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Eigenvalue ratio statistics of complex networks: Disorder versus randomness
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The distribution of the ratios of consecutive eigenvalue spacings of random matrices has emerged as an impor-
tant tool to study spectral properties of many-body systems. This article numerically investigates the eigenvalue
ratios distribution of various model networks, namely, small-world, Erd6s-Rényi random, and (dis)assortative
random having a diagonal disorder in the corresponding adjacency matrices. Without any diagonal disorder, the
eigenvalues ratio distribution of these model networks depict Gaussian orthogonal ensemble (GOE) statistics.
Upon adding diagonal disorder, there exists a gradual transition from the GOE to Poisson statistics depending
upon the strength of the disorder. The critical disorder (w,) required to procure the Poisson statistics increases
with the randomness in the network architecture. We relate w, with the time taken by maximum entropy random
walker to reach the steady state. These analyses will be helpful to understand the role of eigenvalues other than
the principal one for various network dynamics such as transient behavior.
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I. INTRODUCTION

It was during the 1950s when E. Wigner envisioned that the
complex Hermitian operator of heavy nuclei could be replaced
by random matrices whose elements are chosen randomly
from some distribution [1]. He and others proposed that the
statistical properties of the eigenvalue spectrum of random
matrices should mimic the original system under consider-
ation without any detailed knowledge of the structure and
show universality with the appropriate symmetry class of the
system. There exist exactly three symmetry classes; Gaussian
orthogonal ensemble (GOE) for real, Gaussian unitary ensem-
ble (GUE) for complex, and Gaussian symplectic ensemble
(GSE) for quaternionic random numbers. The GOE matrices
remain invariant under orthogonal transformation, i.e., A —
0~ 'AQ for any orthogonal matrix Q. Correspondingly, the
other two symmetry classes remain invariant under unitary
and symplectic transformations, respectively. Random matrix
theory (RMT) found its application in different areas of re-
search; statistical physics [2], quantum chaos [3], condensed
matter physics [4]. For example, in tight binding models, it
is used to characterize localized and delocalized states [4]. In
quantum systems, RMT is often used to identify if the system
is integrable, chaotic, or a mixture of both of them [3].

In the RMT framework, one usually compares the spectral
fluctuation of the system with those predicted by RMT [5].
The nearest neighbor level spacings, defined as the difference
between the consecutive eigenvalues of the given operator,
is the most accepted spectral measure. However, to compare
the spectral fluctuations, one needs to unfold the original
eigenvalues to separate the smooth global part and fluctu-
ating local part (system dependent), and then spacings are
calculated on the unfolded eigenvalues [6]. Usually, unfolding
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procedures are not unique and nontrivial, which can lead to
misleading statistical results [7]. For instance, in the case of
the Bose-Hubbard model at considerable interaction strength,
the density of states is not a smooth function of energy, and
it becomes nontrivial to separate them into the smooth global
part and fluctuating local part [8]. Oganesyan and Huse solved
this impediment of unfolding by introducing a new measure
called the ratio of consecutive eigenvalue spacings (r), inde-
pendent of the local density of states and hence requiring no
unfolding [9]. Additionally, it is easy to compute it with a
lower computational cost.

Furthermore, network science has witnessed tremendous
growth in the last two decades due to its ability to com-
prehend and predict complex behaviors of many large scale
real-world systems spanning from technology to social sys-
tems [10]. A network consists of nodes corresponding to
the elements of a system and links representing interactions
between these elements. To capture various properties of real-
world complex systems, different network models have been
proposed. Among these Erdds-Rényi (ER) random, scale-
free, and small-world network models are the most popular
ones [10]. The ER random network model, theoretically in-
vestigated by Erdds and Rényi in late 1950’s depict many
fascinating phenomena including transition to the formation
of a giant cluster with an increase in the probability of
connecting nodes [11]. Despite the tremendous theoretical
success of the ER random network model, it was not con-
sidered to imitate real-world networks due to its limitation to
capture properties like high clustering and power-law degree
distribution abundantly found in a diverse range of real-world
systems. Watts and Strogatz in their landmark paper [12]
introduced the small-world network model which generates
networks having very high clustering coefficient, as that of
regular lattice, and average shortest path length, as that of
the ER random networks, two properties readily witnessed
in networks representing many real-world complex systems
[13]. It is important to note here that both the ER random and
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small-world networks have infinite dimension (d — o0), as
the average shortest path length (/) scales as / ~ [n(N) and d
can be calculated as [ ~ N1/4,

