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Pair approximation for the q-voter models with quenched disorder on networks
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Using two models of opinion dynamics, the q-voter model with independence and the q-voter model with
anticonformity, we discuss how the change of disorder from annealed to quenched affects phase transitions on
networks. To derive phase diagrams on networks, we develop the pair approximation for the quenched versions
of the models. This formalism can be also applied to other quenched dynamics of similar kind. The results
indicate that such a change of disorder eliminates all discontinuous phase transitions and broadens ordered
phases. We show that although the annealed and quenched types of disorder lead to the same result in the q-voter
model with anticonformity at the mean-field level, they do lead to distinct phase diagrams on networks. These
phase diagrams shift towards each other as the average node degree of a network increases, and eventually, they
coincide in the mean-field limit. In contrast, for the q-voter model with independence, the phase diagrams move
towards the same direction regardless of the disorder type, and they do not coincide even in the mean-field limit.
To validate our results, we carry out Monte Carlo simulations on random regular graphs and Barabási-Albert
networks. Although the pair approximation may incorrectly predict the type of phase transitions for the annealed
models, we have not observed such errors for their quenched counterparts.
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I. INTRODUCTION

The question of how the type of disorder impacts phase
transitions is relevant to various dynamical systems that rely
on random processes [1–5]. In agent-based models of opinion
dynamics, annealed and quenched disorders can be associ-
ated with different approaches to modeling human behavior
[6–8]. Annealed disorder reflects the situation in which the
behavior of agents is probabilistic and can change in time
during the evolution of the system, whereas quenched dis-
order corresponds to the behavior of agents that is fixed in
time although may vary between agents. In low-dimensional
systems, the presence of quenched disorder leads to the elimi-
nation of discontinuous phase transitions known as a rounding
effect [9–11]. In the mean-field regime, on the other hand,
discontinuous phase transitions may survive the introduction
of quenched disorder [12,13] or they may appear after its
introduction [14]. The change of disorder may also not impact
the phase transitions at all [15]. However, neither regular lat-
tices nor mean-field analyses are best suited to describe social
systems with their networklike structure [16]. Therefore, in
this study, we consider networks and discuss how quenched
disorder impacts phase transitions displayed by two simple
models of opinion dynamics with competing conforming and
nonconforming interactions. The first one is the q-voter model
with independence, whereas the second one is the q-voter
model with anticonformity [17,18]. Both these models are
modifications of the nonlinear q-voter model [19] and were
introduced to explore how different types of nonconformity
impact phase transitions in a well-mixed population [18]. Our
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work extends this study by taking into account the network
structure and quenched disorder.

The interplay between conformity and nonconformity is
used to study social phenomena in many agent-based mod-
els [20]. In particular, agents with fixed behavior classified
as either conformity or nonconformity can be found in studies
on the q-voter model [13,15,21,22], the majority-vote model
[23–25], or the Galam model [26]. Quenched disorder may
be also related with the interactions between agents [27–30].
However, there are fewer studies in which the annealed and
quenched approaches are directly compared within the same
dynamics, especially on networks.

How disorder changes phase transitions displayed by the
q-voter models with nonconformity is well described at the
mean-field level [15]. In the q-voter model with independence,
the change from annealed to quenched disorder eliminates
all discontinuous phase transitions and broadens the ordered
phases of the continuous ones. Interestingly, in the q-voter
model with anticonformity, which displays only continuous
phase transitions under the annealed approach, such a change
of disorder does not impact the phase transitions at all. The
question which naturally arises is whether the above results
remain valid on networks. Although both the models have
been studied extensively under the annealed approach on net-
works, by the use of the pair approximation and Monte Carlo
simulations [31–37], such a comprehensive analysis is miss-
ing for their quenched counterparts. If the quenched models
are considered on networks, studies rely only on numerical
simulations [6,21].

Therefore, in this work, we develop the pair approximation
for the quenched versions of the q-voter models with differ-
ent types of nonconformity in order to obtain analytically
their phase diagrams on networks. The predictions of the
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pair approximation are validated by conducting Monte Carlo
simulations on random regular graphs and Barabási-Albert
networks. The obtained results under the quenched approach
are compared with the results obtained under the annealed
one. Our comparative analysis on networks reveals differences
between the models that are not displayed in well-mixed
populations. This demonstrates how important the network
structure is in answering the question about the differences
between dynamics.

II. ANNEALED AND QUENCHED MODELS

We consider an undirected network with N nodes. The
network represents a social structure where nodes are voters,
whereas links indicate relationships between them. Each node
can be in two states: j ∈ {1,−1}, or equivalently j ∈ {↑,↓}
for the sake of clarity in the further notation. These states
represent different opinions, suppose a positive and a negative
one. In this setting, one node after another is selected ran-
domly. This node will have a chance to change its opinion.
Next, we randomly choose q its nearest neighbors without
repetition. They form a group of influence that tries to exert
social pressure on the selected voter. The following steps of
the dynamics depend on the specific variant of the q-voter
model.

(i) Annealed approach. The selected voter behaves as a
nonconformist with probability p; otherwise, with comple-
mentary probability 1 − p, it behaves as a conformist. This
approach is considered in Refs. [6,13,15,17,18,37].

(ii) Quenched approach. The behavior of the selected
voter is predetermined by its personal trait assigned randomly
at the beginning of the simulation. On average, the fraction
of voters that are always nonconformists is p, whereas the
fraction of voters that are always conformists is 1 − p. This
approach is considered in Refs. [6,13,15,21].

Under the above two approaches, we compare the behavior
of the q-voter models with different types of nonconfor-
mity, i.e., independence and anticonformity. The dynamical
rules that reflect the analyzed social responses are as follows
[17,18].

