resources production, such as extend-
ing working hours, is necessary for suppressing the epidemic.

IV. DISCUSSIONS AND CONCLUSIONS

Faced with epidemics, especially pandemics such as
COVID-19, medical resources undoubtedly play a significant
role in suppressing epidemics, so the reasonable deployment
about resources become an important issue that we need
to further investigate. While most of the advances previ-
ously described have been focused on capturing the resource
deployment based on contact networks, less attention has
been paid on the metapopulation networks. Due to current
convenient traffic, the human interactions induce the spatial
spreading of epidemics by individuals’ movement between
regions (or cities, countries), which ignores the role of re-
source deployment on the so-called metapopulation networks.
Recently, Zhu et al. [39] have studied the effects of resource
allocation on the metapopulation networks, where a subpop-
ulation can allocate one unit resource to neighbors at each
time step. In this paper, we consider that subpopulations can
generate different amount of resources depending on their
resource availability, donating willingness, etc., and donate
them to neighboring subpopulations according to their infec-
tion degree.

In this work, we construct a metapopulation network model
to study the resource deployment on epidemic evolution. The
results indicate that properly donating resources can delay the
epidemic with a high epidemic threshold under heterogeneous
population distribution, but actively or promptly donating re-
sources to the infected subpopulation is not helpful to suppress
the epidemic regardless of homogeneous or heterogeneous
population distribution. The trade-off between donating re-
sources and self-protection needs to be carefully considered
for policy makers when facing an epidemic. Meanwhile,
strengthening the speed of resources availability is an effective
measure, which can significantly increase average recovery
rate and reduce the final outbreak size.

However, our current work inevitably has several limita-
tions. First, we simply consider that the amount of resources
generated by one subpopulation is proportional to its ratio of
susceptible individuals. However, under heterogeneous popu-
lation distribution, these subpopulations with more population
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FIG. 6. The final epidemic prevalence ρ for different α0 under different parameters of r0 and i0. Homogeneous population distribution
(HOD), with parameters (a) r0 = 0.0, i0 = 0.0; (b) r0 = 0.1, i0 = 0.05. Heterogeneous population distribution (HED), with parameters (c) r0 =
0.0, i0 = 0.0; (d) r0 = 0.1, i0 = 0.05. The solid curves correspond to the iterations of the Markov equations, whereas the dots represent the
results of Monte Carlo simulations.

tend to generate more resources than those with fewer pop-
ulation, so we can further consider the factor of individuals
on resources availability. Besides, we assume resources are
produced by each subpopulations itself, but ignore global
resources that can be reasonably allocated to each one. The
generation and allocation patterns of resources are expected
to be further explored and compared in the future.
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APPENDIX

1. The impacts of parameters r0 and i0

To analyze the effects of parameters r0 and i0 on the epi-
demic threshold and the final epidemic prevalence, we have
tested different values of i0 and r0 under the HOD and HED,
as shown in Fig. 6. Under the HOD, with threshold i0 = 0.0
for resource reception, a higher donation awareness α0 leads
to a lower infection rate, which delays the outbreak of the

epidemic initially with a larger epidemic threshold [Fig. 6(a)].
With a lower threshold i0 = 0.05, it is not large enough
to trigger the epidemic. Thus, no resource exchange occurs
in the network, and we see the same threshold regardless
of α0. Further, since the epidemic diffuses by a relatively
uniform way, a higher i0 for resource reception has few im-
pacts on the final results. Besides, r0 also has the similar
effects because the resource exchange must meet both i0
and r0. Under the HED, α0 has no evident influence on the
epidemic threshold and the final outbreak sizes [Figs. 6(c)
and 6(d)]. This is because under the HED, the epidemic would
easily break out in large-scale subpopulations, which is in-
sensitive to the parameter i0 and r0. As a result, r0 and i0
have no obvious impacts on the final results under the HOD
or HED. Thus, for the simplicity of the derivation of the
epidemic threshold, we choose r0 = 0.0 and i0 = 0.0 in our
simulations.

2. Effects of the parameter α0

To further explore the detailed effects of the donation
awareness α0 on the epidemic spreading, we collect the
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FIG. 7. The time evolution of six properties for various values of α0 under the HOD. (a) The average donation willingness 〈q〉; (b) the
average holding resources 〈ω〉; (c) the average infection ratio of individuals in neighboring subpopulations 〈m〉; (d) the average infection rate
〈λ〉; (e) the average recover rate 〈μ〉; (f) the average effective infection rate 〈λ〉/〈μ〉. The basic infection rate λ = 0.01.

