
PHYSICAL REVIEW E 105, 064303 (2022)

Learning grammar with a divide-and-concur neural network

Sean Deyo * and Veit Elser
Physics Department, Cornell University, Ithaca, New York 14853, USA

(Received 21 January 2022; accepted 18 May 2022; published 13 June 2022)

We implement a divide-and-concur iterative projection approach to context-free grammar inference. Unlike
most state-of-the-art models of natural language processing, our method requires a relatively small number of
discrete parameters, making the inferred grammar directly interpretable—one can read off from a solution how
to construct grammatically valid sentences. Another advantage of our approach is the ability to infer meaningful
grammatical rules from just a few sentences, compared to the hundreds of gigabytes of training data many
other models employ. We demonstrate several ways of applying our approach: classifying words and inferring a
grammar from scratch, taking an existing grammar and refining its categories and rules, and taking an existing
grammar and expanding its lexicon as it encounters new words in new data.

DOI: 10.1103/PhysRevE.105.064303

I. INTRODUCTION

Children display an innate facility for acquiring language.
Beginning with a small vocabulary of word fragments, most
humans are eventually able to grasp the meaning of arbitrarily
long and convoluted strings of words automatically, even if
the effort is not rewarded until the very end of the sentence.
How is this ability gleaned from the sparse data children are
presented with, a training corpus that comes nowhere close to
sampling the full expressive power of language?

Language has syntax rules that are acquired long before
they are understood consciously in an instruction setting.
Readers of this journal would accept “left-handed hetero-
dyne detection of entangled mesophase supernovas” as a
grammatically valid title, even while questioning its scientific
legitimacy. Humans seem to be able to grasp most elements of
grammar without ever being told about nouns, verbs, etc.

Separate from the process of syntax-rule acquisition is the
very question of what constitutes the right or cognitively most
relevant set of rules. Human linguists have struggled with this
question for over two centuries and have arrived at solutions
(with several variations) for many natural languages. Could
there be significantly different solutions that also “explain”
the data?

This study was motivated by all of the questions above and
the desire to study them objectively. Can grammar be acquired
without formal instruction, that is, in an unsupervised learning
setting? Can the learning be implemented in a distributed
manner, say on a network? Can the learning of abstract rules
be demonstrated, that is, not just the production of language
that is consistent with such rules? And if successful, how does
the acquired grammar compare with the grammars developed
by human linguists?

We make some concessions in addressing these research
objectives. First, our model for representing grammar is not

*sjd257@cornell.edu

completely open-ended, but is based on the context-free
grammar (CFG) model [1] already introduced by linguists.
However, CFGs are very general and also arise outside of
natural language modeling. In our use of this model the cat-
egories are abstract entities that only acquire interpretations
as “parts of speech” during training. Second, to rigorously
test our learning model we train on data generated by explicit
model grammars rather than natural language data. This work
should be seen as a proof-of-concept exercise. We make no
claims that our particular model and its implementation on a
network bear any strong relationship to reality (neuroethol-
ogy).

Current-day natural language processing (NLP) methods
achieve high scores in imitating language by accessing very
large network-parameterized representations distilled from
even larger collections of training data. Parameter sets and
training corpora measuring in the terabytes are becoming
commonplace [2]. This approach is sometimes criticized as
simple mimicry, and that the high fidelity in language pro-
duction comes without any understanding [3,4]. While the
systems we train also do not understand meaning (semantics),
we can claim that they at least understand the syntax rules of
the abstract entities in the grammar. This much of language
is given a fully transparent, interpretable representation in our
approach. Moreover, we find that this part of language learn-
ing is possible without the terabytes of data used in current
NLP.

II. COMPARISON WITH PREVIOUS WORK

State-of-the-art language models (LMs) such as GPT-3 [2],
trained mostly without supervision, would appear to have
already solved the grammar inference problem in that the
language they generate has very high grammatical accuracy.
However, a linguist might argue that to demonstrate gram-
mar understanding, one should also be capable of generating
grammatically correct but semantically nonsensical output,
something which is beyond models of this kind. The internal

2470-0045/2022/105(6)/064303(12) 064303-1 ©2022 American Physical Society

https://orcid.org/0000-0003-4267-9050
https://orcid.org/0000-0002-6961-4778
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.105.064303&domain=pdf&date_stamp=2022-06-13
https://doi.org/10.1103/PhysRevE.105.064303

SEAN DEYO AND VEIT ELSER PHYSICAL REVIEW E 105, 064303 (2022)

representation of grammar in these systems is inextricably
linked with particular extracts of the training data. While the
difference between the linguist’s abstract and these example-
based representations may not matter for some applications,
it is surely relevant when modeling language acquisition and
processing in humans. In this respect our approach, which
uses abstract categories, is closer to the linguist’s concept of
grammar inference.

The representation of grammar in our approach falls into
the connectionist paradigm but also differs in significant ways
from current practice. Starting with Elman’s simple recur-
rent networks (SRNs) [5], the time structure of language
has motivated designs that try to capture phrase structure,
subject-object relationships, relative clauses, etc., in networks
that take sequential data. In transformer networks [6], the
most sophisticated connectionist machines of this type, broad
contexts for tokens in the stream are provided by an attention
mechanism. In our approach, representations are distributed
as well, but without an explicit reference to time. Instead,
the network instantiations represent the parse trees of whole
sentences, and have a direct linguistic interpretation.

In addition to treating grammar as an independent learned
component of language, our approach differs from most cur-
rent NLP research in its core technology. The encoders and
decoders of transformer models are built with feed-forward
neural networks that form representations of tokens (strings
of words) in a continuous Euclidean space. Continuity of
the representation space is required because the optimization
performed in training is based on gradient information. Our
representations live in Euclidean space as well, but for a differ-
ent reason. The elementary operations are not gradient steps
but distance-minimizing “projections” to the nearest element
of a set [7]. The latter can be discrete, where they represent
symbolic entities such as categories and rules. For example,
when representing categories by k-tuples of real numbers, by
the usual 1-hot encoding, projection to a category takes the
form of replacing the largest element with a 1 and setting the
rest to 0, as that minimizes the distance to the constraint set.

