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Intervention strategies for epidemic spreading on bipartite metapopulation networks
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Intervention strategies are of great significance for controlling large-scale outbreaks of epidemics. Since the
spread of epidemic depends largely on the movement of individuals and the heterogeneity of the network
structure, understanding potential factors that affect the epidemic is fundamental for the design of reasonable
intervention strategies to suppress the epidemic. So far, most of previous studies mainly consider intervention
strategies on the network composed of a single type of locations, while ignoring the movement behavior of
individuals to and from locations that are composed of different types, i.e., residences and public places,
which often presents heterogeneous structure. In addition, the transmission rate in public places with different
population flows is heterogeneous. Inspired by the above observation, we build a bipartite metapopulation
network model and propose intervention strategies based on the importance of public places. With the Markovian
Chain approach, we derive the epidemic threshold under intervention strategies. Experimental results show that,
compared with the uniform intervention to residences or public places, nonuniform intervention to public places
is more effective for suppressing the epidemic with an increased epidemic threshold. Specifically, interventions to
public places with large degree can further suppress the epidemic. Our study opens a new path for understanding
the spatial epidemic spread and provides guidance for the design of intervention strategies for epidemics in the
future.

DOI: 10.1103/PhysRevE.105.064305

I. INTRODUCTION

Rapid spread of epidemic, such as SARS [1,2], H1N1
influenza [3–5], and the ongoing novel coronavirus
(COVID-19) [6–9], has led to serious threats for human
beings, leading to a significant and widespread socioeconomic
disruption [10]. Since the epidemic universally takes a short
time from initial infections to a global outbreak, it is necessary
to design effective nonpharmacological intervention strategies
before the vaccine is successfully developed.

In recent years, a great effort has been devoted to the
design of intervention strategies for suppressing the epi-
demic with the metapopulation model [11–14]. Relying on the
reaction-diffusion process, each node represents a patch com-
posed of a population of individuals and each edge describes
the route that individuals migration between patches. Stud-
ies found that network structure and mobility patterns may
affect the geographical diffusion of epidemics [15,16]. For
instance, Colizza et al. presents a thorough analysis on the
metapopulation model characterized by heterogeneous net-
work structure, which can promote the epidemic spread [12].
Balcan et al. explored the recurrent mobility patterns, which
hinders the epidemic spread with an increased the epidemic
threshold [17]. Considering that individuals typically only
visit a limited number of places [18–20], mainly commuting
between residences and public places such as work location
and supermarket, Granell et al. proposed a metapopulation
model on the bidirectional mobility of individuals between
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their specific locations and verify the key properties of the
epidemic process [21]. Chang et al. proposed a metapop-
ulation model by considering bidirectional movements of
individuals, verifying that people who tend to visit denser
locations provide insightful information for the design of
effective interventions for the spatial epidemics spread [22].
In reality, considering the heterogeneous connection structure
of public places and the heterogeneous distribution of trans-
mission rate in them, it is necessary to develop reasonable
interventions in order to effectively control the epidemic. For
instance, Matsuki et al. proposed an intervention strategy by
considering the risk of each patch and classifies the patches
as high-risk and low-risk ones. It shows that intervening
low-risk patches is effective to prevent a global epidemic
outbreak [23]. Recently, Wang et al. proposed a nonuniform
intervention strategy by giving priority to patches based on
their importance [24]. In addition, interventions based on in-
dividual behavior such as isolation [25], detection and contact
tracing [26–29], and vaccination [30,31] can also mitigate
transmission. For instance, Aleta et al shows that travel re-
strictions of individuals as well as the deployment of vaccines
is able to delay the peak of the epidemic and reduce the attack
rate.

In real life, individuals migrate between two types of
locations and the connections of public places are often het-
erogeneous. Studies show heterogeneous networks accelerate
the epidemic spread [11,15]. However, most of present studies
on interventions are based on the assumption that individuals
migrate between locations of the same type [32–36], while
ignoring different types of locations [20,37], such as resi-
dences and public places. Although a few studies consider
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FIG. 1. Schematic framework of the metapopulation model with heterogeneous distribution of transmission rate. The bipartite network is
composed of Nr = 5 residences and Np = 3 public places. For the reaction diffusion process, there are two different stages at each time step
t . In the day stage, individuals in residence Ri move to public place Pj with probability p according to the transfer matrix WRiPj . They mix
uniformly in residences or public places. In the night stage, after returning to their residences, individuals mix again in their residences.

different types of locations [21–24], they simplify the bipartite
network as a complete graph, neglecting the impact of the
network heterogeneity on the epidemic spread. Based on the
above discussion, we build a metapopulation model on hetero-
geneous bipartite networks to explore how to design reason-
able intervention strategies to suppress the epidemic spread.
In addition, the contact rate in public places with different
population flows is heterogeneous, resulting in the difference
of the transmission rate in public places [22]. Therefore, each
public place should implement appropriate intervention strate-
gies based on the population flow, that is, the implementation
of intervention to public places is nonuniform. Prioritizing
intervention to high-traffic public places would be beneficial
to suppress the epidemic spread. Therefore, we propose a
nonuniform intervention strategy based on the importance of
public places. With the Markovian chain approach [38,39], we
derive the epidemic threshold under intervention strategies.
Experiment results show that interventions to public places
with large degree are more effective to hinder epidemics.