Moreover, RMT has been extensively used in network
science to capture phase transition and study various phe-
nomenon. For example, using spectral statistics, localization
transition was studied for ER random network, Cayley tree,
and Barabasi-Albert scale-free networks [14]. The value of
critical disorder as a function of average degree for Anderson
transition was calculated for these model networks using the
distribution of eigenvalue spacings. Further, to obtain a clear
Anderson transition, a low value of the average degree as
a threshold was proposed, above which no clear Anderson
transition could occur for any of these networks. However,
the absence of a transition could also be attributed to the small
size of the considered networks. In Ref. [15], using the level
statistics, it was shown that Anderson-like transition can be
obtained in complex networks without a diagonal disorder and
just by tuning the clustering coefficient. In Ref. [16], RMT
was applied on random geometric graphs (RGG), and it was
found that as a deterministic connection parameter increases,
eigenvalue spacing shows a gradual transition from the Pois-
son to the GOE statistics. Also, spectral analyses have been
carried out for random networks with an expected degree and
B-skeleton graphs [17,18]. Further, Ref. [19] has shown the
universality of nearest neighbors spacing distribution (P(s))
with network size by calculating the Brody parameter for
random networks. However, it did not investigate impact of
variation in the strength of diagonal disorder on spectral prop-
erties of complex networks.

This paper investigates the statistics of the distribution of
consecutive eigenvalue spacing ratios of adjacency matrix of
various model networks having diagonal disorder, and its in-
terplay with the randomness caused by the occurrence of ones
in off-diagonal elements representing pair-wise connections.
The idea of adding the diagonal disorder was first originated
in Anderson’s seminal paper for a tight-binding model having
only nearest neighbors hopping [20]. In Anderson’s model,
the diagonal disorder in the Hamiltonian matrices depicts
the onsite potential of different sites. Diagonal disorders in
complex networks, i.e., self-loops in the graph representation,
may represent various intrinsic properties of the nodes, and
depending upon the system under consideration, they may
carry different physical meanings. For example, in the case of
excitatory dynamics of photosynthesis molecules, the diago-
nal disorder corresponds to the excitation energies of pigment
molecules in different protein environment or imperfect fab-
rication of the structures [21]. In an economic model with
nodes representing firms and links representing interactions
between firms in terms of their production, the diagonal disor-
der corresponds to the productivity of each firm [22]. Another
example is of optical systems where diagonal disorder is akin
to variations in the refractive indices of the optical fibers, and
connections represent random position of the fibers [23].

Further, note that the term “distribution of the ratios of con-
secutive eigenvalue spacing” and “eigenvalue ratio statistics”
will mean the same in this paper and be used interchange-
ably. The eigenvalue ratio follows GOE statistics for all
the model networks, namely small-world, ER random, and
dis(assortative) ER networks. We show that upon increasing

the strength of the diagonal disorder in the adjacency matrix
of a network, the eigenvalue ratio statistics gradually depicts
a transition from the GOE to the Poisson statistics. However,
for small-world networks, the critical disorder needed to ob-
tain the Poisson statistics increases with an increase in the
value of the rewiring probability. Additionally, we probe the
impact of degree-degree correlation or (dis)assortative degree
mixing of networks on eigenvalue ratio statistics. We further
relate the critical disorder required to obtain the Poisson statis-
tics with the transient dynamics of a random walker.

The paper is organized as follows. Section II consists of
definitions of eigenvalue spacing ratio, construction of model
networks, and measure of localization. Sections III A and III B
contain results about the effect of the interplay of disorder
and randomness on the eigenvalue ratio statistics for various
model networks. Section IIIC relates the critical disorder
which is required to obtain the GOE to Poisson transition with
the dynamics of maximally entropy random walker. Finally,
Sec. IV concludes the article.

II. METHODS AND TECHNIQUES

A network denoted by G = {V,E} consists of set of
nodes and links. The set of nodes is represented by
V ={vy, v2, v3, ..., 0y} and links with E =
{e1,er,e3,...,ey} where N and M are sizes of V and
E, respectively. Mathematically, a network can be represented
by its adjacency matrix A whose elements are defined as
A;j=1 if node i and j are connected and O otherwise.
The eigenvalues of the adjacency matrix A are denoted by
{)\], )\2, )\3, ey )‘-N} where )\] 2 )\.2 22 )‘-N~

We perturbed the adjacency matrix (A) by adding a diago-
nal matrix. The new adjacency matrix becomes A’ = A + D,
where D is a diagonal matrix added to the original adjacency
matrix. The diagonal elements of D, i.e., D; are random
numbers drawn uniformly from a box distribution between
(—w, w) with a width 2w. We probe the effect of impact of
an increase in the diagonal strength (2w) on the eigenvalue
ratio statistics. The eigenvalue ratio statistics is known to be
very useful to identify localized and delocalized eigenvectors.
Localization of eigenvectors means that few eigenvector en-
tries take very high values compared with the other entries. On
the other hand, in the case of the delocalized eigenvector, all
the entries take almost an equal value. Further, the eigenvalue
ratio statistics corresponding to the localized eigenvectors is
known to depict the Poisson statistics, while for delocalized
eigenvectors, it is known to manifest the GOE statistics [24].