(i) Conformity. If all q members of the influence group
share the same opinion, the selected voter takes the opinion
shared by the group.

(ii) Independence. The selected voter resists social pres-
sure and independently of the influence group changes its
opinion to the opposite one with probability 1/2.

(iii) Anticonformity. If all q members of the influence
group share the same opinion, the selected voter takes the
opposite opinion to the one shared by the group.

If the influence group is not unanimous in the case of
conformity or anticonformity, the voter stays with their old
opinion.

This choice of behavior in the case of disagreement is con-
sistent with the formulation of the q-voter models introduced
in Ref. [18], which we refer to. However, in a more general
case, one may assume that when the influence group is not
unanimous, the voter still have a chance to change their opin-
ion with some probability ε. Such an approach was originally
considered in the nonlinear q-voter model [19]. Introducing
this generalization to the q-voter models with nonconformity

may result in richer phase diagrams, and it may be an interest-
ing direction for future studies.

Finally, let us note that we consider a random sequential
update, as in most studies. In contrast, a synchronous update
is implemented in Ref. [21].

III. PAIR APPROXIMATION FOR QUENCHED MODELS

The pair approximation is a general technique used to study
various dynamics on static [29–41] as well as coevolutionary
networks [42–46]. This method has already been applied to
the q-voter models with nonconformity under the annealed
approach. The calculations for the q-voter model with in-
dependence can be found in Refs. [31–33,35,36], whereas
for the q-voter model with anticonformity can be found in
Refs. [34,37]. In this section, we develop the pair approxi-
mation for the quenched versions of the q-voter models.

As indicated in Sec. II, we distinguish between two states
j ∈ {↑,↓}, which represent positive and negative opinions of
voters, and two types of nodes τ ∈ {c, n}, which refer to voters
that are conformists and nonconformists, respectively. Note
that, in the case of the q-voter model with independence, non-
conformists are equivalent to independent individuals (n ≡ i),
whereas in the case of the q-voter model with anticonformity,
nonconformists are equivalent to anticonformists (n ≡ a). Let
cτ be the concentration of nodes of type τ with a positive opin-
ion. Since the fraction of voters that are nonconformists is p,
and the rest of them are conformists, the overall concentration
of voters with a positive opinion is as follows:

c = pcn + (1 − p)cc. (1)

To conduct the pair approximation, we use the concept of
directed links even though we consider only undirected net-
works. This means that we replace each undirected link with
two oppositely directed links [44,45]. Additionally, we group
these directed links into classes based on the states and types
of nodes they connect. Let eτ1τ2

j1 j2
denote the concentration of

directed links, where the first upper and lower indexes refer to
the state and type of the node at the origin of a link, whereas
the second indexes refer to the corresponding variables
at the end of it. Note that eτ1τ2

j1 j2
= eτ2τ1

j2 j1
since our networks are

undirected. Figure 1(a) illustrates this notation. Additionally,
we have

ecc
↑↑ + ecc

↓↓ + 2ecc
↑↓ + enn

↑↑ + enn
↓↓ + 2enn

↑↓

+ 2ecn
↑↑ + 2ecn

↓↓ + 2ecn
↑↓ + 2ecn

↓↑ = 1 (2)

since this is the sum over all the concentrations of directed
links. Moreover, since the node types are assigned randomly,
the concentrations of directed links connecting nodes of spe-
cific types are known:

ecc
↑↑ + ecc

↓↓ + 2ecc
↑↓ = (1 − p)2, (3)

enn
↑↑ + enn

↓↓ + 2enn
↑↓ = p2, (4)

ecn
↑↑ + ecn

↓↓ + ecn
↑↓ + ecn

↓↑ = (1 − p)p. (5)

Let us now consider a randomly selected out-link of a given
node. The first node, at the origin of this link, is of known
type and in known state, τ1 and j1, respectively, whereas
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FIG. 1. Illustration of the used notation. Circles and squares
represent different types of nodes, conformists and nonconformists,
respectively. An arrow in a node corresponds to its state. Zigzag and
straight arrows connecting nodes represent directed links that are
active and inactive, respectively. Two cases are presented for which
the central node has a positive opinion, and it is either conformist
or nonconformist. (a) Labels next to the links indicate their classes.
(b) Labels above the links indicate the numbers of such out-links
belonging to the central node from the graph directly above.

the second node, at the end of this link, is of unknown type
and in unknown state. Let P( j2|τ1, j1) denote the probability
that the second node is in state j2. On the other hand, let
P(τ2|τ1, j1; j2) denote the conditional probability that the type
of the second node is τ2 given that the state of this node is j2.
The above probabilities are approximated by certain fractions
of the concentrations of directed links. We distinguish be-
tween active and inactive links. Active links refer to the links
that connect nodes in different states, whereas inactive links
refer to the links that connect nodes in the same states. First,
let us define the probabilities of selecting an active out-link
of a node of type τ that is in state j. Using our notation,
these probabilities are denoted by P(− j|τ, j), so the explicit
formulas are the following (we will also refer to them by
Greek letters specified below for brevity of notation):

P(↓ |c,↑) ≡ α = ecc
↑↓ + ecn

↑↓
ecc
↑↓ + ecn

↑↓ + ecc
↑↑ + ecn

↑↑
, (6)

P(↑ |c,↓) ≡ ᾱ = ecc
↓↑ + ecn

↓↑
ecc
↓↑ + ecn

↓↑ + ecc
↓↓ + ecn

↓↓
, (7)