This paper is organized as follows. In Sec. II, we first
propose a metapopulation model with recurrent mobility
patterns on a bipartite graph, and then uniform and nonuni-
form interventions are introduced. Next, we demonstrate the
susceptible-infective-susceptible (SIS) model on bipartite net-
works under interventions and derive the epidemic threshold
under different interventions. The effectiveness of different
interventions on the epidemic spread is verified in Sec. III.
We summarize our work in Sec. IV.

II. A BIPARTITE METAPOPULATION MODEL
WITH INTERVENTIONS

A. Model description

To study intervention strategies for suppressing the epi-
demic, we start by establishing a metapopulation model on
bipartite networks, as shown in Fig. 1. First, we consider a
bipartite network composed of Nr residences and Np public
places, satisfying the condition Nr > Np. Due to the differ-

ent migration behavior and the heterogeneity connections of
public places, the bipartite network is assumed to be weighted
and heterogeneous, encoded in an adjacency matrix, whose
entry wRiPj defines the weight between residence Ri and public
place Pj . Then residence Ri is the home of a number of
individuals nRi , so that the total population of the network
is V = ∑Nr

i=1 nRi . To reflect the heterogeneous distribution of
the transmission rate, we assume that the transmission rate of
residences and public places are βRi for i = 1, . . . , Nr and βPj

for j = 1, . . . , Np, respectively.
To simulate the real observation that individuals leave their

residences to public places in the day and return to their
residences in the night, the dynamical process is described as
two different stages at each time step t , that is, the day stage
and the night stage. First, in the day stage, with probability p,
individuals in residence Ri move to public place Pj according
to the matrix WRiPj , or with probability (1 − p), they remain
in their original residence Ri. With the SIS model, each sus-
ceptible individual gets infected by contacting with infectious
individuals in residence Ri (public place Pj) with probability
βRi (βPj ). Next, in the night stage, all the individuals who left
their residences return to their residences, where susceptible
individuals get infected on contact with infected individuals
with probability βRi and infectious individuals recover with
probability μ. Here we assume the day stage and the night
stage as one time step [40]. It is possible to take them as two
separate steps. Due to the migration of individuals to public
places in the day time, the number of individuals in residences
changes in the day time, which is not suitable for the Markov
chain method.

B. Network structure-based intervention strategies

Facing with pandemic outbreaks, how to design rapid and
effective interventions to hinder the epidemic spread is a
complicated problem. Based on the observation that a highly
connected public place usually plays a more fundamental
role in suppressing the epidemic spread [41], we propose a
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nonuniform intervention strategy based on the importance of
public places by adjusting the transmission rate of public
places. To simplify the analysis, the efficient transmission rate
of all residences is assumed constant as βr and that of public
places is assumed as βp, which can be described as βp = mβr

with m > 0. After intervening public place Pj , the transmis-
sion rate of public place Pj is updated as βPj , expressed as

βPj = cpθPj βp, j = 1, 2, . . . , Np, (1)

where cp (0 � cp � 1) represents the intervention factor for
public places. The parameter θPj represents the intervention
priority factor for public place Pj , expressed as a function of
public place Pj’s degree, kPj , and tuned by parameter α as
follows:

θPj (kPj , α) =
{

1, if kα
Pj

>
〈
kα

p

〉
,

kα
Pj

〈kα
p 〉 , if kα

Pj
<

〈
kα

p

〉
,

(2)

for j = 1, 2, . . . , Np. 〈kα
p 〉 = ∑

kp
kα

p P(kp) represents the αth-
order moment of degree kp and P(kp) represents the degree
distribution of public places. It indicates that intervening a
public place or not is determined by comparing the kα

Pj
with

the αth-order moment of degree kp, 〈kα
p 〉. If the degree of

public place Pj , kPj , satisfies the condition kα
Pj

< 〈kα
p 〉, then it

will be intervened with proportion factor
kα

Pj

〈kα
p 〉 ; otherwise, there

is no need to be intervened. By doing so, not all the public
places are necessary to be intervened.

Specifically, if α = −1, then public places are classified as
the ones with degree larger than the average degree 〈kp〉 and
the other ones with degree less than the average degree 〈kp〉.
The intervention factor is expressed as follows:

θPj (kPj , θ0) =
{

1, if kPj > 〈kp〉,
θ0, if kPj < 〈kp〉, (3)

for j = 1, 2, . . . , Np. That is, only patches with degree larger
than the average degree are intervened with factor θ0. We will
present a simple example of Appendix A for details.