Besides using discrete points and projections to them when
processing the grammatical content of a sentence (categories,
parse tree), we also encode the rules of the grammar dis-
cretely. In fact, our algorithm does not treat projections to
nearest-category or nearest parse-tree any differently from
projections to nearest rule-table. The discreteness of the rule
table “parameters” in our approach is the most obvious depar-
ture from standard practice in machine learning, and also key
to bringing interpretability to the representation.

Large LMs often use hundreds of gigabytes of training data
to fine-tune hundreds of billions of parameters [4]. Having so
many parameters makes it practically impossible for a human
to interpret what the algorithm has learned. In the years before
the current era of large LMs, some smaller models aimed to
directly extract an interpretable set of grammatical rules from
data, as we do. One of the best known is SEQUITUR [8],
an algorithm which compresses a string of symbols into a
set of context-free production rules based on recurring subse-
quences. Such an approach can effectively reproduce the data
from a compact set of rules, but lacks the generative capacity
to create novel sentences—combinations of words not seen
in the data that are nonetheless ‘grammatical’ in the usual

sense. The capacity for novelty often goes hand in hand with
the ability to group words based on how they are used (i.e.,
identify parts of speech). Some models, such as CDC [9] and
ALLiS [10], take advantage of data that have already been
tagged with grammatical labels on all of the words. Others,
like us, demand that the algorithm learn the lexical categories
without supervision (annotations). The ADIOS algorithm [11]
constructs a graph whose vertices are words, encoding each
sentence in the data set as a path through the graph. It discov-
ers parts of speech by identifying high-probability subpaths
in the graph and creating equivalence classes of words that
appear as parts of such patterns. The most significant pattern
then becomes a new nonlexical symbol, which is added to the
graph as a new vertex, and the process repeats. The eGRIDS
algorithm [12] also updates its grammar iteratively, starting
with an initial hypothesis and merging or creating new nonter-
minal symbols with the goal of minimizing the complexity of
the resulting grammar. The CLL approach [13] also proceeds
stepwise, adding sentences one by one, updating the grammar
to accommodate the newest sentence. Though these models
share our aim of extracting interpretable grammatical rules
from data, our method has a fundamentally different character.
The existing methods are explicitly incremental, whether by a
greedy search [9,11] or by stepwise updates to the grammar
motivated by minimizing complexity [12,13]. By contrast, our
projection-based hard constraint approach attempts to solve
the entire problem—all of the sentences, all of the syntactic
rules, all of the lexical categorizations—simultaneously in a
distributed framework.

The projection approach to network optimization was in-
troduced only recently [7], which might explain why it is
not more widely used. The competition between constraints
makes it difficult to project to all of them simultaneously.
The divide-and-concur technique [14] resolves this diffi-
culty by replicating variables so that all projections involve
only easy constraints on small sets of independent variables
(divide). Projecting to an equality constraint enforces agree-
ment among the replicated variables (concur). In Sec. IV
we describe our projections and how we coordinate them to
converge on solutions.

Finally, our method stands in stark contrast with current
NLP practice in that it is possible to train on much smaller
data sets, at least for the more limited task of learning gram-
mar. Though the set of possible grammars expressible by our
model is very large, the number of discrete parameters or
bits of information to be learned is modest. The learning of
cellular automata rules, like Conway’s Game of Life, pre-
sented the same contrast [15]. The discretely parameterized
model needed only 2n bits to represent the rule of an n-input
automaton and could be trained on as few as a single pair of
patterns, whereas the continuous model with gradient descent
[16] needed to be tenfold over-parameterized and used one
million data. Similarly, typical large LMs can have hundreds
of billions of parameters and are trained on hundreds of giga-
bytes of data [4]. Even the smaller LMs need hundreds [12]
if not thousands [9,11,13] of training sentences, especially
if they are tasked with generating grammatical output as op-
posed to merely parsing existing sentences. We will show that
our algorithm only needs a handful of sentences to infer the
rules of a simple grammar.

064303-2

LEARNING GRAMMAR WITH A DIVIDE-AND-CONCUR … PHYSICAL REVIEW E 105, 064303 (2022)

FIG. 1. Left: A parse tree for the dog saw a cat. The words sitting on the top layer of the tree imply the lexical rules, such as D → dog.
Right: The syntactic rules used in the parse tree, displayed as a binary operation table. The S in cell AB represents the rule S → AB, and so
on for the other entries. In addition to having a linguistic interpretation, these diagrams are faithful depictions of the architecture used by our
algorithm. Each node in the parse tree and every cell of the rule table holds a c-component category vector.

III. PROBLEM STATEMENT

A. Context-free grammar model

A context-free grammar (CFG) is a formal grammar con-
sisting of a lexicon and a set of production rules. The lexicon
consists of terminals—the words appearing in the language—
and nonterminals—symbols that represent lexical categories
(noun, verb, etc.) and higher abstractions (noun phrase, verb
phrase, and so on), called nonlexical categories [1].

Generally, the rules take the form X → α where X is a
single nonterminal and α is a string of symbols (terminal or
nonterminal). To simplify the structure of the grammar we
allow only two kinds of rules:

(1) Syntactic rules of the form X → YZ where X and Y �=
Z are nonterminals.

(2) Lexical rules of the form X → w, where X is a nonter-
minal and w is a terminal (word).

One special symbol, S, serves as the “start symbol.” Any
valid sentence must be derivable by taking a single S and
repeatedly applying rules until only terminals remain [1]. Fig-
ure 1 displays this process with a parse tree. Each branching
event represents the use of a syntactic rule, and the words
above the final layer of the tree imply the lexical rules. The
fact that a rule replaces a single category, without reference to
its neighbors, is what makes the grammar context-free.