P(↓ |n,↑) ≡ α̃ = enn
↑↓ + enc

↑↓
enn
↑↓ + enc

↑↓ + enc
↑↑ + enn

↑↑
, (8)

P(↑ |n,↓) ≡ α̂ = enn
↓↑ + enc

↓↑
enn
↓↑ + enc

↓↑ + enn
↓↓ + enc

↓↓
. (9)

Now, let us define the conditional probabilities that a ran-
domly selected out-link of a node of type τ that is in state
j connects nodes of the same type given that this out-link is
active. Using our notation, these probabilities are denoted by

P(τ |τ, j; − j), so the explicit formulas are the following:

P(c|c,↑; ↓) ≡ β = ecc
↑↓

ecc
↑↓ + ecn

↑↓
, (10)

P(c|c,↓; ↑) ≡ β̄ = ecc
↓↑

ecc
↓↑ + ecn

↓↑
, (11)

P(n|n,↑; ↓) ≡ β̃ = enn
↑↓

enn
↑↓ + enc

↑↓
, (12)

P(n|n,↓; ↑) ≡ β̂ = enn
↓↑

enn
↓↑ + enc

↓↑
. (13)

Finally, let us define the conditional probabilities that a ran-
domly selected out-link of a node of type τ that is in state
j connects nodes of the same type given that this out-link is
inactive. Using our notation, these probabilities are denoted
by P(τ |τ, j; j), so the explicit formulas are the following:

P(c|c,↑; ↑) ≡ γ = ecc
↑↑

ecc
↑↑ + ecn

↑↑
, (14)

P(c|c,↓; ↓) ≡ γ̄ = ecc
↓↓

ecc
↓↓ + ecn

↓↓
, (15)

P(n|n,↑; ↑) ≡ γ̃ = enn
↑↑

enn
↑↑ + enc

↑↑
, (16)

P(n|n,↓; ↓) ≡ γ̂ = enn
↓↓

enn
↓↓ + enc

↓↓
. (17)

Let us consider a node of type τ that is in state j and has
k out-links. We assume that each of these out-links may be
active independently of others with probability P(− j|τ, j),
given by one of Eqs. (6)–(9). Thus, the number of active out-
links, x ∈ {0, k}, is binomially distributed. Since the node has
x active out-links, the remaining k − x out-links are inactive.
Given the number of active out-links x, let f τ (x, k) denote the
probability that a node of type τ that has k out-links changes
its state to the opposite one. Based on the model definition
(see Sec. II), these probabilities for different types of voters
are as follows:

(i) conformists:

f c(x, k) = x!(k − q)!

k!(x − q)!
1{x�q}(x), (18)

(ii) independent individuals:

f i(x, k) = 1

2
, (19)

(iii) anticonformists:

f a(x, k) = (k − x)!(k − q)!

k!(k − x − q)!
1{x�k−q}(x), (20)

where 1A(x) is an indicator function defined on a set
A. Having defined these quantities, we can write down a
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differential equation for each concentration cτ :

dcτ

dt
=,−

∑
j

cτ
j

∑
k

Pτ
j (k)

×
k∑
x

B
[
x; k, P(− j|τ, j)

]
f τ (x, k) j, (21)

where Pτ
j (k) is the network degree distribution associated only

with nodes of type τ that are in state j, and the function B
returns the binomial probability, i.e.,

B[x; k, θ ] =
(

k

x

)
θ x(1 − θ )k−x, (22)

whereas cτ
↑ ≡ cτ and cτ

↓ ≡ 1 − cτ for notation brevity. Ex-
plicit forms of these equations can be found in Appendix A.
Note that Eq. (21) represents the average change in cτ in
a time interval dt = 1/N . The construction of similar equa-
tions for the time evolution of other quantities can be found in
Refs. [8,31,32,39,47]

Similar differential equations have to be written for each
concentration of directed links. Let us consider further the

node from the previous paragraph. This node is of type τ ,
and it is in state j. Moreover, x out of its all k out-links are
active. Now, let us say that among these x active out-links,
there are y ∈ {0, x} active out-links that point to nodes of the
same type τ . We assume that each of the active out-links may
connect nodes of the same type τ independently of others with
probability P(τ |τ, j; − j), given by one of Eqs. (10)–(13).
Thus, the number of active out-links that connect nodes of
the same type τ , y, is binomially distributed. The remaining
x − y active out-links connect nodes of different types. Anal-
ogously, let us say that among k − x inactive out-links, there
are z ∈ {0, k − x} inactive out-links that connect nodes of the
same type τ . In the same way, we postulate that this number is
binomially distributed with probability P(τ |τ, j; j), given by
one of Eqs. (14)–(17). The remaining k − x − z inactive out-
links connect nodes of different types. Figure 1(b) illustrates
how the out-links of a given node are partitioned into different
classes according to the above convention.

Having this partition, the differential equations for all the
concentrations of directed links have the following form:

d

dt
eτ1τ2

j1 j2
= 1

〈k〉
∑

i∈{1,2}
j∈{↑,↓}

[p1{n}(τi ) + (1 − p)1{c}(τi )]c
τi
j

∑
k

Pτi
j (k)

k∑
x

B
[
x; k, P(− j|τi, j)

]

×
x∑
y

B
[
y; x, P(τi|τi, j; − j)

] k−x∑
z

B
[
z; k − x, P(τi|τi, j; j)

]
f τi (x, k)�eτ1τ2

j1 j2
(i, j), (23)

where 〈k〉 is the average node degree of a network, and
�eτ1τ2

j1 j2
(i, j) is given by

�eτ1τ2
j1 j2

(i, j) = − j1 j2

⎧⎪⎨
⎪⎩

z if τ1 = τ2 ∧ j = j3−i,

−y if τ1 = τ2 ∧ j 	= j3−i,

k − x − z if τ1 	= τ2 ∧ j = j3−i,

−(x − y) if τ1 	= τ2 ∧ j 	= j3−i.