In order to understand how the nonuniform intervention
implements in the network and what kind of patches are
priorly intervened, we show the intervention factor θPj as a
function of public place Pj’s degree kPj for different values of
α in Fig. 2. If α < 0 [Fig. 2(a)], then only public places with
large degree are intervened with priority with more intensive
scale. Therefore, the transmission rate in public places with
large degree is less than that with lower degree, while with
α > 0 [Fig. 2(b)], it is converse. Additionally, the greater the
absolute of α, the smaller the transmission rates after inter-
ventions will be.

To compare with nonuniform intervention to public places,
we also propose a uniform intervention to public places by
setting θPj = 1( j = 1, 2, . . . , Np) in Eq. (1). Specifically, with
cp = 1 and θPj = 1( j = 1, 2, . . . , Np), it indicates that no in-
tervention is performed in public places.

Except for the intervention to public places, it is also
possible to intervene residences. Since the connections of
residences to public places are homogeneously distributed,
we consider a uniform intervention to residences. After in-
tervening residence Ri, the transmission rate in residences Ri
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FIG. 2. Intervention priority factor θp(kp, α) versus degree kp

when nonuniform intervention to public places in Eq. (2). (a) α < 0;
(b) α > 0.

is updated as βRi , expressed as

βRi = crβr, i = 1, 2, . . . , Nr, (4)

where cr (0 � cr � 1) represents the intervention factor for
residences. Specifically, when cr = 1, it indicates that no in-
tervention is performed in residences.

According to the intervention strategies proposed above,
we next implement two types of intervention scenarios. One
is to intervene one type of location, that is, nonuniform or
uniform intervention to public places, and unform interven-
tion to residences. The other is to simultaneously intervene
two types of locations, that is, uniform intervention to both
residences and public places and nonuniform intervention to
public places combined with uniform intervention to resi-
dences. To make the comparison reasonable, the transmission
rates after intervention has to be tuned the same way, which
we will introduce in detail in Sec. III.

C. The SIS model on bipartite networks under interventions

To calculate the epidemic threshold λc under different in-
terventions, we use the Markovian chain approach to solve
this problem. For the SIS model, we have a set of Nr variables,
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ρRi (t ), i = 1, 2, . . . , Nr , denoting the proportion of infected
individuals in residence Ri at time t . Therefore, the proportion
of susceptible individuals associated with residence Ri at time
t is 1 − ρRi (t ). The time evolution of ρRi (t ) can be described
as follows:

ρRi (t + 1) = ρRi (t )(1 − μ) + [1 − ρRi (t )]�Ri (t ), (5)

for i = 1, 2, . . . , Nr , where ρRi (t + 1) represents the propor-
tion of infected individuals in residence Ri at time t + 1. The
first term of Eq. (5) represents the proportion of infected
individuals associated to Ri that did not get recovered at time
t . The second term represents the probability that susceptible
individuals get infected at time t with probability �Ri (t ),
which is written as

�Ri (t ) = (1 − p)��
Ri

(t ) + p
Np∑
j=1

WRiPj �
�
Pj

(t )

+ p
Np∑
j=1

WRiPj [1 − ��
Pj

(t )]��
Ri

(t )

+ (1 − p)[1 − ��
Ri

(t )]��
Ri

(t ), (6)

where ��
Ri

(t )[��
Ri

(t )] represents the probability that individu-
als get infected in residence Ri in the day (night) stage. ��

Pj
(t )

represents the probability that individuals get infected in pub-
lic place Pj . The first term of Eq. (6) represents the probability
that individuals remain at residence Ri and get infected. The
second term represents the probability that individuals move
from residence Ri to public place Pj and get infected with
probability ��

Pj
(t ). The third term represents the probability

that individuals did not get infected in public place Pj but
get infected after returning to residence Ri. The last term
represents the probability that individuals who remained at
residence Ri are not infected in the day stage but get infected
in the night stage. ��

Ri
(t ) and �

�
Ri

(t ) can be expressed as

��
Ri

(t ) = 1 − [1 − βRiρRi (t )]nRi→Ri , (7)

�
�
Ri

(t ) = 1 − [1 − βRiρRi (t )]nRi . (8)

Taking Eq. (7) as an example, the second term on the right-
hand side [1 − βRiρRi (t )]nRi→Ri quantifies that the probability
that an individual who remained in residence Ri does not
get infected by infected individuals. Therefore, 1 − [1 −
βRiρRi (t )]nRi→Ri represents the probability that an individual
gets infected in residence Ri in the day stage. Similarly, ��

Pj
(t )

is expressed as

��
Pj

(t ) = 1 −
Nr∏

i=1

[1 − βPj ρRi (t )]nRi→Pj , (9)

j = 1, 2, . . . , Np, where [1 − βPj ρRi (t )]nRi→Pj quantifies the
probability that an individual does not get infected by con-
tacting infected individuals migrated to public place Pj . So
1 − [1 − βRiρRi (t )]nRi represents the probability that an indi-
vidual gets infected in public place Pj in the day stage.