The binary restriction on the syntactic rules gives the parse
trees the triangular structure in Fig. 1. This structure simplifies
the architecture of the networks that our inference algorithm
will use. To represent ternary rules, such as NP → NP AND
NP (conjunction of noun phrases), our restricted model would
have to “invent” auxiliary categories that fit the binary restric-
tion (with rules NP → NPA NP and NPA → NP AND).
The further restriction that the Y and Z of the rule are dis-
tinct is reflected in natural language grammars but could be
relaxed.

One can make further refinements within a category based
on features. Features express properties such as the number
of a noun (singular or plural), the tense (past, present, etc.)
of a verb or its mood (indicative, interrogative, etc.). We will
denote features with a subscript: e.g., the rule NPs → DsNs
represents the replacement of a singular noun phrase with a
singular determiner followed by a singular noun.

Before training, the algorithm does not “know” which
words are singular or plural, nor does it “know” what a noun
is, so we simply label the lexical and nonlexical categories
with A, B, C, and so on; and the feature subscripts with 0, 1,
and so on. Only after the algorithm finds a solution can one
notice that, for example, A happens to contain all the nouns
and A0 happens to have all the singular nouns.

B. Restrictions and hyperparameters

When data are limited—only a small number of sentences
are available—and the CFG model is unrestricted, we should
not expect the grammar inference problem to have a unique
solution. Sentences generated by the inferred grammars will
almost always be ungrammatical within the language from
which the data was sampled. To promote unique grammar
inference, even in this data-limited setting, we next intro-
duce some restrictions in the form of hyperparameters. Note
that the restrictions in the definition of the syntactic rules
of Sec. III A are technical in nature and do not address the
uniqueness question.

Our approach to promoting unique inference is based on a
max-min principle involving two hyperparameters: the num-
ber of lexical categories cl and the number of syntactic rules
rs. Clearly one would like to be able to resolve the constituents
of sentences to the greatest extent possible—maximizing cl —
while at the same time using the fewest rules—minimizing
rs—in the parse trees that generated them.

We implement the maximizing principle by making cl a
hyperparameter and imposing the constraint that all cl lexical
categories appear in the top layers of the parse trees. If � is the
set of distinct words in the data, then the grammar needs |�|
lexical rules that map the words surjectively to the cl lexical
categories. We allow for the possibility of homographs (words
with the same spelling but different meaning) by allowing the
number of lexical rules to exceed |�| by another hyperparam-
eter h � 0.

Our hyperparameter-imposed restrictions are summarized
as follows:

1. All c categories, of which at least cl are lexical, must be
used.

2. There are at most rs syntactic rules.

064303-3

SEAN DEYO AND VEIT ELSER PHYSICAL REVIEW E 105, 064303 (2022)

3. There are at most rl = |�| + h lexical rules.
A simple protocol for the max-min optimization is to set

cl , rs and some homograph allowance h � 0. If a solution is
found, then one increases cl , decreases rs, or decreases h until
solutions are no longer found. Minimizing the number of non-
lexical categories might achieve the same end as minimizing
rs. In practice we set the total number of categories c, of which
cl are reserved to be lexical, and maximize cl . In Sec. V we
give examples of settings of all these hyperparameters that
yield unique grammar inference.

Let � be the set of nonterminals. We also impose the
following restrictions that refer to this set:

4. The start symbol S must appear at the base of every
tree, and nowhere else in the tree.

5. The mapping from � into � × � defined by the rule set
is injective; that is, if U → XY and V → XY are rules, then
U = V.

6. In any rule X → YZ, the X cannot be one of the cl

designated lexical categories. If X = S, then Y and Z cannot
come from the cl designated lexical categories either.

The injectivity constraint is motivated by the idea that
the process of contracting a sentence down the layers of the
parse tree should have something to do with the extraction of
the sentence’s meaning. Making the grammatical contractions
deterministic presents the extraction of meaning with fewer
choices, which makes the meaning less ambiguous.

Even with these restrictions, deriving a single sentence in
isolation is usually trivial, especially if it contains no repeat
words. The real work of uncovering the patterns of a grammar
takes place when the set of sentences is large enough for most
or at least some of the words to appear multiple times. For
example, the solution in Fig. 1 takes the to be of category
C. If there are other sentences in the dataset containing the,
then it must always appear as category C. The algorithm
might then recognize that any word following the is likely be
of category D, and thus the algorithm learns how to classify
nouns.

IV. ALGORITHM

Our algorithm involves two variable types:
(1) The category vectors, v, are a collection of one-hot

vectors representing which category is present at each node
of each parse tree: If vs�n

A = 1, then category A is present at
node n of layer � of the parse tree for sentence s.

(2) The syntax tensor, t , encodes the syntactic rules of the
grammar: If tABC = 1, then A → BC is one of the syntactic
rules.

The restrictions on the CFG described in Sec. III were in
part motivated by keeping our network architecture simple. In
particular, by having only binary syntactic rules the parse trees
can be represented by a fixed set of category vectors arranged
in a triangle as in Fig. 1. The same restriction allows us to
represent the syntactic rule set as a third-order tensor. By the
injectivity restriction there can be at most a single 1 over the
first index when the other two are fixed. In a solution, where
this constraint is satisfied, the syntax tensor can be displayed
as a binary operation table as in Fig. 1. The bits in the syntax
tensor roughly correspond to the “switches” in Chomsky’s
universal grammar [17].

FIG. 2. An example of a parse tree during the search process (be-
fore finding a solution), after projection to set A. Each layer involves
the use of a single syntactic rule. For example, in layer 3 the B in
the middle is replaced with CD and the other categories are passed
along unchanged. Most of the nodes are involved in two layers, so
they have two copies of their category vector, and the two copies do
not always agree. Finding a collection of parse trees (one for each
sentence) in which the copies do agree is part of the challenge.