statistical properties of the network evolving with time, such
as the average donation willingness 〈q〉, the average holding
resources 〈ω〉, the average infection ratio of individuals in
neighboring subpopulations 〈m〉, the average infection rate
〈λ〉, the average recover rate 〈μ〉, and the average effective
infection rate 〈λ〉/〈μ〉. The initial population is homogeneous
(HOD), and the infection rate is λ = 0.01 (Fig. 7). The
average infection ratio of individuals in neighboring subpopu-
lations 〈m〉 increases promptly with time as shown in Fig. 7(c).
The lower α0 is, the faster it increases. When infected indi-
viduals emerge in subpopulations, they will release (receive)
resources to (from) neighbors. As we can see from Fig. 7(a),
the average donation willingness 〈q〉 increases with time when
α0 �= 1, and a lower α0 induces a higher 〈q〉. However, a
higher donation willingness of one subpopulation induces a
higher average infection rate 〈λ〉 [Fig. 7(d)]. At the same time,
since the increasing of infected individuals induces a lower
ability of resources availability, the average holding resources
〈ω〉 decrease [Fig. 7(b)]. Meanwhile, since the recovery rate
of one subpopulation is positively correlated to its current
resources, we see similar trend in Fig. 7(e). Thus, the average
effective infection rate 〈λ〉/〈μ〉 increases with time for each
α0 and a lower α0 induces a higher 〈λ〉/〈μ〉 [Fig. 7(f)]. For
the HED, to further interpret the role of awareness α0 near
the threshold, we group subpopulations according to their
population (see Fig. 8). Apparently, α0 = 1.0 denotes that
there is no resource donation. The epidemic cannot spread in
all the subpopulation groups for α0 = 0.0, 0.2, 0.4, and 0.6
[Figs. 8(a)–8(d)], respectively; whereas the epidemic breaks
out in subpopulations with more population, for α0 = 0.8 and

1.0 [Figs. 8(e) and 8(f)]. Consequently, at the initial stage,
a high donation awareness α0 promotes the outbreak of the
epidemic.

3. Effects of the parameter β

The donation willingness function in the main text [Eq. (2)]
is defined with a sigmoid function. To analyze the effects of
the sigmoid function on the donation willingness qi(t ), we
plot the function curve as shown in Fig. 9. The parameter
η ∈ [0, 1] controls the horizontal shift of the function, and the
smaller β gets a higher initial value and increases steadily with
a less slope. To interpret the role of the parameter β on the
epidemic spreading, we collect the statistical properties of the
network evolving with time, such as the average donation will-
ingness 〈q〉, the average holding resources 〈ω〉, the average
infection ratio of individuals in neighboring subpopulations
〈m〉, the average infection rate 〈λ〉, the average recover rate
〈μ〉, and the average effective infection rate 〈λ〉/〈μ〉. Under
the HOD, as shown in Fig. 10, the average infection ratio of
individuals in neighboring subpopulations 〈m〉 increases with
time [Fig. 10(c)]. The lower β is, the faster it creases. Then
subpopulations increase their average donation willingness
〈q〉 to donate resources to others [Fig. 10(a)], leading to the
increasing of average infection rate 〈λ〉 [Fig. 10(d)]. The av-
erage holding resources 〈ω〉 decreases with time [Fig. 10(b)],
so the average recover rate 〈μ〉 decreases [Fig. 10(e)]. Conse-
quently, the average effective infection rate 〈λ〉/〈μ〉 increases
with time for each β [Fig. 10(f)], and a lower β leads to a
higher final 〈λ〉/〈μ〉. For the HED, to further interpret the
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role of the donation sensitivity β near the threshold, we group
subpopulations according to their population (Fig. 11). From
Figs. 11(a)–11(c), the curves just present a slight fluctuation
initially and finally approach to zero, which suggests that the
epidemic cannot spread. From Figs. 11(d)–11(f), the curves
firstly go up then approach to steadiness, and the epidemic
easily diffuses especially in these subpopulations with more

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

f

x

=0  
=1  
=5  
=10
=20
=30

FIG. 9. The curves of the sigmoid function f (x) = 1
1+e−β(x−η) for

different choices of β with η = 0.5. The function become constant
0.5 when β = 0. The lower β presents a more steady growth with a
higher initial function value.

population. Thus, a higher β promotes the outbreak of the
epidemic especially in large-scale subpopulations.

4. Effects of the parameter θ

To explore the detailed effects of the rate of the resources’
arrival θ on the epidemic spreading under the HOD, we also
collect the statistical properties of the network evolving with
time (Fig. 12). With time evolution, the average infection ratio
of individuals in neighboring subpopulations 〈m〉 increases
[Fig. 12(c)], and a higher θ leads to a lower 〈m〉. Then sub-
populations increase their average donation willingness 〈q〉 to
donate resources to others [Fig. 12(a)], inducing the creasing
of the average infection rate 〈λ〉 [Fig. 12(d)]. Besides, a higher
θ induces a higher average holding resources 〈ω〉 [Fig. 12(b)]
and average recover rate 〈μ〉 [Fig. 12(e)]. Thus, according to
Fig.12(f), a higher θ induces a lower final average effective
infection rate 〈λ〉/〈μ〉.

For the HED, to further interpret the role of θ on the epi-
demic, we group subpopulations according to their population
(Fig. 13). From Figs. 13(a)–13(d), we find that a higher θ

can effectively reduce the final prevalence. However, when
θ = 20 or 30 [Figs. 13(e) and 13(f)], there is not evident
on reducing the final epidemic prevalence. Consequently, a
higher θ can decrease the final epidemic prevalence to some
extent.
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