In Eqs. (7) and (9), nRi→Ri represents the number of individ-
uals who remained in residence Ri, and nRi→Pj represents the
number of individuals who moved from residence Ri to public

place Pj . Since individuals stochastically leave the residence
with probability p, the probability of k individuals who left
residence Ri follows a binomial distribution, expressed as

P(X = k) = Ck
nRi

pk (1 − p)nRi −k, (10)

for i = 1, . . . , Nr , the expectation of which is E (X ) = nRi p.
Therefore, the number of individuals who remained in

residence Ri is nRi→Ri = nRi (1 − p), and the number of in-
dividuals who left residence Ri is nRi p. The number of
individuals who moved to public place Pj from residence Ri is
nRi→Pj = nRi pWRiPj , where WRiPj = wRiPj

wRi
and wRi = ∑

j wRiPj .
wRiPj represents the edge weight between residence Ri and
public place Pj .

D. The epidemic threshold under intervention

In this section, the analysis of the epidemic threshold is
carried out under the scenario of nonuniform interventions
to public places, while uniform intervention to residences. In
Eq. (5), when the system reaches the steady state, we assume
that ρRi (t + 1) = ρRi (t ) = ρRi . Since the number of infected
individuals is negligible near the epidemic threshold, we have
ρRi = εRi � 1. Equation (5) can then be simplified as

εRi = εRi (1 − μ) + (1 − εRi )�Ri . (11)

Substituting �Ri into Eq. (11), it can be rewritten as

εRi = (1 − μ)εRi + (1 − εRi )[(1 − p)��
Ri

+ p
Np∑
j=1

WRiPj �
�
Pj

+ p
Np∑
j=1

WRiPj (1 − ��
Pj

)��
Ri

+ (1 − p)(1 − ��
Ri

)��
Ri

]. (12)

Substituting Eqs. (7), (8), and (9) into Eq. (12), we have

εRi = (1 − μ)εRi + (1 − εRi )[(1 − p)[1 − (1 − βRiεRi )
nRi→Ri ]

+ p
Np∑
j=1

WRiPj

[
1 −

Nr∏
k=1

(1 − βPj εRk )nRi→Pj

]

+ p
Np∑
j=1

WRiPj

(
1 −

{[
1 −

Nr∏
k=1

(1 − βPj εRk )nRi→Pj

]})

× {1 − [1 − βRiεRi (t )]nRi }
+ (1 − p)[1 − ({1 − [1 − βRiεRi (t )]nRi→Ri })]

× {1 − [1 − βRiεRi (t )]nRi }], (13)

and when εRi � 1, we can get (1 − ρRi )
n ≈ 1 − nρRi , and then∏Nr

i=1(1 − ρRi )
n ≈ 1 − ∑

i nρRi . Equation (13) can be rewrit-
ten as

εRi = (1 − μ)εRi + (1 − εRi )[(1 − p)2nRiβRiεRi

+ p
Np∑
j=1

WRiPj nRiβRiεRi

+ p2
Np∑
j=1

Nr∑
k=1

WRiPjWRkPj nRk βPj εRk + (1 − p)nRiβRiεRi ].

(14)
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By replacing βRi = crβr and βPj = cpθPj mβr , we can obtain

εRi = (1 − μ)εRi + (1 − εRi )[(1 − p)2nRi crβrεRi

+ p
Np∑
j=1

WRiPj nRi crβrεRi

+ p2
Np∑
j=1

Nr∑
k=1

WRiPjWRkPj nRk cpθPj mβrεRk

+ (1 − p)nRi crβrεRi ]. (15)

Equation (15) is expressed in the form of vector ε∗ as

μ

βr
ε∗ = Mε∗. (16)

Thus, the propagation threshold βc
r can be expressed as the

form of the maximum eigenvalue of the matrix M,

βc
r = μ


max(M )
, (17)

where the matrix M reads as

MRiRk = [(1 − p)2crnRi + crnRi ]δRiRk

+ p2
Np∑
j=1

WRiPjWRkPj mcpθPj nRk , (18)

where δRiRk = 1 if i = k; otherwise, δRiRk = 0. We see that
the entry MRiRk of the matrix M is determined by the initial
population distribution nRi , the mobility rate p, the transfer
matrix W , and the intervention factors for public places, cp

and θPj , and that for residence cr .
If θPj = 1, j = 1, 2, . . . , Np and 0 < cr = cp < 1, then it

represents uniform intervention to both residences and public
places. Then the matrix M can be rewritten as

MRiRk = [(1 − p)2crnRi + crnRi ]δRiRk

+ p2
Np∑
j=1

WRiPjWRkPj mcpnRk . (19)

If θPj = 1, j = 1, 2, . . . , Np and cr = cp = 1, then it indi-
cates that no intervention is implemented. Then the matrix M
can be rewritten as

MRiRk = [(1 − p)2nRi + nRi ]δRiRk

+ p2
Np∑
j=1

WRiPjWRkPj mnRk , (20)

which is consistent with the results in Ref. [21].
Based on the above discussion, we see that the epidemic

threshold under intervention depends on different choices of
the intervention factors cr and cp and the intervention priority
θPj . To further understand the impact of interventions on the
epidemic threshold, we analyze the effect of different inter-
ventions on the epidemic threshold in detail by providing a
simple network in Appendix A.