Expressed in terms of our two variable types, the task of
the algorithm is to populate the syntax tensor with 1’s such
that there is a compatible assignment of category vectors to
all of the trees. The algorithm itself is based on a “divide and
concur” approach. The key is having multiple copies of the
variables—a new copy for every action in which the variable
is involved. For instance, a sentence with five words requires
four syntactic rule applications to get from one start symbol
to five lexical categories, so there are four copies of the syntax
tensor. We use t s� to denote the copy of the syntax tensor used
at layer � of sentence s. Each category vector is used twice:
once in connecting to the layer above, either by use of a rule
or by preservation of a category from one layer to the next, and
once in similarly connecting to the layer below. We therefore
have two copies of the category vector at every node, except
the nodes in the bottom and top layers of the trees, which only
need one copy. We use vs�n↑ and vs�n↓ to denote the upward-
and downward-facing copies of the category vector at node n
of layer � of sentence s.

All of these copies allow us to divide the difficult global
problem of explaining the entire data set into a collection of
simple local problems: Making sure the ↓ category vectors
in one layer can be obtained from the ↑ category vectors
in the layer below by applying exactly one syntactic rule
from the local copy of the syntax tensor. Figure 2 gives an
example of a parse tree in which each layer makes sense in
isolation, but some nodes have disagreement between their
two category vector copies. Having two copies of the cat-
egory vectors at each node (except nodes in the top and
bottom layers) and a separate copy of the syntax tensor for
every layer is what makes it possible to handle each layer
independently. For instance, in layer 2, BC expands to CDC
using the rule B → CD. The copy of the rule tensor for
that layer (not shown in the figure) must have tBCD = 1. The

064303-4

LEARNING GRAMMAR WITH A DIVIDE-AND-CONCUR … PHYSICAL REVIEW E 105, 064303 (2022)

copies of the rule tensor in different layers may disagree with
each other, and with the copies used in the parse trees of
other sentences. To rectify this, after solving the local prob-
lems layer by layer and sentence by sentence, we enforce a
separate constraint to make the local copies of the variables
concur.

Here we give a high-level overview of the algorithm; Ap-
pendices A and B describe the details of the projections,
while Appendix C compares and contrasts divide-and-concur
networks with feed-forward networks. Let us use x = (v, t)
as a shorthand to denote the state of all the copies of all the v

and t variables. For a solution, these variables must be discrete
(0’s and 1’s), but during the search we allow them all to be
real numbers. Let A denote the set of x that satisfy all the local
problems—that is, all v and t variables are 0’s and 1’s and
each layer of category vectors can be obtained from the layer
below by applying a syntactic rule that has a 1 in the local
copy of the syntax tensor. Let B be the set of x that make all
the copies agree—that is, all copies of the syntax tensor agree,
the ↑ and ↓ category vectors agree at each node, and for each
word the corresponding top-layer category vectors all agree.
Any point in A ∩ B is a solution: A ensures the variables are
discrete and make sense locally, while B ensures all the copies
agree.

Each iteration of the algorithm begins with x as a vec-
tor of real numbers. We first find PA(x), the projection of
x to the nearest point in A. See Appendix A for the de-
tails of this projection. We then compute the A reflection:
RA(x) = 2PA(x) − x.

The B projection PB and reflection RB are defined anal-
ogously. Unlike A, B does not require the variables to be
discrete, so to compute PB we simply average the two copies
of the category vector at each node, average all copies of the
rule tensor, and so on (see Appendix B for details).

The algorithm averages x with its double reflection,

x �→ x′ = (1 − β/2)x + (β/2)RB(RA(x)), (1)

where β ∈ (0, 2), and iterates until it converges on a point x∗
such that RB(RA(x∗)) = x∗. We find that β = 0.5 works well.
One can see that if we succeed in finding such a point x∗, then
PA(x∗) is indeed in A ∩ B. We refer to the distance moved,
‖x′ − x‖, as the “error” as this vanishes at a solution fixed
point. More information about this “relaxed-reflect-reflect”
(RRR) algorithm can be found in Ref. [7].

Making projections, of course, requires a choice of metric.
The Euclidean metric is the default, but we need to modify
it for the problem at hand. Since the v and t variables have
fundamentally different roles, we allow them to have different
weights in the metric. With negligible extra work in the imple-
mentation, we refine the metric further across the components
of the category vectors:

d[(v, t), (v′, t ′)] =
(∑

X∈�

μ2
X‖vX − v′

X‖2

)
+ ‖t − t ′‖2, (2)

where ‖ · ‖ is the standard L2 norm, and the metric parameters
μX > 0 express the relative weights for each category. We
follow the practice described in Ref. [18] for updating metric
parameters adiabatically during the search. The purpose of
updating the metric parameters in this fashion is to help avoid

situations in which the algorithm gets stuck in a limit cycle
or has some variable types fixed while the others wander
fruitlessly.

There are two useful supplemental algorithms that we in-
clude in this work. First is the category refiner. The idea
of the refiner is to take an existing solution and refine its
categories and rules further. For instance, one can use the
main algorithm to work out the basic grammatical divisions—
separating nouns, verbs, etc., and learning how they relate
syntactically—then use the refiner to break the categories
down into singular and plural forms, or perhaps masculine and
feminine forms. One could try to capture these features from
the beginning with the main algorithm by specifying larger
values for c and cl , but we find that it is often quicker to run
the main algorithm with modest c and cl and then pass the
solution to the refiner.

To use the refiner, one provides a set of syntactic and
lexical rules and a collection of parse trees for the solved
sentences. Rather than specifiying the number of categories,
one specifies the number of features, say fA, into which cate-
gory A is to be subdivided, and so on. With the parse trees in
hand, the algorithm already knows which category is present
at each node. What remains is to identify what feature of that
category should be present: e.g., if the category is a noun, then
is it singular or plural? In practice this means placing a feature
vector of length fA at each node with category A, and so on
for the other categories.