Ratio of eigenvalue spacing.

Following Ref. [9], the ratio of consecutive eigenvalue
spacing is defined here as

= mln(s,_H, sz), (1)
max(siy1, 5;)

where s; = A;11 — A; is the spacing between eigenvalues A;1

and A; with i € (1,2,3...N — 1). Also, one can verify that

0 < r; < 1. Reference [9] provides only numerical estimation

of P(r) for the GOE distribution, and discussions on the other

two symmetry classes (GUE and GSE) were lacking. This gap
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was filled in Ref. [25] where an exact distribution function
of r was derived which was not restricted only to GOE but
includes GUE and GSE classes as well. The distribution func-
tion (P(r)) approximating GOE statistics is given as

54/8 x (r + r2)
(A +r+4r2)2°

and the theoretical average value of r for GOE and Poisson
statistics has been estimated to be equal to 0.53 and 0.38,
respectively, with the distribution function given by

_2
(472

Note that there also exists an empirical formula to cap-
ture the GOE to the Poisson crossover by scanning a fitting
parameter [26]. However, the present study uses only (r) to
record the GOE to Poisson transition instead of any fitting
parameter. Nevertheless, (r) is a well admissible parameter to
capture GOE to Poisson crossover and widely used in different
systems [27].

P(r) 2

P(r) ~ 3)

III. RESULTS

A. Eigenvalue ratio statistics of small-world networks

We first analyze the eigenvalue ratio statistics for the
small-world networks generated using the Watts and Strogatz
algorithm. Starting with a 1D lattice, links are rewired with a
probability p, suchthat0 < p, < 1. For some intermediate
rewiring probabilities, the network undergoes the small-world
transition characterized by a high clustering and a shorter av-
erage path length. We numerically diagonalize the adjacency
matrix to obtain its eigenvalues. We focus on the eigenvalues
on the central part of the spectrum more precisely, inside the
width dA & 1.5 on both sides of A & 0, a usual practice while
analyzing the eigenvalues statistics to localization transition
[28]. We wish to emphasize here that a slight increase or
decrease in the width does not affect the results which is
discussed later. It is evident from Fig. 1 that P(r) fits very
well with the exact form of the GOE statistics [Eq. (2)] for all
the values of the rewiring probability. We then calculate the
average value of r numerically using Simpson’s rule, which
comes out to be around 0.52 for all p, values and thus validate
the GOE statistics. We would also like to mention here that
a similar observation was found through the distribution of
eigenvalue spacings in Ref. [29]. The authors had shown a
change in the Brody parameter (8) value with the rewiring
probability, finally leading to the GOE transition at the onset
of the small-world transition. However, in [29], authors had
considered the entire eigenvalue spectrum to depict the GOE
transition, whereas the present study focuses only on the cen-
tral part of the eigenvalue spectrum which shows the GOE
statistics for all p, values.

Disorder vs randomness.

Let us now discuss results when the diagonal disorder is
introduced in the adjacency matrix. An increase in w leads
to a gradual transition from the GOE to the Poisson statis-
tics, as depicted in Fig. 2. However, the critical disorder w,
required to achieve this transition increases with the increase

(a) (b) (c)
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N O

(d) (€) ()
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FIG. 1. Distribution of ratio of consecutive eigenvalue spacing
for various rewiring probabilities. Black line (dashed) indicates dis-
tribution function for GOE statistics and red stairs indicate the data.
Here, we have considered N = 2000 and (k) = 20 with 20 network
realizations. (a) p, = 0.001, (b) p, = 0.002, (c) p, = 0.005, (d) p, =
0.01, (e) p, = 0.02, (f) p, = 0.05, (g) p, = 0.1, (h) p, = 0.5, and (i)
pr=1L

in the value of p,. The change in (r) with a change in w for
various values of p, and N is plotted in Fig. 3. (r) changes
its value from (r) =~ 0.52 for w =0 to (r) =~ 0.38 for
w = w,.. However, the value of w, increases with an increase
in p,. In fact, for higher rewiring probabilities, p,(= 0.1),
it requires a much higher value of w.. To obtain exact w,,
finite-size scaling analysis (FSS) would be required since
critical phenomenon is defined only in the thermodynamic