III. SIMULATION RESULTS

In order to explore the impact of different intervention
strategies on the epidemic spread, we perform Monte Carlo
(MC) simulations and verify the Markovian equations for
the bipartite metapopulation network model with interven-
tions. The detailed MC simulation process is provided in
Appendix B. In reality, since the number of residences is
usually more than that of public places, we assume that the
network is composed of Nr = 200 residences and Np = 100
public places. The total population is V = 5000. The degree
distribution of public places P(kp) follows P(kp) ∝ kp

−2.1,
where the maximum and the minimum degree are kp,max = 81
and kp,min = 2. The average degrees of residence and public
place are 〈kr〉 = 17 and 〈kp〉 = 34, respectively. Since the
initial population distribution affects the epidemic spread,
we consider two types of initial population distributions,
that is, homogeneous distribution (HOD), where each res-
idence has the same number of individuals, i.e., nRi = 25,
and heterogeneous distribution (HED), where the number
of population in the residence is proportional to its weight.
The flux weight between residence Ri and pubic places Pj ,
wRiPj , is randomly distributed in the range [1,50]. The initial
transmission rate of residences and public places is βp =
mβr with m = 1.25, which is consistent with the real obser-
vation that the transmission rate in public places is higher
than that in residences. At the beginning of the simulation,
there are 50 infected individuals and no recovered individuals.
The mobility rate is p = 0.4. The recovery rate is μ = 0.2
in simulations. Here we take the day-night cycle within a
day, as a time step may cause the deviation of the discrete-
time model from the continuous-time model [40], while the
smaller transmission rate and the recovery rate may reduce
the deviation, which is further verified in the MC simulation
results.

A. Interventions to public places or residences alone

In this section, we will explore the effectiveness of inter-
vention to public places or residences alone. First, we study
nonuniform (NUP) and uniform (UP) intervention strategies
to public places alone. Then we analyze uniform intervention
to residences alone (UR), since the connections of residences
are homogeneous distribution.

To study the influence of priority and intensity of NUP, we
perform experiments under the conditions of the HOD and
HED for different choices of α in Fig. 3. The dots repre-
sent the Monte Carlo simulation results and the curves are
the results of the Markovian equations. The vertical lines
are the theoretical threshold derived from Eqs. (17) and (18)
for different choices of α. In Fig. 3(a), we see that for dif-
ferent α, the epidemic threshold and the final proportion of
infections show obvious difference. Specifically, compared
with no intervention (α = 0), intervening public places with
large degree (α < 0) reduces the proportion of infections
and increases the epidemic threshold. For instance, the epi-
demic threshold increases from 0.004 to 0.006 with α = −1.
Moreover, a larger absolute value of α results in a higher epi-
demic threshold. However, it is ineffective to intervene public
places with small degree (α > 0). This is because only a few
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FIG. 3. NUP tuned by parameter α under different initial popu-
lation distributions. (a) HOD. (b) HED. The migration probability
is p = 0.4. The recovery probability is μ = 0.2. The intervention
factors for residences and public places are cr = 1 and cp = 1, re-
spectively. The inset amplifies the curves when β is in the range of
[0.002, 0.008].

individuals reach public places with small degree. Thus, the
infections before and after intervention do not change much.
In summary, intervening public places with large degree can
more effectively control epidemics. The epidemic threshold
increased and the final proportion of infected individuals de-
creased after intervention with the increase of the absolute
of the parameter α(α > 0) under the condition of the HOD
[Fig. 3(a)] and the HED [Fig. 3(b)], since the connections of
the residence are homogeneous, it leads to the uniform migra-
tion of individuals from residences to public places. However,
the gap between the thresholds before and after interventions
for the HED is less than that for the HOD. It notes that NUP
for the HED is not as effective as that for the HOD. Since the
results of the HOD and HED are similar, in the following, we
will take the HOD as an example.

To compare the effectiveness of UP and NUP, it is nec-
essary to keep the average transmission rate of public places
after intervention 〈β ′

p〉 the same. Figure 4 shows the relation-
ship between 〈β ′

p〉 and α. When α = 0, all the public places

 0
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 0.006

 0.008

 0.01

 0.012
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-1.5 -1 -0.5  0  0.5  1  1.5
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β p′ >

α

βp=0.004
βp=0.008
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FIG. 4. The average transmission rate of public places after NUP
〈β ′

p〉 for different α. The initial infection rates in public places are
βp = 0.004 (purple), βp = 0.008 (green), and βp = 0.012 (blue), re-
spectively. The dotted lines represent 〈β ′

p〉 with α = 0 for βp = 0.004
(purple), βp = 0.008 (green), and βp = 0.012 (blue).

have the same infection rate for a given βp, i.e., 〈β ′
p〉 = βp. In

addition, 〈β ′
p〉 decreases as the increase of the absolute value

of α. The average transmission rate after intervention to public
places with large degree (α < 0) is less than that with small
degree (α > 0), since intervention to public places with large
degree is more intensive.