Refining features means that there are fX × fY × fZ pos-
sible refined versions of each syntactic rule X → YZ.
Thus, instead of a single c × c × c tensor we have rs

tensors—one for each (unrefined) syntactic rule—each of
which is fX × fY × fZ. Rather than specifying the number of
(unrefined) syntactic rules rs, one specifies the number of
refined syntactic rules fXYZ to be allowed for each unrefined
rule X → YZ.

Rather than giving a metric parameter to every feature of
every category, we use a single metric parameter μ for the
feature vectors. The metric parameter updating scheme is not
as effective at saving the refiner from getting stuck as it is with
the main algorithm. Even so, it provides a helpful diagnostic:
When the refiner is stuck, μ wanders far from unity. Whenever
μ > 10 or μ < 1/10, we infer that the refiner is stuck and
reset all the variables to random initial conditions and set μ =
1.

Apart from these changes the refiner proceeds
in much the same way as the main algorithm, except that
everything that used to represent a category now represents a
feature. Once the refiner finds a solution, it can output a new
set of rules and parse trees, which can be refined further if
desired.

The second supplemental algorithm is the lexical extender.
The idea of the extender is to take an existing (syntactic and
lexical) rule set and check if it can explain a new list of
sentences, with the possible addition of more lexical rules if
the new sentences contain words that are not present in the
existing solution. As far as implementation, the extender is
essentially the same as the main algorithm but with some of
the variables fixed—namely, all copies of the syntax tensor
and any top-layer category vectors for which the correspond-
ing word is already in the pre-extended lexicon.

064303-5

SEAN DEYO AND VEIT ELSER PHYSICAL REVIEW E 105, 064303 (2022)

TABLE I. Top: The rules of the first NLTK [20] grammar that we
used to generate data. The vertical bar | represents a disjunction: e.g.,
VP has the two rules VP → V NP and VP → N NP PP. These rules
do not satisfy the binary restriction we impose on solutions, so the
algorithm will have to find a slightly different set of rules that still
explains the data. Bottom: Ten randomly generated sentences from
this grammar.

S → NP VP
VP → V NP | V NP PP
PP → P NP
V → saw | ate | walked
NP → John | Mary | Bob | D N | D N PP
D → a | an | the | my
N → man | dog | cat | telescope | park
P → in | on | by | with

Bob ate my man.
John saw my man by a telescope.
Bob ate John.
a cat in John saw John.
the cat saw the man on John.
a cat with Bob saw a telescope.
Mary saw John.
Mary saw the telescope.
Bob saw the park by Bob.
John saw a man.

V. EXPERIMENTS

We now apply our algorithms to a few language frag-
ments: small toy grammars that contain only a small subset of
the possible sentences in the complete language. The exam-
ples we use are from the Natural Language Toolkit (NLTK)
[19,20].

Table I gives the syntactic and lexical rules of our first
grammar. To generate the data we start with S and apply its
rule to obtain NP VP. Then we randomly apply one of the
available rules for NP and for VP, and then continue ran-
domly applying rules for any remaining nonterminals until we
have a string of terminals—that is, a sentence. This grammar
is capable of infinite nested loops of prepositional phrases, so
we discard sentences with three or more such phrases. Not all
of the syntactic rules in this grammar have the binary form
X → YZ and our algorithm will have to deal with this as
explained in Sec. III A by creating auxiliary categories, or by
using the smaller number of categories more creatively.

The general approach to using the algorithm is to start with
a small number of categories and a large number of syntactic
rules. In this regime the algorithm finds solutions quite easily,
but the solutions will not be unique and will generate “non-
sense,” i.e., sentences inconsistent with the grammar that was
used to generate the data. Table II gives an example, using
c = 5, cl = 3, rs = 8, and h = 0. The sentences generated by
the inferred grammar certainly do not match the grammar used
to generate the data. The inferred grammar is too large, in
the sense that it is capable not only of generating the data
sentences but also many other nonsense sentences. We want
the smallest possible grammar that contains the data, and for
the right choice of parameters the inferred grammar should

TABLE II. Top: The rules inferred by the algorithm, given ten
random sentences from the first toy grammar and c = 5, cl = 3, rs =
8, and h = 0. Bottom: Five randomly generated sentences from this
inferred grammar.

S → A B | A C
A → A D | B A | C A | C D | D A | D B
B → my | a | in | the
C → Bob | man | John | telescope | cat | with | Mary
D → ate | saw | by | on | park

my by ate a saw a.
by in John.
Mary Bob saw cat.
John saw by with.
cat saw in on in.

be unique up to permutation symmetry. To infer a better
grammar, we reduce rs until the algorithm can no longer find
solutions. Then we increase c or cl and repeat, starting with
a large rs and reducing it until solutions are no longer found.
At every step along the way, we keep track of the sizes of the
inferred grammars and whether the solutions are unique.

For this data set, the right combination seems to be c = 8,
cl = 4, rs = 5. Table III gives one of the resulting solutions.
Note that even though cl = 4, there are actually five lexical
categories. Our stipulation of cl only enforces a minimum
number of lexical categories. The remaining categories can
be purely syntactic, like A and B, or purely lexical, or a
combination of syntactic and lexical, like C is in this solution.

When we use the solution in Table III to randomly generate
new sentences, we find that this grammar uses prepositional
phrases following proper nouns somewhat more liberally than
the original grammar from Table I. The original grammar only
uses a prepositional phrase after a proper noun if it comes
after the verb. For example, the original grammar would never
output a dog with Mary in the park saw Bob, but our solution
grammar can. Such constructions occur in about 20% of ran-
domly generated sentences.

Figure 3 illustrates the dynamics of the algorithm as it
searches for this solution. The upper panel represents the
evolution of the concur estimate of the syntax tensor, PB(t).
Each vertical slice represents the state of the tensor at a single
moment, with the iteration number increasing from left to
right. Each row corresponds to a pair of categories from AA
at the top to GG at the bottom, and the colors indicate which

TABLE III. The rules inferred by the algorithm, given random
sentences from the first toy grammar and c = 8, cl = 4, rs = 5, and
h = 0.