FIG. 2. Distribution of ratio of consecutive eigenvalue spacing
of adjacency matrices having diagonal disorder drawn from uniform
distribution of width 2w for different values of p,. Black (dashed)
and violet (dashed-dotted) lines, respectively, indicate GOE and
Poisson distribution function. Here, N = 2000 and (k) = 20 with 20
network realizations and 40 disorder realizations. (a) p, = 0.001,
(b) p, =0.01, (c) p, =0.1,and (d) p, = 1.
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FIG. 3. Plot of (r) as a function of diagonal disorder (w) for
various rewiring probabilities. o, L1, A, %, and + symbols are used for
N = 2000, 4000, 8000, 16 000, and 32 000, respectively, with (k) =
20. (a) p, = 0.001, (b) p, = 0.005, (c) p, = 0.01, (d) p, = 0.05, (e)
pr = 0.1, (f) p, = 1. Vertical lines represent crossing point of (r) for
different N.

limit (N' — 00). The crossing point of the order parameter
should remain the same with a change in the system size
[4,30]. However, as argued in [31], for d — oo (I ~ [n(N)),
finite-size scaling analysis is nontrivial for many systems, for
example, random regular or treelike graphs, and one does not
witness any crossing point. The order parameter (r) for such
cases keeps drifting towards the Poisson statistics with in-
creasing N. Since for small-world networks, d — oo, we are
not performing any FSS analysis as it would require networks
with very large sizes as done in [32]. Nevertheless, we present
the results for N < 32 000, demonstrating a similar trend as in
Fig. 3.

Further, rewiring affects the adjacency matrix of the initial
1D lattice (p, = 0) in two ways. First, there is a distortion in
the diagonal band, and second is the random addition of ones
in the off-diagonal entries. Thus, we perform the following
experiments to get an insight into which one of these two
play a role in changing the eigenvalue ratio statistics. First,
we keep the diagonal band undisturbed and randomly add
ones in the off-diagonal entries with a probability p. In this
case, the eigenvalue ratio statistics keeps depicting the GOE
statistics irrespective of the probability p and the strength of
the diagonal disorder (Fig. 4). Here, results are shown only
for one value of the diagonal disorder, but the same results for
higher diagonal disorder strength have been obtained.

In the second experiment, we omit the ones from the di-
agonal band uniformly with the probability p and investigate
its impact on the eigenvalue ratio statistics. Distorting the
diagonal band with a small probability (p = 0.001) leads to a
change from the GOE statistics for a small disorder strength.
In fact, for p = 0.1, even a very small value of w leads to
the Poisson statistics (Fig. 5). The above observation could be
useful to explain the reason behind the increase in the critical
value of disorder (w.) with the increase in p,. Small p, values
yield small distortions in the diagonal band of the adjacency
matrix accompanied with few filling up of ones in the off-
diagonal entries. This setup leads to the Poisson statistics for

N (b)
\¢
0 0.5 1
r

FIG. 4. Distribution of ratio of consecutive eigenvalue spacing
with w = 20 from uniform distribution of width 2w for various
probabilities of adding 1s in of-diagonal entries of the adjacency
matrix of 1D lattice. Black (dashed) and violet (dashed-dotted) lines,
respectively, indicate distribution function from Egs. (2) and (3),
respectively. Here, N = 1000 and (k) = 20 with 20 network realiza-
tions and 40 disorder realizations. (a) p = 0.1; (b) p = 0.2.

a small w. as omitting ones even with a small probability
leads to the Poisson statistics. When rewiring probability is
increased, though there is a distortion of the diagonal band,
sufficient ones have also been randomly distributed in the
off-diagonal entries driving to the GOE statistics and thus
higher w, is required.

Impact of change in d .