(24)

Note that i ∈ {1, 2} and j ∈ {↑,↓}, as in the sums of the
above differential equation. Equation (23) represents the av-
erage change in eτ1τ2

j1 j2
in a time interval dt = 1/N . The form

of Eqs. (23) and (24) follows directly from the introduced
link partition convention; see also Fig. 1(b). In Eq. (23), the
formula for the first moment of the binomial distribution can
be used to perform the sums after a proper change of the
summing indexes [31]. The explicit differential equations for
all the concentrations of directed links after the summation
can be found in Appendix A.

In the following section, we present the results for the
quenched models based on the above calculations, and we
compare them to the results for the annealed models based
on the calculations conducted in Refs. [31,34].

IV. RESULTS

Herein, we present the main results and describe the phase
diagrams obtained based on the pair approximation. The
details of Monte Carlo simulations, used to validate our cal-
culations, are presented in Appendix B. Throughout the work,
we distinguish between two phases—an ordered one and a
disordered one. In the ordered phase, one opinion dominates
over the other (i.e., c 	= 0.5), whereas in the disordered phase,
both opinions are equally likely (i.e., c = 0.5). At the pair ap-
proximation level, the only network parameter that affects the
model dynamics under the quenched approach is the average
node degree. The same applies to the q-voter models under
the annealed approach [31,33–36]. Interestingly, if repetition
of voters in the influence group is allowed, other moments
of the degree distribution may appear in the solution [32,36].
Figure 2 illustrates how the type of phase transition predicted
by our approach depends on the average node degree 〈k〉 and
the influence group size q. However, these results should be
treated with caution since the predictions of the pair approxi-
mation are not always correct in the case of the q-voter models
with annealed disorder. In the q-voter model with indepen-
dence under the annealed approach, the pair approximation
predicts two consecutive phase transitions (one continuous
and one discontinuous) for small enough average node de-
grees if q > 5 [striped area in Fig. 2(a); see also Fig. 3(a)].
Nevertheless, instead of these two transitions, a single dis-

064306-4



PAIR APPROXIMATION FOR THE q-VOTER MODELS … PHYSICAL REVIEW E 105, 064306 (2022)

FIG. 2. Types of phase transitions predicted by the pair approx-
imation in the q-voter model with independence[panels (a) and (c)]
and anticonformity [panels (b) and (d)] under the annealed approach
[panels (a) and (b)] and the quenched approach [panels (c) and
(d)]. We consider integer values of the average node degree 〈k〉 that
are bigger than the influence group size q. Two consecutive phase
transitions refer to continuous and discontinuous phase transitions
that happen one after the other [see Figs. 3(d) and 3(e)]. The top
rows labeled by CG correspond to the results on a complete graph of
the infinite size, i.e., the case when 〈k〉 → ∞.

continuous phase transition shows up in the simulations [31].
On the other hand, in the q-voter model with anticonformity
under the annealed approach, the pair approximation indicates
that discontinuous phase transitions become continuous for
large enough average node degrees [see Figs. 2(b) and 3(b)].
However, only continuous phase transitions have been ob-
served in the simulations [34]. For the quenched counterparts
of the models, we have not observed similar errors. The pair
approximation predicts only continuous phase transitions, and
only such transitions have been detected in the simulations
[6,21]. Therefore, the rounding effect actually occurs only in
the q-voter model with independence. Let us now discuss
how exactly the average node degree influences the phases.
In the q-voter model with independence, the ordered phase
becomes wider on networks with a larger average node degree
regardless of the disorder type [see Figs. 3(a) and 4(a)]. For
the annealed case, we can obtain the explicit formula for the
transition point [31]:

p∗ = q − 1

q − 1 + 2q−1
( 〈k〉−1

〈k〉−2

)q . (25)

In the limit at infinity, 〈k〉 → ∞, this point tends to the one
obtained for a well-mixed population given by the following
formula [17,18]:

p∗ = q − 1

q − 1 + 2q−1
. (26)

For the quenched case, the transition point is obtained numer-
ically. In Fig. 3(a), we see that this point also tends to the one
obtained for a well-mixed population [15], i.e.,

p∗ = q − 1

q
, (27)

as the average node degree becomes larger. Note the change
of disorder from annealed to quenched broadens the ordered
phase. In Fig. 4(a), we see that the quenched model is much
less sensitive to the changes in 〈k〉. Thus, it is easy to overlook
the dependence of the transition point on the average node
degree of a network when the model is studied based on
simulations, as in Ref. [6].

In the q-voter model with anticonformity, the ordered
phase becomes wider on networks with a larger average node
degree only when annealed disorder is considered. In the pres-
ence of quenched disorder, the ordered phase shrinks as the
average node degree becomes larger [see Figs. 3(a) and 4(a)].
For the annealed case, we can obtain the explicit formula for
the transition point between the ordered and disordered phases
[34]:

p∗ = q − 1

q − 1 + (
1 + q 〈k〉−2

〈k〉
)( 〈k〉

〈k〉−2

)q . (28)

For the quenched case, the transition point is obtained numer-
ically. In the limit at infinity, 〈k〉 → ∞, the transition points
from both the approaches tend to the same point given by

p∗ = q − 1

2q
, (29)

which is the point of the phase transition on a complete graph
of infinite size [15]. Thus, only in well-mixed populations do
the annealed and quenched approaches lead to the same result.
On networks, however, the change of disorder form annealed
to quenched alters the phase diagram in such a way that it
broadens the ordered phase, just like in the q-voter model with
independence but to a lesser extent [e.g., compare Figs. 3(a)
and 3(b)]. This can be also seen in Fig. 5 where the predictions
of the pair approximations are presented together with the
outcomes of Monte Carlo simulations. Note that in Fig. 5(d),
the pair approximation incorrectly predicted the type of the
phase transition for the q-voter model with anticonformity
under the annealed approach.