S → B C
A → D C
B → C E
C → C A | G F | Bob | John | Mary
D → by | in | on | with
E → ate | saw | walked
F → man | telescope | cat | park | dog
G → my | a | the

064303-6

LEARNING GRAMMAR WITH A DIVIDE-AND-CONCUR … PHYSICAL REVIEW E 105, 064303 (2022)

FIG. 3. Top: The evolution of the syntax tensor concur estimate,
PB(t), as the algorithm searches for a solution to our first toy grammar
dataset. One can think of each row as a cell in the syntactic rule table
(e.g., the right side of Fig. 1). As the iteration count increases (mov-
ing from left to right), the changing colors reflect the algorithm’s
exploration of the many possible syntax tensors: If a row is black,
then the corresponding cell of the rule table is empty; if not, then the
row’s color indicates which category belongs in the corresponding
cell. Even without the benefit of full color, one can appreciate the
changing locations of the nonblack splotches as the different cells
of the rule table become active or inactive. Bottom: Evolution of the
error for the same run. The dramatic drop in error around 3 × 105

iterations signals that the algorithm has found a solution.

(if any) rules are present. For instance, when the row for BC
has a blue splotch, the algorithm thinks S → BC is one of the
rules, but when the row is black, the algorithm does not think
any rules of the form X → BC are present. (The rows for AA,
BB, and so on are always black, since every rule X → YZ
must have Y �= Z.) Categories D through G are designated as
strictly lexical, so only S, A, B, and C can have syntactic rules.
Even a reader without the benefit of full color can appreciate
that most rows are black at any given moment, reflecting the
sparsity of the syntax tensor, and that the nonblack splotches
change as the algorithm explores the space of possible syntax
tensors.

The lower panel of Fig. 3 gives the evolution of the rms
error of all the variables for the same run. Just like the evo-
lution of the syntax tensor, this time series is correlated over
thousands of iterations, so that the actual number of solution
candidates explored is much less than that implied by the
iteration count. The error fluctuates around 10−2 for most of
the run, before abruptly decreasing by several orders of mag-
nitude after about 3 × 105 iterations. This is the algorithm’s
“aha moment” when it discovers a solution. One can see in
the upper panel that the syntax tensor remains fixed after this
moment arrives.

Table IV summarizes the results of running 100 trials of
the algorithm with c = 8, cl = 4, rs = 5, and h = 0 (with

TABLE IV. Performance statistics for the algorithm on the first
toy grammar. Each trial was limited to 106 iterations.

Sentences Successes/trials Iterations/success

10 27/100 (3.0 ± 0.8) × 106

20 60/100 (1.0 ± 0.2) × 106

50 93/100 (4.5 ± 0.4) × 105

100 83/100 (6.7 ± 0.6) × 105

random starts), for different numbers of sentences in the data.
Each trial is limited to 106 iterations. We update the metric
parameters with rate 10−4 [18], meaning that a change in μ of
order 1 takes 104 iterations. The final values of the μ′s tend
to be close to 0.7 for nonlexical categories and 1.3 for lexical
categories, plus or minus a few tenths. One may wonder if the
metric parameter updating is truly necessary, given that the
final values are not far from unity. In fact, it is: In 100 trials
on 10 sentences without metric parameter updating, only one
succeeded.

With small data sets, many words might only appear once
or twice, yet that can be enough to uniquely constrain the
syntax. From 20 sentences on, all of the inferred solutions
were identical to the one in Table III (up to permutation
symmetries), and even with 10 sentences that solution was
the most common. In fact, we observed one sample of only
5 sentences that always produced the solution in Table III. In-
creasing the sentence count to 50 or 100 improves the success
rate somewhat, perhaps because having more appearances for
each word provides a stronger concur constraint, but still the
solution is unchanged. A more complex language fragment
may need more sentences to reach uniqueness, but at some
point the extra sentences do not provide any new syntactic
information—just more parse trees to fill in, and perhaps more
words to add to the lexicon. It is worth noting that the extra
data also makes each iteration take longer, as the algorithm
must loop through every sentence’s parse tree. One way to
avoid this extra time is to have the algorithm work in batches,
only looking at, say, 10 sentences at a time. Another option
would be to have the algorithm solve the first 10 or 20 sen-
tences, then use the lexical extender on the remaining data.

We will demonstrate the use of the category refiner and
the lexical extender with our second toy grammar. Table V
gives the rules of our second grammar. Unlike the first, this
grammar contains categories with different tense and number,
and a lexicon divided accordingly.

First we use the main algorithm with an abridged data set
that contains no past tense verbs. The settings that yield a
unique solution are c = 5, cl = 2, rs = 3, and h = 0. This
turns out to be easier for our algorithm than the first grammar:
In 100 trials run on 100 sentences, there were 83 successes
within 104 iterations, for an average of (2.7 ± 0.4) × 103

iterations per solution (using a metric parameter update rate
of 10−2). The solution is given in the top of Table VI. An
English-speaking reader will recognize that category B con-
tains nouns, C contains determiners, and A and D contain,
respectively, intransitive and transitive verbs.

Next we pass this solution to the refiner. Once we choose
the number of features for each category we reduce the

064303-7

SEAN DEYO AND VEIT ELSER PHYSICAL REVIEW E 105, 064303 (2022)

TABLE V. The rules of the second NLTK [20] grammar, which
makes a distinction between singular and plural as well as past and
present tense.