Since we consider the eigenvalues in the central part of the
eigenvalue spectrum, specifically those lying in the dA width
around the zero eigenvalue, let us discuss the rationale behind
taking such a approach and an impact of dA on the results.
First, the middle part of the spectrum is appreciably occupied,
and the spacings become similar with different network sizes
and thus help to reduce the finite-size effect to some extent
[33]. On the other hand, at the edges of a spectrum, the
eigenvalues are not smooth for smaller N, but for N — oo,
the eigenvalues spectrum becomes continuous, and thus the
finite-size effect is more prominent. Second, to choose appro-
priate dA, one has to pick an interval which is statistically
sound and at the same time does not mix localized or delo-
calized eigenvectors for different values of w [34]. Figure 6

0O <> = 0.52‘ \

O0—0O<r>=0.49 \
>—><r> = 0.42

0—O<r>=0.46
\ [P><r=042

\ > <> =041

10 0.5 10 0.5 1
r r

FIG. 5. Distribution of ratio of consecutive eigenvalue spacing
with diagonal disorder from uniform distribution of width 2w for var-
ious probabilities of deleting 1s from diagonal band of the adjacency
matrix of 1D lattice. o and 1> are used for w = 1 and w = 4, respec-
tively. Black (dashed) and violet (dashed-dotted) lines, respectively,
indicate distribution function from Egs. (2) and (3), respectively.
Here, N = 1000 and (k) = 20 with 20 network realizations and 40
disorder realizations. (a) p = 0.001; (b) p = 0.01; (c) p = 0.1.
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FIG. 6. Plot of (r) as a function of diagonal disorder (w) and
also with dA for various rewiring probabilities. o, *, (1, ¢, and +
are used for dA =~ 0.10, 0.25, 0.50, 1.50, and 3, respectively. Here,
N = 2000 and (k) = 20. (a) p, = 0.001; (b) p, = 0.01; (c) p, = 0.1;
@ pr = 1.

reflects that for 0.25 < dA < 3, a slight increase or decrease
in the width does not have any noticeable impact on the
value of (r) (for a given w) for all p, values. However, for
d) ~ 0.10, changes in (r) with respect to other dA values
can be witnessed for higher rewiring probabilities (p, > 0.1)
[Figs. 6(c) and 6(d)]. It is also important to note that as w
increases, there is a shortfall in the number of eigenvalues
that are close to zero. In fact, we find that for the network
parameters considered here, for w > 70, even 10* random
realizations yield a total number of eigenvalues in the order
of 10° for dx ~ 0.10. Thus, it is convenient to take 0.25 <
d) < 3, in which (r) remains statistically sound for the same
number of realizations for different d) values. Additionally,
we checked using other measures like inverse participation ra-
tio (not shown) that localized-delocalized eigenvectors do not
mix in this range. We further add that a decrease in the value
of (k) for a given N may yield a quantitatively different impact
for d, and there could be a larger number of eigenvalues in a
given width dA.

Impact of average degree.

We further probe the impact of average degree on the statis-
tics of ratios of consecutive eigenvalue spacings. Note that the
largest eigenvalue of the network is bound with the largest
degree k™ [35]. Moreover, for a random network A; ~ (k).
Thus, varying (k) may affect the eigenvalue spectrum dras-
tically even for fixed network size. In our analyses, we have
considered, (k) = 6, 10, and 20 with N = 2000 being fixed.
It is also worth noting that a decrease in the average degree
may affect the probability (p.) at which small-world transition
occurs. However, we notice that reducing (k) from 20 to 10
does not affect p. and it remains equal to 0.01. Figure 7
illustrates the change in (r) when (k) is varied. It is apparent
from the figure that when (k) is decreased, the critical disorder
(w,) required to procure the transition also decreases for all
the values of the rewiring probabilities.
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FIG. 7. Plot of (r) as a function of diagonal disorder (w) and also
with average degree (k) for various rewiring probabilities. o, >, and
O are used for (k) = 20, 10, and 6, respectively. Here, N = 2000.
(@) p, = 0.001; (b) p, = 0.01; (¢) p, = 0.1;(d) p, = 1.

B. Eigenvalue ratio statistics of ER random networks

We now extend the investigation to ER random networks.
ER random networks are constructed using ER model [11] as
follows. Starting with N nodes and average degree (k), each
pair of the nodes is connected with a probability p = (k)/N.
The degree distribution of ER random networks follows a
binomial distribution. It is also worth noting that small-world
random networks with p, = 1 and ER random networks
are slightly different in the sense that while the former has
fixed links with different realizations, it may change in the
latter. Additionally, the small-world random network (p, = 1)
retains the initial regular structure (p, = 0) as its memory and
degree distribution follow a normal distribution with peak at
(k) and a small variance. On the contrary, in the ER random
network, though the degree distribution peak stays around (k),
the variance is larger than the small-world random networks.
It is evident from Fig. 8, similar to the small-world networks,
the eigenvalue ratio statistics of ER random networks depict
GOE to the Poisson transition with an increase in the diagonal
disorder.

Assortative-disassortative networks.