Lastly, under the quenched approach, we can study sepa-
rately the concentration of positive agents among conformists
and nonconformists, i.e., cτ defined in Sec. III. Figure 6 illus-
trates this partition. In the q-voter model with independence,
the situation on networks is similar to the one in a well-mixed
population. The concentration of positive agents among inde-
pendent agents is always 1/2 regardless of the average node
degree [see Figs. 6(a) and 6(c)]. On the other hand, the q-voter
model with anticonformity behaves differently on networks
than on complete graphs. For a well-mixed population, we
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FIG. 3. Phase diagrams under the annealed and quenched approaches for the q-voter model with q = 6 and (a) independence and
(b) anticonformity. Horizontal dashed lines are asymptotes that correspond to the results on a complete graph of infinite size, i.e., the case
when 〈k〉 → ∞. Panel (c) magnifies the rectangular area marked in panel (a), whereas panels (d)–(f) illustrate the transitions at given values
of the average node degree indicated in panel (c). Notation: p, the level of nonconformity; 〈k〉, the average node degree; c, the concentration
of voters with positive opinions; and q, the influence group size.

have that cc = 1 − ca. This means that there is the same level
of agreement among agents in each of the groups, so the

FIG. 4. Illustration of how the average node degree of a network
impacts phase diagrams under the annealed (dashed lines in shades
of red) and quenched (continuous lines in shades of blue) approaches
for the q-voter model with q = 2 and (a) independence and (b) anti-
conformity. Only stable concentrations that refer to the ordered phase
are depicted for clarity. Three different values of the average node
degree are considered, 〈k〉 ∈ {4, 6, 12}. Arrows indicate the direction
in which 〈k〉 increases. Thick lines (labeled by CG) correspond to
the results on a complete graph of infinite size, i.e., the case when
〈k〉 → ∞. Notation: c, the concentration of voters with positive
opinions; p, the level of nonconformity; and q, the influence group
size.

diagrams for conformists and anticonformists are on top of
each other [see Fig. 6(b)]. However, this equality is no longer
true on networks where the agreement among conformists is
higher than the one among anticonformists, so the diagram
for conformists encloses the one for the anticonformists [see
Fig. 6(d)]. Consequently, the network breaks the symmetry
exhibited on a complete graph between the concentrations of
conformists and anticonformists that hold the same opinion.

V. CONCLUSIONS

We examined how the change of disorder from annealed
to quenched affects the phase diagrams exhibited by the q-
voter model with independence and the q-voter model with
anticonformity on networks. To this end, we developed the
pair approximation for the quenched versions of the models.
This formalism can be also applied to other quenched dynam-
ics of similar kind. We validated our calculations by Monte
Carlo simulations conducted on random regular graphs and
Barabási-Albert networks.

We showed that quenched disorder eliminates all discontin-
uous phase transitions in the q-voter model with independence
(the q-voter model with anticofnormity does not exhibit
discontinuous phase transitions at all). Moreover, quenched
disorder broadens the ordered phases of continuous phase
transitions in both the models, but does so to a lesser extent
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FIG. 5. Comparison between the annealed and quenched ap-
proaches for the q-voter model with independence [panels (a) and
(c)] and anticonformity [panels (b) and (d)]. Lines refer to steady
concentrations obtained from the pair approximation, whereas sym-
bols refer to Monte Carlo simulations. The upper part of each
diagram displays the simulation outcomes obtained on random reg-
ular graphs (RR), whereas the bottom part displays the simulation
results obtained on Barabási-Albert networks (BA). Notation: c, the
concentration of voters with positive opinions; p, the level of non-
conformity; q, the influence group size; and 〈k〉, the average node
degree.

in the q-voter model with anticonformity. Similarly, quenched
disorder broadens ordered phases of continuous phase transi-
tions in the Galam model [26,48].

Our comparative analysis of the q-voter models with differ-
ent types of nonconformity and disorder on networks revealed
differences between them that cannot be observed in well-
mixed populations. Thus, relying only on the mean-field
description, which does not take into account the network
structure, may be misleading. We showed that although an-
nealed and quenched types of disorder lead to exactly the
same result in the q-voter model with anticonformity at the
mean-field level [15], these two disorder types do lead to
distinct phase diagrams on networks. These phase diagrams
shift towards each other as the average node degree of a
network increases, and eventually, they coincide in the limit
of an infinite average node degree (i.e., the mean-field limit).
Therefore, the direction of a diagram shift depends on the
disorder type in this case. For the annealed one, the phase
diagrams shift towards higher values of the control parameter
p, whereas for the quenched one they shift towards lower
values of the control parameter p. In contrast, for the q-voter
model with independence, the phase diagrams move towards

FIG. 6. Stable concentrations of voters with a positive opinion
among different groups under the quenched approach [see Eq. (1)]
for the q-voter model with q = 2 and independence [panels (a) and
(c)] and anticonformity [panels (b) and (d)]. The first row illustrates
the results on a complete graph (CG), whereas the second one il-
lustrates the results on a random regular graph with 〈k〉 = 10. Lines
refer to the analytical predictions, whereas symbols refer to Monte
Carlo simulations. Initially, all voters have a positive opinion in the
simulations. Notation: c, the concentration of voters with positive
opinions; p, the level of nonconformity; 〈k〉, the average node degree;
and q, the influence group size.

higher values of the control parameter no matter what the dis-
order type is, and they do not coincide even in the mean-field
limit.