S → NPs VPs | NPp VPp

NPs → PN | Ds Ns

NPp → Np | Dp Np

VPs → IVs,pres | IVpast | TVs,pres NPs|p | TVpast NPs|p
VPp → IVp,pres | IVpast | TVp,pres NPs|p | TVpast NPs|p
Ds → this | every
Dp → these | all
Ns → dog | girl | car | child
Np → dogs | girls | cars | children
PN → Kim | Jody
IVs,pres → disappears | walks
TVs,pres → sees | likes
IVp,pres → disappear | walk
TVp,pres → see | like
IVpast → disappeared | walked
TVpast → saw | liked

allowed number of refined rules until the inferred solution
becomes unique, just as with the main algorithm. One might
suppose that fS = 1 and fA = fB = fC = fD = 2 would be a
reasonable choice to accomplish splitting the categories into
singular and plural, but in fact, we need to increase fB to 3 to
ensure uniqueness. The numbers of rules that work are fSBA =
fBCB = 2 and fADB = 4. The resulting solution is given in the
middle of Table VI. In 100 trials, all succeeded within 106

iterations, for an average of (1.5 ± 0.2) × 104 iterations per
solution.

Finally, we pass the refined solution to the extender, this
time providing an unabridged data set (i.e., with past tense
verbs) of 100 sentences and allowing h = 4. The unique solu-
tion is given in the bottom of Table VI. The algorithm found
this solution within 104 iterations in 71/100 trials, taking an
average of (6.6 ± 0.9) × 103 iterations per solution. With any
lesser h the algorithm fails to find any solutions within 104

iterations. The only difference between this extended solution
and the previous one is the addition of the four past tense verb
forms which were absent from the abridged data set. Since the
past tense forms are the same for the singular and plural cases,
these four words require an allotment of four homographs,
hence the necessity of h = 4.

VI. CONCLUSIONS

This work constitutes a proof-of-concept for unsupervised
grammar learning on a network with fully interpretable repre-
sentations. We have illustrated how our algorithm can classify
words into grammatical categories and infer context-free
grammar rules to derive a given list of sentences. The user
decides how fine-grained the grammar should be by choosing
appropriate bounds on the numbers of categories and rules.
If desired, one can feed the inferred grammar into a modi-
fied version of the algorithm to refine it further and capture
features of each category, such as number or gender. One
can also supply new sentences and ask the algorithm if they
too are consistent with the inferred grammar and, if so, what

TABLE VI. Top: A solution for the second toy grammar with
c = 5, cl = 2, and rs = 3 for a dataset that had no past tense verbs.
Middle: The result of the refiner algorithm using the top solution
as the starting point, but now with fS = 1, fA = fC = fD = 2, fB =
3. Bottom: The result of the extender algorithm using the middle
solution as a starting point. We gave the extender an unabridged data
set, including past tense verbs, and allowed h = 4.

S → B A
A → D B | walks | walk | disappears | disappear
B → C B | dog | cars | Jody | girl | Kim

| dogs | girls | children | car | child
C → this | every | these | all
D → likes | see | sees | like

S → B0 A0 | B1 A1

A0 → D0 B0 | D0 B1 | walks | disappears
A1 → D1 B0 | D1 B1 | walk | disappear
B0 → C0 B2 | Jody | Kim
B1 → C1 B1 | cars | dogs | girls | children
B2 → dog | girl | car | child
C0 → this | every
C1 → these | all
D0 → likes | sees
D1 → see | like
S → B0 A0 | B1 A1

A0 → D0 B0 | D0 B1 | walk | disappear | walked | disappeared
A1 → D1 B0 | D1 B1 | walks | disappears | walked | disappeared
B0 → C0 B2 | Jody | Kim
B1 → C1 B1 | cars | dogs | girls | children
B2 → dog | girl | car | child
C0 → this | every
C1 → these | all
D0 → likes | sees
D1 → see | like

the grammatical classifications are of any previously unseen
words that appear in the new sentences.

Unlike gradient-descent approaches to grammar learning,
in which the data sets are massive and the model can have
billions of parameters that may not be easily interpretable, our
model has only a handful of parameters—of order 102 bits for
the syntax tensor in our experiments—which are manifestly
interpretable. Additionally, our algorithm only needs to see a
few sentences before it begins to recognize the syntactic rules
and successfully classifies the words into categories.

We chose simple language fragments as our data sources
to make it possible to definitively verify the success of our
algorithm in reconstructing the grammar that generated the
data. An obvious next step would be to try more complex
language fragments (more words in the lexicon, more diverse
syntax) and, eventually, natural language. Since there is no
“correct answer” for the grammar that generates natural lan-
guage, testing on synthetic data is a necessary first step.

We do not claim that our model is definitive and complete
but merely that it demonstrates a useful alternative approach
to inferring grammar that is compact and interpretable. While
our 1-hot category vector representations are “symbolic,” the
computational architecture fits squarely in the connectionist
framework. This melding of paradigms is made possible by

064303-8

LEARNING GRAMMAR WITH A DIVIDE-AND-CONCUR … PHYSICAL REVIEW E 105, 064303 (2022)

the RRR algorithm [7] which is routinely used in problems
with nonconvex constraints.

For readers expecting a leaderboard-style evaluation, we
instead offer the following remarks. First, it is a remark-
able fact that two radically different network architectures,
giant ones with continuous parameters and (comparatively)
tiny ones with discrete parameters, succeed at simultaneously
solving three tasks without supervision: parsing sentences,
discovering syntax rules, and assigning words to lexical cat-
egories. In the case of the small networks (this work) the
evidence is direct, as we see from outputs such as Table VI.
For giant network methods (e.g., GPT-3 [2]) the evidence is
indirect but no less compelling because the language gener-
ated by them is highly grammatical. Giant-network/big-data
methods are the clear choice for real-world applications,
while the present approach seems better suited for answering
questions such as: How many sentences (101, 102, . . .) are
needed to learn the concept of noun (and the other parts of
speech)? We would not expect a statistically trained giant
network to find a continuation for “Twas brillig, and the slithy
toves...” [21], while even nonsense data is fair game for our
small networks. But the two approaches need not be mutually
exclusive. After all, both employ distributed computing on
network architectures and may just represent extreme points
of a broader spectrum of methods.

ACKNOWLEDGMENTS

We thank Jonathan Yedidia for helping us navigate the
expansive field of computational linguistics.