The degree-degree correlation is one of the key characteris-
tics of real-world networks [36]. In many real-world networks,
like social networks, a node with a high degree tends to
connect with similar high degree nodes, commonly known
as assortative networks [37]. This characteristic of networks
is known as assortativity or assortative mixing. On the other
hand, in biological and technological networks, high degree
nodes prefer to connect with the nodes having a low degree,
referred to as disassortative networks, and the property is
known as disassortativity, or disassortative mixing [38]. To
incorporate assortative or disassortative mixing in the original
ER random network, we use the reshuffling algorithm [39].
The degree of (dis)assortativity is quantified by the Pearson
(degree-degree) correlation coefficient, denoted as r, where
—1 < r, < 1. For most assortative network r, will be closer
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FIG. 8. Distribution of ratio of consecutive eigenvalue spacing
for ER random network. Black (dashed) and violet (dashed-dotted)
lines, respectively, indicate GOE and Poisson distribution from
Egs. (2) and (3), respectively. N = 2000 and (k) = 8 with 20 network
and 40 disorder realizations.

to 1 while for most disassortative network, r, will be close
to —1. Note that the probability distribution of eigenvalues
(spectral density) changes drastically with the change in r,
[40]. Thus, it would be interesting to probe eigenvalue ratio
statistics for the (dis)assortative ER network.

We considered N = 2000 and (k) = 8 in our analyses. The
average degree is kept at this small value to ensure GOE to
Poisson transition for a finite value of w otherwise, for larger
(k), w will be far reaching. First, we study the distribution
of the ratio of consecutive eigenvalue spacing without the
diagonal disorder in the adjacency matrix. We find that it
follows GOE statistics irrespective of the value of r,. We
next introduce diagonal disorder in the adjacency matrix and
study eigenvalue ratio statistics. We find that if the degree
of assortativity (0 < r, < 1) is increased, though there is no
significant change in w,., (r) shows slightly lesser values as
compared with the corresponding less assortative networks
[Fig. 9(a)]. On the other hand, with an increasing degree of
disassortativity (—1 < r, < 0), we do not find its effects on
eigenvalue ratio statistics [Fig. 9(b)]. It is important to note
here that upon increasing the degree of assortativity leads to a
decrease in the randomness, as discussed in [40]. Moreover,

hooo hbooo
I (@) 2%«  (b)
) Q
A e E
X ] &
\V 0.45F 0 r,=010] & L[o r,=-020] g
g r,=05l1 @ O r,=-0.51 (5]
> r,=075 B ! > r,=-075 G
0.4} S

10 20 30 40 10 20 30 40
W W

FIG. 9. (r) is plotted as a function of w. (a) Assortative ER
networks. (b) Disassortative ER networks. Here, we have considered
N = 2000 and (k) = 8 with 20 network and 40 disorder realizations.

changing the degree of disassortativity does not affect the
randomness in networks [40], which is also reflected in our
analysis as for any w, (r) remains the same with a change
in r,. We want to stress here that randomness induced in
small-world networks upon links rewiring is more notable
as compared with that brought upon by the (dis)assortative
mixing in the ER network [40,41]. Hence, variation in w, as a
function of p, is more significant.

C. Maximal entropy random walk (MERW)

Localization of eigenvectors of the adjacency and Lapla-
cian matrices is known to influence various dynamical
processes on the corresponding networks. For example, local-
ization of the principal eigenvector of an adjacency matrix is
known to play a pivotal role in disease spreading [42], pertur-
bation propagation in ecological networks [43], etc. However,
the exact underlying mechanism remains elusive; particu-
larly such understandings for the nonprincipal eigenvalues
and eigenvectors are missing. Though most of the spectral
investigations have revolved around the principal eigenvec-
tors and the corresponding eigenvalue, sporadic investigations
indicate that nonprincipal eigenvectors and associated eigen-
values of the adjacency matrices of networks contribute to the
transient relaxation dynamics [44,45].