Moreover, there is a qualitative difference between the
behavior of the q-voter model with anticonformity under the
quenched approach on a network and on a complete graph. On
a network, the level of agreement among conformists is higher
than the one among nonconformists, whereas in a well-mixed
population the level of agreement in both these groups is the
same [15].

Finally, let us notice that the pair approximation may in-
correctly predict the type of phase transitions displayed by the
annealed models. Especially prone to this kind of error is the
q-voter model with anticonformity. Similar discrepancies are
reported with regard to other dynamics [29,30,33,34,36,37].
However, we have not observed such errors for the quenched
counterparts of the studied models. This demonstrates how
accuracy of the pair approximation may change depending on
the details of particular dynamics and cautions against relying
solely on approximate methods. On the other hand, well-
conducted approximation may aid in discovering effects that
are easy to overlook based on the simulations alone, as had
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been the case with the q-voter model with independence under
the quenched approach. This particular model had been sug-
gested to be insensitive to changes in the network structure [6].
However, with the support of the pair approximation, we were
able to conclude that the network structure does influence all
the q-voter models studied herein, including the q-voter model
with independence under the quenched approach.
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APPENDIX A: DETAILS OF THE PAIR APPROXIMATION

Herein, we present the details of the pair approximation for
the q-voter models with nonconformity under the quenched
approach (see Sec. III). The calculations for the q-voter model
with independence are included in first subsection, whereas
those for the q-voter model with antifonformity are included
in the second one. In the following calculations, the average
node degrees calculated only among nodes of type τ that are
in state j show up. They are denoted by 〈kτ

j 〉 and given by the
following formulas:

〈kc
↑〉 = ecc

↑↓ + ecn
↑↓ + ecc

↑↑ + ecn
↑↑

(1 − p)cc
〈k〉, (A1)

〈kc
↓〉 = ecc

↓↑ + ecn
↓↑ + ecc

↓↓ + ecn
↓↓

(1 − p)(1 − cc)
〈k〉, (A2)

〈kn
↑〉 = enn

↑↓ + enc
↑↓ + enc

↑↑ + enn
↑↑

pcn
〈k〉, (A3)

〈kn
↓〉 = enn

↓↑ + enc
↓↑ + enn

↓↓ + enc
↓↓

p(1 − cn)
〈k〉. (A4)

1. The q-voter model with independence

In this case, we only have conformists and independent
individuals in the system, so τ ∈ {c, i}, and Eq. (21) gives

dcc

dt
= (1 − cc)ᾱq − ccα

q, (A5)

dci

dt
= 1

2
− ci. (A6)

From Eq. (A6), we see right away that the steady concentra-
tion of independent individuals with a positive opinion is

stci = 1/2. (A7)

Note that we indicate the steady values by a lower index on
the left-hand side of a given quantity. Below, we present the
differential equations for the evolution of the concentrations
of directed links obtain from Eq. (23) after performing all the
summations as in Ref. [31]. Note that they include only the
first moments of the degree distributions, i.e., 〈kτ

j 〉. Let us start
with the concentrations of links that connect only conformists:

d

dt
ecc
↑↑ = 2(1 − p)

〈k〉
{
(1 − cc)ᾱq

[
q + (〈kc

↓〉 − q
)
ᾱ
]
β̄ − ccα

q
(〈kc

↑〉 − q
)
(1 − α)γ

}
, (A8)

d

dt
ecc
↓↓ = 2(1 − p)

〈k〉
{
ccα

q
[
q + (〈kc

↑〉 − q
)
α
]
β − (1 − cc)ᾱq

(〈kc
↓〉 − q

)
(1 − ᾱ)γ̄

}
, (A9)

d

dt
ecc
↑↓ = 1 − p

〈k〉 ccα
q
{(〈kc

↑〉 − q
)
(1 − α)γ − [

q + (〈kc
↑〉 − q

)
α
]
β
}

+ 1 − p

〈k〉 (1 − cc)ᾱq
{(〈kc

↓〉 − q
)
(1 − ᾱ)γ̄ − [

q + (〈kc
↓〉 − q

)
ᾱ
]
β̄
}
. (A10)

For the links that connect only independent individuals, we have the following:

d

dt
eii
↑↑ = p

〈k〉
{
(1 − ci )〈ki

↓〉̂αβ̂ − ci〈ki
↑〉(1 − α̃)γ̃

}
, (A11)

d

dt
eii
↓↓ = p

〈k〉
{
ci〈ki

↑〉̃αβ̃ − (1 − ci )〈ki
↓〉(1 − α̂)γ̂

}
, (A12)

d

dt
eii
↑↓ = p

2〈k〉ci
{〈ki

↑〉(1 − α̃)γ̃ − 〈ki
↑〉̃αβ̃

} + p

2〈k〉 (1 − ci )
{〈ki

↓〉(1 − α̂)γ̂ − 〈ki
↓〉̂αβ̂

}
. (A13)

The last equations are for the concentrations of links that connect conformists and independent individuals. For those that link
nodes in the same states, we have

d

dt
eci
↑↑ = 1 − p

〈k〉
{
(1 − cc)ᾱq

[
q + (〈kc

↓〉 − q
)
ᾱ
]
(1 − β̄ ) − ccα

q
(〈kc

↑〉 − q
)
(1 − α)(1 − γ )