Next, we explore the effectiveness of UP alone in sup-
pressing the epidemic. Figure 5(a) shows the impact of
UP with different factors cp. Clearly, compared with no
intervention (cp = 1 and α = 0), the more intensive the
intervention to public places (small cp) is, the larger the epi-
demic threshold will be. It means that intervening to pubic
places with same intensity can effectively delay the epi-
demic, while it has no obvious effect on the final outbreak
size.

To compare the difference between UP and NUP in sup-
pressing the epidemic, α = 1, cp = 0.67 and α = −1, cp =
0.52 are set to satisfy the condition of the same transmission
rate after intervention, 〈β ′

p〉. In Fig. 5(b), compared with no
intervention (α = 0 or cp = 1), both UP and NUP with large
degree (α < 0) can increase the epidemic threshold. Under the
condition of the same average transmission rate after inter-
ventions, i.e., α = −1 and cp = 0.52, NUP with large degree
(α < 0) can more effectively control the epidemic. In contrast,
when α = 1 and cp = 0.67, NUP with small degree (α > 0)
is less effective than uniform intervention. In summary, in-
tervening public places with large degree has a better effect
on the control of epidemic. In reality, redistributing the flow
of public places with large degree is expected to the efficient
control of epidemic.

Next, to fully understand the effect of intervention strate-
gies on the epidemic, we explore UR alone. Figure 6 shows
the impact of UR with different factor cr . Compared with no
intervention (cr = 1, black curve), more intensive intervention
to residences (controlled by cr) can suppress the epidemic in
terms of a larger epidemic threshold and a smaller infection
scale. In addition, compared with UP, UR is more effective
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FIG. 5. (a) Uniform intervention to public places for different
intensity cp with α = 0, while residences are not intervened with
cr = 1. (b) Comparison of UP and NUP. The intervention factor for
residences is cr = 1. Other parameters are set same as in Fig. 3.

in suppressing the epidemic. This result is expected, since
the number of residences is more than that of public places,
resulting in the reduction of the final proportion of infected
individuals in the network.

In all, when intervening one type of locations alone, NUP
with large degree (α < 0) is more effective in curbing the
epidemic spread, compared with UP or UR alone. Moreover,
both UP and UR have no obvious difference in the terms of
epidemic scales.

B. Simultaneous interventions to both residences
and public places

To further explore the effectiveness of intervention to both
residences and public places, we also implement two inter-
vention strategies: One scenario is uniform intervention to
both public places and residences (UR + UP), and the other
scenario is nonuniform intervention to public places combined
with uniform intervention to residences (NUP + UR).

To make the comparison reasonable, we introduce the av-
erage transmission rate of the network after intervention 〈β ′〉
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FIG. 6. Uniform intervention to residences for different interven-
tion intensity cr with α = 0, while public places are not intervened
with cp = 1 and α = 0. Other parameters are set same as in Fig. 5.

expressed as

〈β ′〉 = Nrcrβr + Npcp〈βp〉βp

Nr + Np
, (21)

where Nr + Np is the total number of residences and public
places in the network. The first and second terms of the nu-
merator in Eq. (21) represents the sum of transmission rates
of residences and public places after intervention.

To explore the effectiveness of uniform intervention to both
public places and residences (UR + UP), we compare it with
UR or UP with the same 〈β ′〉. We take no-intervention (cr = 1
and cp = 1, black curve) as the baseline model. Different
intervention strategies are represented by different values of
cr and cp, as shown in Fig. 7. We see that compared with no
intervention, UR + UP (cr = 0.84 and cp = 0.84, cr = 0.89,
dark blue and cp = 0.89, red curves) slightly increases the
epidemic threshold. Compared with UR (orange curve) or UP
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FIG. 7. UR + UP. The intervention factors for public places are
α = 0. Other parameters are set same as in Fig. 5. The inset amplifies
the curves for β in [0.004, 0.008].
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FIG. 8. NUP + UR. (a) α < 0; (b) α > 0. Other parameters are
set same as in Fig. 5. The inset amplifies curves when β is from 0.004
to 0.008.

(green curve), UR + UP (dark blue curve) plays similar role
in suppressing the epidemic.