This section studies dynamics of maximal entropy random
walker (MERW) in various model networks. It then relates its
dynamics with the localization (Poisson statistics) and delo-
calization (GOE statistics) properties of the underlying model
networks. MERW was first introduced in [46] where it was
argued that MERW localizes in few nodes, which is not with
the case of the generic random walk (GRW). To begin with,
we first discuss a general framework for the maximal entropy
random walk. Let us consider a random walker hopping from
node to node on a connected, undirected, unweighted graph
G = {V,E}. At each time step, a walker sitting at any node,
say i, jumps to its neighboring node j with a probability P;;
indicating the probability of jumping of the random walker
from the node i to the node j independent of the previous
history. Note that, P;; = 0, if A;; = 0, since a walker can jump
to its neighboring nodes only. The elements of the transition
matrix P can be determined as

A

SR

where A is the largest eigenvalue of the corresponding
adjacency matrix and v; and ;, respectively, are the j®
and i™ components of the normalized principal eigenvector.
The Perron-Frobenius theorem states that all the elements of
the principal eigenvector have the same sign, so that P;; > 0.
Also, one can easily see that for each node i, ) i P;j =1.0ne
quantity of interest is probability of finding the walker at any
node i at a time ¢ denoted as p;(t). One can easily compute
pit+1)= Zj pj(t)Pj;. After a time ¢, p;(t) will reach to a
steady state, pf = > ; pj‘-Pﬁ. One of the most important prop-
erties of MERW is that for a given length r and a pair of the
end points, say, walker started from node i, and ends at i;, all
trajectories are equiprobable which is not the case of generic
random walkers. For a generic random walk (GRW), P; =

/% where k; is the degree of the i™ node. Note that in GRW,

“)
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FIG. 10. S as a function of ¢ for various model networks when
the initial condition is homogeneous distribution. (a) Small-world
networks, (b) assortative ER networks, and (c) disassortative ER
networks. Here, (a) N = 1000 and (k) = 10; (b) and (c) N = 2000
and (k) = 8. Arrow indicates position where S hits the steady state.

trajectories for given length ¢ and given endpoints i,, i;, are
not equiprobable. Let p(r) = {p(t), p2(t), p3(t),..., pn(t)}
be the probability distribution of a random walker on a given
network. For a given initial probability distribution of the
walker on the graph, (7(0)) and transition matrix P, one can
easily compute the probability distribution of the walker at
any time ¢ as

p@) = pO)P". ®)

Next, we consider the Shannon entropy S of the walker at each
time step ¢, as

S@) == piO)n(pi(1)). 6)

Note that, S — 0, if the walker is sitting at one node only,
say, i,; pi, = 1 and p; = 0 for all the other nodes. On the
other hand, if the probability of finding the walker is equal
at each node, p; = 1/N,S — In(N). Thus, 0 < § < In(N).
Also, in large time ¢, S(z) will reach to the steady state, and
S(t+ 1) = S(t) = c, where c is some constant. In the steady
state, probability of finding the walker at different nodes does
not change with time. We denote t as the time taken by
the walker to reach the steady state starting from a given
initial condition. We evolve the random walker following the
MERW transition matrix on the following model networks;
small-world, ER random, and (dis)assortative ER networks.
We choose two initial conditions to avoid any predilection in
our analysis. (1) In the first case, we choose homogeneous
probability distribution for the walker, i.e., the probability of
finding the walker at each node is equal to 1/N att = 0. We
then evolve the walker for a sufficiently long time until it
reaches the steady state and calculate S for each time step. (2)
We randomly choose a node, say iy, which acts as the starting
point for the random walker with a probability 1.

We first discuss the results for small-world networks. As
discussed in the previous section that the critical disorder (w..)
required to procure the Poisson statistics shows an increase
with an increase in the value of p,. Figures 10(a), and 11(a)
represent the entropy of the random walker against time ¢
for different values of p, of small-world networks. The time
7 after which the random walker reaches the steady state,
i.e., S > ¢ for t > t decreases with the increase in p, for
both cases of the initial conditions. Thus, T o 1/w,.. This
is a crucial observation that may provide important insight

FIG. 11. S as a function of ¢ for various model networks when
the random walker starts from a randomly chosen node with proba-
bility 1. (a) Small-world networks, (b) assortative ER networks, and
(c) disassortative ER networks. Other parameters are the same as in
Fig. 10.

into the localization of the random walker. When the walker
starts from a randomly chosen node, say i,, for smaller ¢, the
probability of finding the walker is finite only for the nodes
which are neighbors of iy. However, for larger ¢, there is a
finite probability of finding the walker on any node. Further,
fort 27, pi>0Vie{l,2,3...,N} and does not change
with time. Next, for smaller values of the rewiring probability,
T is very high, and thus even after a larger ¢, the probability of
finding the walker on most of the nodes remains p; — 0. On
the contrary, for higher values of the rewiring probability, t
is very small. Hence, the probability of finding the walker on
all the nodes of the network becomes finite even for a shorter
t. Therefore, the probability of finding the walker being finite
for all the nodes (for small #), we would need a higher disorder
strength to localize it on a limited set of the nodes, as is the
case for the high p, values. On the other hand, if the proba-
bility of finding the walker remains nonzero only for the few
nodes even after long time, a low diagonal disorder strength
would be enough to localize the walker as it still remains in
the purview of few nodes, which is the case of small p, values.
The evolution of the probability distribution of the walker
on small-world networks can be found in Supplemental
Material [47].