}
+ p

2〈k〉
{
(1 − ci )〈ki

↓〉̂α(
1 − β̂

) − ci〈ki
↑〉(1 − α̃)(1 − γ̃ )

}
, (A14)

d

dt
eci
↓↓ = 1 − p

〈k〉
{
ccα

q
[
q + (〈kc

↑〉 − q
)
α
]
(1 − β ) − (1 − cc)ᾱq

(〈kc
↓〉 − q

)
(1 − ᾱ)(1 − γ̄ )

}
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+ p

2〈k〉
{
ci〈ki

↑〉̃α(
1 − β̃

) − (1 − ci )〈ki
↓〉(1 − α̂)(1 − γ̂ )

}
, (A15)

whereas for those that link nodes in different states, we have

d

dt
eci
↑↓ = 1 − p

〈k〉
{
(1 − cc)ᾱq

(〈kc
↓〉 − q

)
(1 − ᾱ)(1 − γ̄ ) − ccα

q
[
q + (〈kc

↑〉 − q
)
α
]
(1 − β )

}
+ p

2〈k〉
{
ci〈ki

↑〉(1 − α̃)(1 − γ̃ ) − (1 − ci )〈ki
↓〉̂α(

1 − β̂
)}

, (A16)

d

dt
eci
↓↑ = 1 − p

〈k〉
{
ccα

q
(〈kc

↑〉 − q
)
(1 − α)(1 − γ ) − (1 − cc)ᾱq

[
q + (〈kc

↓〉 − q
)
ᾱ
]
(1 − β̄ )

}
+ p

2〈k〉
{
(1 − ci )〈ki

↓〉(1 − α̂)(1 − γ̂ ) − ci〈ki
↑〉̃α(

1 − β̃
)}

. (A17)

Having the above equations, we can write down the differen-
tial equations that set the time evolution of the average node
degrees defined at the beginning of Appendix A. They are
given by the following:

d

dt
〈kc

↑〉 = 1 − cc

cc
ᾱq

[〈kc
↓〉 − 〈kc

↑〉], (A18)

d

dt
〈kc

↓〉 = cc

1 − cc
αq

[〈kc
↑〉 − 〈kc

↓〉], (A19)

d

dt
〈ki

↑〉 = 1 − ci

2ci

[〈ki
↓〉 − 〈ki

↑〉], (A20)

d

dt
〈ki

↓〉 = ci

2(1 − ci )

[〈ki
↑〉 − 〈ki

↓〉]. (A21)

Thus, in the steady state, we have that

st〈kc
↑〉 = st〈kc

↓〉 (A22)

and

st〈ki
↑〉 = st〈ki

↓〉. (A23)

The steady solutions of the concentrations of links that con-
nect independent individuals can be found by combining
Eqs. (A11) and (A12) together with Eqs. (4), (A7), and (A23)
and the definitions of the average node degrees, i.e., Eqs. (A3)

and (A4):

ste
ii
↑↑ = ste

ii
↓↓ = ste

ii
↑↓ = 1

4
p2. (A24)

The steady solutions for the rest of the concentrations are
found numerically after some simplifications of the equations.

2. The q-voter model with anticonformity

In this case, we only have conformists and anticonformists
in the system, so τ ∈ {c, a}, and Eq. (21) gives

dcc

dt
= (1 − cc)ᾱq − ccα

q, (A25)

dca

dt
= (1 − ca)(1 − α̂)q − ca(1 − α̃)q. (A26)

Below, we present the differential equations for the evolution
of the concentrations of directed links obtain from Eq. (23)
after performing all the summations as in Ref. [31]. Note that
they include only the first moments of the degree distributions,
i.e., 〈kτ

j 〉. The equations for the concentrations of the links
that connect only conformists are the same as in the case of
the q-voter model with independence, so they are given by
Eqs. (A8)–(A10). On the other hand, the differential equa-
tions for the links that connect only anticonformists are the
following:

d

dt
eaa
↑↑ = 2p

〈k〉
{
(1 − ca)(1 − α̂)q

(〈ka
↓〉 − q

)̂
αβ̂ − ca(1 − α̃)q

[
q + (〈ka

↑〉 − q
)
(1 − α̃)

]
γ̃
}
, (A27)

d

dt
eaa
↓↓ = 2p

〈k〉
{
ca(1 − α̃)q

(〈ka
↑〉 − q

)̃
αβ̃ − (1 − ca)(1 − α̂)q

[
q + (〈ka

↓〉 − q
)
(1 − α̂)

]
γ̂
}
, (A28)

d

dt
eaa
↑↓ = p

〈k〉ca(1 − α̃)q
{[

q + (〈ka
↑〉 − q

)
(1 − α̃)

]
γ̃ − (〈ka

↑〉 − q
)̃
αβ̃

}
+ p

〈k〉 (1 − ca)(1 − α̂)q
{[

q + (〈ka
↓〉 − q

)
(1 − α̂)

]
γ̂ − (〈ka

↓〉 − q
)̂
αβ̂

}
. (A29)

The last equations are for the concentrations of links that connect conformists and anticonformists. For those that link nodes in
the same states, we have

d

dt
eca
↑↑ = 1 − p

〈k〉
{
(1 − cc)ᾱq

[
q + (〈kc

↓〉 − q
)
ᾱ
]
(1 − β̄ ) − ccα

q
(〈kc

↑〉 − q
)
(1 − α)(1 − γ )

}
+ p

〈k〉
{
(1 − ca)(1 − α̂)q

(〈ka
↓〉 − q

)̂
α
(
1 − β̂

) − ca(1 − α̃)q
[
q + (〈ka

↑〉 − q
)
(1 − α̃)

]
(1 − γ̃ )