Next, we study the effectiveness of UP, UR, NUP,
UR + UP, and NUP + UR in curbing the epidemic spread.
First, we analyze the impact of nonuniform intervention
to public places with large degree combined with uniform
intervention to residences (NUP + UR) in suppressing the
epidemic spread in Fig. 8(a). It can be seen that compared
with UP (blue curve), UR (orange curve), or UR + UP (yellow
curve), NUP (green curve) with large degree (α < 0) performs
best in terms of a higher epidemic threshold, while NUP with
small degree (α > 0) does not show obvious advantage and
all the above-mentioned interventions show similar perfor-
mance, see Fig. 8(b). Moreover, in Fig. 8(a) or Fig. 8(b), there
is no obvious difference in curbing the epidemic between
NUP + UR (oxford blue curve) and UR + UP (yellow curve).
It indicates that in reality, intervening public places with more
population flux would be more effective in the control of the
epidemic.

In summary, when intervening two type of locations, the
effectiveness of the scenario of UR + UP and the scenario of
NUP + UR performs similarly to that of UR or UP and does

R1

R2

R3

P1

P2

FIG. 9. A metapopulation network with three residences and two
public places.

not show obvious advantage both in terms of the epidemic
threshold as well as the infection scale. In all, NUP with large
degree (α < 0) plays the most effective role in suppressing the
epidemic compared with the above mentioned interventions.
In contrast, NUP with small degree (α > 0) is less effective.

IV. DISCUSSION AND CONCLUSION

So far, nonpharmacological intervention strategies are still
the most effective methods to suppress the epidemic until
sufficient available of vaccine. Therefore, it is important for
designing effective intervention strategies to suppress the epi-
demic spread. In addition, mobility of individuals mainly goes
to and from locations of two types, that is, residences and
public places, further complicates the design of effective inter-
ventions to the spatial spread of epidemic. So far, it has found
that public places with higher flow contain a larger number of
infected individuals. Therefore, designing intervention strate-
gies according to the importance of locations is fundamental
to curb the epidemic spread.
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 0.0055

 0.006

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

βr
c
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FIG. 10. Case 1: Uniform intervention to all public places. The
number of individuals in a residence is n = 25 and the mobility rate
is p = 0.4.
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FIG. 11. Case 2: Intervention to public places with large degree.
Other parameters are set same as in Fig. 10.

To solve such a problem, we propose an intervention strat-
egy based on the flow of public places by using a bipartite
metapopulation model with the SIS process. The flow of
public places is assumed to be proportional to the degree of
public places. The implementation of intervention is relevant
with the degree of the locations and the priority parameter.
Our study shows that NUP with large degree (α < 0) can
most effectively curb the epidemic, while NUP with small
degree (α < 0) has little effect on suppressing the epidemic.
Moreover, the uniform intervention strategies to public places
or residences have similar effect in curbing the epidemic, but
they are not as effective as NUP with large degree (α < 0).
It indicates that in reality, redistributing the population flow
from highly connected public places to the ones with less flow
is expected to be helpful for the control of epidemics [41].

The current work still has some shortcomings. On the one
hand, the contact pattern between individuals within a location
is assumed to be homogeneously mixed, while in reality, this
is not true. For example, the contact patterns within each
patch are heterogeneous and the number of contacts is lim-
ited [42]. On the other hand, intervention strategies should be
time dependent on the dynamics of the epidemic, which has
been omitted in the present work. In spite of shortcoming, our
work provides some insights on how to effectively control the
epidemic spread. As for further work, the impact of contact
patterns between individuals on the dynamics of the epidemic
deserves further study.
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Fig. 10.

APPENDIX A: A SIMPLE EXAMPLE FOR THE
INTERVENTION ON THE BIPARTITE NETWORKS

To help explain the impact of intervention strategies on
the epidemic threshold, we build a simple metapopulation
network with three residences and two pubic places in Fig. 9,
where the degrees of two public places are three and one,
respectively.

To simplify analysis, we assume that nRi = n, i = 1, 2, 3

and the weight matrix is W = (
1 0
1 1

0.5 0.5
). The initial trans-

mission rate between residences and public places is set as
βp = mβr with m = 1.25. In the main text, the epidemic
threshold βr

c on this network is obtained by Eqs. (17) and (18).
Under this assumption, the matrix M can be rewritten

as

M =

⎧⎪⎨
⎪⎩

[(1 − p)2 + 1]ncr + 5
4 p2θP1 ncp

5
4 p2θP1 ncp

5
8 p2θP1 ncp

5
4 p2θP1 ncp [(1 − p)2 + 1]ncr + 5

4 p2θP1 ncp
5
8 p2θP1 ncp

5
8 p2θP1 ncp

5
8 p2θP1 ncp [(1 − p)2 + 1]ncr + 5

16 p2(θP1 + θP2 )ncp

⎫⎪⎬
⎪⎭ (A1)

Next, we analyze the epidemic thresholds with some special cases.
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Case 1: Uniform intervention to all public places. By setting cr = 1, 0 < cp < 1, θPj = 1, j = 1, 2, the matrix M is
rewritten as

M =

⎧⎪⎨
⎪⎩

[(1 − p)2 + 1]n + 5
4 p2ncp

5
4 p2ncp

5
8 p2ncp

5
4 p2ncp [(1 − p)2 + 1]n + 5

4 p2ncp
5
8 p2ncp

5
8 p2ncp

5
8 p2ncp [(1 − p)2 + 1]n + 5

8 p2ncp

⎫⎪⎬
⎪⎭, (A2)

from which we see that only the intervention intensity for public places cp affect the epidemic threshold. For clarity, we perform
a numerical iteration of Eqs. (17) and (A2) to obtain the epidemic threshold, as shown in Fig. 10. It can be seen that the epidemic
threshold decreases with cp, i.e., more intensive intervention to public places will delay the epidemic with a larger epidemic
threshold.