We further extend this analysis to the (dis)assortative ER
networks. As apparent from Figs. 10(b) and 11(b), the value
of T increases with assortativity which is consistent with the
earlier observation of t o 1/w,. Further, for disassortative
networks, as discussed earlier, there exists no visible effect of
disassortativity (—1 < r, < 0) on the eigenvalue ratio statis-
tics [Fig. 9(b)]. From Figs. 10(c) and 11(c), it is visible that
the change in the value of 7 remains insignificant as (r) is
unchanged with the change in value of r, for disassortative
networks.

IV. CONCLUSION

To conclude, we studied the eigenvalue ratio statistics of
various model networks. For the small-world networks, we
find that as the strength of diagonal disorder increases, the
eigenvalue ratio distribution depicts a gradual transition from
the GOE to the Poisson statistics. However, the critical dis-
order (w.) required to obtain the transition increases with
the increase in the value of the rewiring probability. Thus,
higher w, is required to obtain GOE to Poisson transition
when randomness in the network increases. Next, we analyzed
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the impact of change in the network’s average degree on
the eigenvalue ratio statistics. As expected, a decrease in the
average degree leads to a decrease in the value of the critical
disorder required to induce Poisson statistics. Next, we extend
our analysis to the ER random networks. In this case, also, we
found the gradual transition of GOE to Poisson statistics upon
the introduction of diagonal disorder. Finally, to check the ef-
fect of degree-degree correlation, we perform (dis)assortative
mixing in the original ER random network. Interestingly, we
find that an increase in the degree of assortativity leads to a
slight decrease in the value of (r) for a given w. On the other
hand, when degree of disassortativity increases, there is no
noticeable impact on the eigenvalue ratio statistics. Further,
we relate the value of the critical disorder (w.) with the time
taken by the maximal entropy random walker to reach to the
steady state. The lower the w,. (for fixed N and (k)), the higher
time is taken by the walker to reach to the steady state. Further,
we argued that when the walker has reached to the steady
state, the probability of finding it on all the nodes becomes
finite. For small 7, the walker would be able to access all
the nodes in a sufficiently shorter time, and thus it requires
a high value of the diagonal disorder strength to make the
network localized. On the other hand, for sufficiently longer
T, probability of finding the walker remains finite on a few
nodes, and consequently, a low w, would be enough to make
it localized.

Few previous studies have investigated the implications of
extremal eigenvectors localization of adjacency matrices of
networks for various dynamical behavior of the correspond-
ing system. For example, in [42], it was shown that if the
infection rate is slightly higher than the threshold and the
principal eigenvector is localized, the disease will be local-
ized on a finite set of vertices. Also, recently in [22], the
importance of localization of the eigenvector corresponding
to Amin Was discussed. The authors argued that the stability
of the system will depend on the localization nature of the
eigenvector corresponding to Ap,. Furthermore, importance
of the spread of the bulk part of the eigenvalues spectrum

with an increase in the diagonal disorder for steering localiza-
tion behavior of eigenvector corresponding to Ay, was also
argued by the authors. Additionally, in [48,49], communi-
ties in real-world networks were characterized and identified
using RMT and properties of highly localized eigenvectors.
However, the exact applications of nonprincipal eigenvalues
and corresponding eigenvectors is still missing in the net-
work science literature except that they are known to be
contributing in transient dynamics. In this work, we analyze
the localization-delocalization transition using the eigenvalue
ratio statistics and its implications for the maximally entropy
random walkers. The eigenvalue ratio statistics is already a
popular technique in condensed matter research for capturing
the localization-delocalization transition in various systems,
and in the regular graphs. We anticipate that the eigenvalue
ratio statistics has the same scope in network science and can
be used to capture or quantify different phase transitions, as
well as to get insight to various dynamical processes like dis-
ease spreading, random walker, evolutionary dynamics, etc.
We further expect that our work can be applied on the systems
having diagonal disorders, such as in [22,50,51] which can be
characterized by underlying network structure. Further, this
paper only considers homogeneous networks, and there exists
a vast number of real-world networks having heterogeneous
degree distributions, for example, scale-free. A straight for-
ward and interesting future direction is to extend the present
framework for scale-free networks having different degree
mixing (assortative, disassortative) properties.
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