}
, (A30)
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d

dt
eca
↓↓ = 1 − p

〈k〉
{
ccα

q
[
q + (〈kc

↑〉 − q
)
α
]
(1 − β ) − (1 − cc)ᾱq

(〈kc
↓〉 − q

)
(1 − ᾱ)(1 − γ̄ )

}
+ p

〈k〉
{
ca(1 − α̃)q

(〈ka
↑〉 − q

)̃
α
(
1 − β̃

) − (1 − ca)(1 − α̂)q
[
q + (〈ka

↓〉 − q
)
(1 − α̂)

]
(1 − γ̂ )

}
, (A31)

whereas for those that link nodes in different states, we have

d

dt
eca
↑↓ = 1 − p

〈k〉
{
(1 − cc)ᾱq

(〈kc
↓〉 − q

)
(1 − ᾱ)(1 − γ̄ ) − ccα

q
[
q + (〈kc

↑〉 − q
)
α
]
(1 − β )

}
+ p

〈k〉
{
ca(1 − α̃)q

[
q + (〈ka

↑〉 − q
)
(1 − α̃)

]
(1 − γ̃ ) − (1 − ca)(1 − α̂)q

(〈ka
↓〉 − q

)̂
α
(
1 − β̂

)}
, (A32)

d

dt
eca
↓↑ = 1 − p

〈k〉
{
ccα

q
(〈kc

↑〉 − q
)
(1 − α)(1 − γ ) − (1 − cc)ᾱq

[
q + (〈kc

↓〉 − q
)
ᾱ
]
(1 − β̄ )

}
+ p

〈k〉
{
(1 − ca)(1 − α̂)q

[
q + (〈ka

↓〉 − q
)
(1 − α̂)

]
(1 − γ̂ ) − ca(1 − α̃)q

(〈ka
↑〉 − q

)̃
α
(
1 − β̃

)}
. (A33)

Having the above equations, we can write down the dif-
ferential equations that set the time evolution of the average
node degrees defined at the beginning of Appendix A. They
are given by the following:

d

dt
〈kc

↑〉 = 1 − cc

cc
ᾱq

[〈kc
↓〉 − 〈kc

↑〉], (A34)

d

dt
〈kc

↓〉 = cc

1 − cc
αq

[〈kc
↑〉 − 〈kc

↓〉], (A35)

d

dt
〈ka

↑〉 = 1 − ca

ca
(1 − α̂)q

[〈ka
↓〉 − 〈ka

↑〉], (A36)

d

dt
〈ka

↓〉 = ca

1 − ca
(1 − α̃)q

[〈ka
↑〉 − 〈ka

↓〉]. (A37)

Thus, in the steady state, we have that

st〈kc
↑〉 = st〈kc

↓〉 (A38)

and

st〈ka
↑〉 = st〈ka

↓〉. (A39)

All the steady solutions for the concentrations are found nu-
merically after some simplifications of the equations.

APPENDIX B: DETAILS OF MONTE CARLO
SIMULATIONS

We carry out Monte Carlo simulations to validate our ana-
lytical calculations.

The simulations are performed on random regular graphs
[49] and Barabási-Albert networks [50]. The former are char-
acterized by the same number of neighbors for all the nodes,
so in this sense such networks are homogeneous structures. In
contrast, the latter belong to the class of scale-free networks
[16], which are characterized by the power-law tail in their
degree distribution, i.e., P(k) ∼ k−λ. This means that some
nodes of the network have many more neighbors than others,
which is a common feature for many real-life structures [16].
For Barabási-Albert networks, the tail exponent is λ = 3.

To construct a random regular graph, we start with N
isolated nodes, and we add edges one by one by connecting
randomly pairs of nodes so that the maximum degree of the
network does not exceed a desired number [49]. If the re-
sulted graph is regular, we accept it, otherwise we repeat the
construction process. On the other hand, a Barabási-Albert
network is created using the preferential attachment mecha-
nism [50]. We start with a small number of fully connected
nodes. New nodes are added to the network one by one until
the resulting structure has N nodes. Each new node is con-
nected to n already existing nodes selected with probability
proportional to the number of neighbors that the nodes already
have. The average node degree of such a network is 〈k〉 = 2n.

One Monte Carlo step (MCS) is understood as N updates of
the model described in Sec. II. In the simulations, we measure
the absolute value of the average opinion (an analog to the
magnetization per spin):

m =
∣∣∣∣∣ 1

N

N∑
i

oi

∣∣∣∣∣, (B1)

where oi is the opinion of the ith agent in the system. To
construct the phase diagrams, we consider the mean value of
m denoted by M = [〈m〉t ]s. The angle brackets, 〈·〉t , represent
the average performed over time in the stationary regime
during a single simulation. We skipped the first 4000 MCSs
to let the system reach the stationary state and performed
the time average over next 2000 MCSs. The square brackets,
[·]s, represent the sample average that was performed over
10 independent simulations with different realizations of the
networks. Due to big system sizes and small fluctuations for
considered values of p, this is enough to obtain small statisti-
cal errors (of the mark size order).

The concentration of agents with positive opinions pre-
sented in Figs. 5 and 6 corresponds to 1

2 (1 + M ) and 1
2 (1 −

M ) for the upper and the lower part of the diagrams, respec-
tively. Simulated systems include N = 105 voters.
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[6] K. Sznajd-Weron, J. Szwabiński, and R. Weron, Is the person-
situation debate important for agent-based modeling and vice-
versa? PLoS One 9, e112203 (2014).

[7] T. Cheon and S. Galam, Dynamical Galam model, Phys. Lett.
A 382, 1509 (2018).
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