Case 2: Intervention to public places with large degree. Intervention to public places with degree larger than the average
degree 〈kp〉 with the parameter α = −1, that is,

θPj =
{

1, kPj < 〈kp〉
θ0, kPj > 〈kp〉 , (A3)

where θ0 represents the intervention factor for pubic places. The transmission rate of public place Pj will be written as βPj =
cpθPj βp. By setting cr = 1, 0 < cp < 1, the matrix M is expressed as

M =

⎧⎪⎨
⎪⎩

[(1 − p)2 + 1]n + 5
4 p2θ0ncp

5
4 p2θ0ncp

5
8 p2θ0ncp

5
4 p2θ0ncp [(1 − p)2 + 1]n + 5

4 p2θ0ncp
5
8 p2θ0ncp

5
8 p2θ0ncp

5
8 p2θ0ncp [(1 − p)2 + 1]n + 5

16 p2(θ0 + 1)ncp

⎫⎪⎬
⎪⎭. (A4)

In order to analyze the effect of the intervention intensity parameter cp and the priority intervention parameter θ0 on the
epidemic threshold, we perform numerical iterations of Eqs. (17) and (A4). As shown in Fig. 11, the smaller the value of cp and
θ0, the greater the epidemic threshold. This result is expected, since a more intensive intervention to public places would lead to
lower transmission rates, resulting in the reduction of the infection scale. Therefore, intensively intervening public places with
large degree is effective for suppressing the epidemic.

Case 3: Nonuniform intervention to public places. Intervening to public places with degree satisfies the condition kα
Pj

< 〈kα
p 〉

with the proportion factor
kα

Pj

〈kα
p 〉 , that is,

θPj =
{

1, kα
Pj

>
〈
kα

p

〉
kα

Pj

〈kα
p 〉 , kα

Pj
<

〈
kα

p

〉 . (A5)

By setting cr = 1 and 0 < cp < 1, the matrix M is expressed as

M =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[(1 − p)2 + 1]n + 5
4 p2 kα

P1
〈kα

p 〉ncp
5
4 p2 kα

P1
〈kα

p 〉ncp
5
8 p2 kα

P1
〈kα

p 〉ncp

5
4 p2 kα

P1
〈kα

p 〉ncp [(1 − p)2 + 1]n + 5
4 p2 kα

P1
〈kα

p 〉ncp
5
8 p2 kα

P1
〈kα

p 〉ncp

5
8 p2 kα

P1
〈kα

p 〉ncp
5
8 p2 kα

P1
〈kα

p 〉ncp [(1 − p)2 + 1]n + 5
16 p2 kα

P1
〈kα

p 〉 + kα
P2

〈kα
p 〉ncp

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (A6)

Finally, we explore how the intervention intensity parameter cp and the selection parameter α affect the epidemic threshold.
In Fig. 12(a), the epidemic threshold decreases with cp. Intervention to public places with large degree (α < 0) is more effective
to curb the epidemic in reducing the infection scale and increasing the epidemic threshold. As shown in Fig. 12(b), the epidemic
threshold increases with the absolute value of α, since a larger α represents a more intensive intervention. In addition, for α < 0,
the epidemic thresholds under different value of α show obvious differences. Based on the above analysis, when an emergent
epidemic breaks out, intensive intervention to public places with large degree with priority can better curb the epidemic spread.

APPENDIX B: THE MONTE CARLO SIMULATION ON METAPOPULATION NETWORKS WITH SIS PROCESS

In order to explore the impact of different intervention strategies on the epidemic spread, we perform MC simulations as
follows:

(1) Initialize the metapopulation network.
(a) Build the metapopulation network. The relevant parameters are the degree distribution P(kp), the number of residences

Nr and public places Np, and the number of individuals in residence Ri, nRi .
(b) Set intervention parameters. The relevant parameters are the intervention factors for public places cp and for residences

cr, the parameter α.
(2) Reaction-diffusion process at one time step.

(a) Individuals’ migration. Individuals leave residences with probability p or remain in residences with probability
(1 − p).
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(b) SIS process in the day stage. Susceptible individuals in residence Ri or public place Pj get infected with probability
��

Ri
or ��

Pj
.

(c) Return. Individuals who left return to the original residences.
(d) SIS process in the night stage. Susceptible individuals in residence Ri get infected with probability ��

Ri
, and infected

individuals in residence Ri recover with probability μ.
(3) Count the proportion of infected individuals in the network at steady state.
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