APPENDIX A: THE “DIVIDE” CONSTRAINT
PROJECTION

Set A is the set in which all v and t variables are discrete
and every layer can be obtained from the layer below by
applying a single rule. The variable copies allow us to treat
each layer independently. For every sentence s, let �s be the
length of the sentence.

For each � from 1 to �s − 1, there are � nodes at which
one can apply the rule that transforms layer � to layer � + 1.
Fixing the sentence s and lower layer �, we use the following
abbreviations, just in this section of the Appendix, for the
relevant variables:

vs� j↑ → v j↑, j = 1, . . . , �,

vs�+1 j↓ → v j↓, j = 1, . . . , � + 1,

t s� → t .

We recall that each v is a category vector with possible sub-
scripts S, A, B, . . . while t is an order-3 tensor with three such
subscripts.

Before we begin any computations, we remark that the
squared distance for projecting from an arbitrary (v, t) to a
point in set A involves summands like(

v
j↑
X

)2

if projecting to 0, or(
1 − v

j↑
X

)2 = 1 − 2v
j↑
X + (

v
j↑
X

)2

if projecting to 1. The squared term on the right is present
either way, so in comparing distances we need only consider
the 1 − 2v

j↑
X term.

For all the nodes at which the rule is not applied we must
preserve the categories from this layer up to the next. For any
node j to the left of the rule application, preserving means
that category vectors v j↑ and v j↓ should be equal, whereas
for any node to the right it means v j↑ equals v j+1↓. Projecting
to the nearest pair of equal 1-hots for j = 1, . . . , � − 1 means
finding the category L that minimizes

2μ2
L

(
1 − v

j↑
L − v

j↓
L

)
.

Call this L(j) the “left preservation category” for node j.
Similarly, for every j = 2, . . . , � we find the R that minimizes

2μ2
R

(
1 − v

j↑
R − v

j+1↓
R

)
.

Call R(j) the “right preservation category” for node j.
For each of the possible rule application positions i =

1, . . . , �, we compute di, the squared distance associated with
preserving categories when applying the rule at position i:

(1) For every node j = 1, . . . , i − 1 to the left of the rule
application we add to di the distance for projecting v j↑ and
v j↓ to L(j).

(2) For j = i + 1, . . . , � we add the distance for projecting
v j↑ and v j+1↓ to R(j).

Note that di does not depend on which rule is applied, only
on the position i where it would be applied.

As for the syntax tensor, we can handle its computations
without knowing the position at which the rule is to be applied.
We know that the tensor must contain at most rs rules, that
every YZ can have at most one X such that tXYZ = 1, and that
the rules are subject to the restrictions in Sec. III. So for every
YZ with Y �= Z we find the XYZ (subject to the restrictions)
that maximizes tXYZYZ. We rank the pairs YZ according to the
value of tXYZYZ and for the rs pairs with the largest tXYZYZ we
set

[PA(t)]XYZ =
{

1 if X = XYZ and tXYZYZ � 1
2 ,

0 otherwise.

For all other YZ, we set [PA(t)]XYZ = 0.
Next, we loop through all the allowed rules X → YZ and

compute the extra distance dXYZ that would be required to
accommodate X → YZ in the syntax tensor. Just as with the
category vectors, we only need to consider terms of the form
1 − 2tXYZ, and only for the elements of the tensor that are
affected by our choice of which syntactic rule to use.

(1) If YZ is one of the rs chosen pairs, then we need to
ensure we do not have two rules with the same YZ. If tXYZYZ �
1/2, then we remove XYZ → YZ from the rule set and add
X → YZ, which involves a distance of

dXYZ = (1 − 2tXYZ) − (1 − 2tXYZYZ) = 2(tXYZYZ − tXYZ).
(A1)

If tXYZYZ < 1/2, then XYZ → YZ is not in the rule set to begin
with, so the distance is just 1 − 2tXYZ.

(2) If YZ is not one of the chosen pairs, then we need to
make sure we do not have more than rs pairs with a syntactic
rule. So we look at the chosen pair that had the rs-th greatest

064303-9

SEAN DEYO AND VEIT ELSER PHYSICAL REVIEW E 105, 064303 (2022)

tXYZYZ—let us call it tr for short. The distance is

dXYZ =
{

2(tr − tXYZ) tr � 1
2 ,

1 − 2tXYZ tr < 1
2 .

(A2)

Putting everything together, the squared distance required
to use X → YZ at position i is

di
XYZ = μ2

X

(
1 − 2v

i↑
X

) + μ2
Y

(
1 − 2v

i↓
Y

)
+ μ2

Z

(
1 − 2v

i+1↓
Z

) + di + dXYZ. (A3)

After finding the XYZ and i that minimize this distance, we
set the preservation categories:

[PA(v j↑)]L(j) = 1 = [PA(v j↓)]L(j) (A4)

for j = 1, . . . , i − 1 and

[PA(v j↑)]R(j) = 1 = [PA(v j+1↓)]R(j) (A5)

for j = i + 1, . . . , �. We then set the three category vectors
involved in the syntactic rule:

[PA(vi↑)]X = [PA(vi↓)]Y = [PA(vi+1↓)]Z = 1.

We set all other components of the category vectors to 0, with
one exception: If h > 0, then for the vectors in the top layer we
simply round those components to 0 or 1, whichever is nearer.
The purpose of this exception is to allow for homographs, as
the top layer category vectors imply the lexical rules.

Finally, the syntax tensor: If YZ was one of the rs chosen
pairs and X �= XYZ, then we set

[PA(t)]XYZYZ = 0, [PA(t)]XYZ = 1.

If YZ was not one of the chosen pairs, then we go back once
again to the the rs-th greatest of the chosen pairs (the one that
gave us tr) and set it to 0, then set [PA(t)]XYZ = 1.

APPENDIX B: THE “CONCUR” CONSTRAINT
PROJECTION

Set B is the set in which all the copies of the syntax tensor
agree, the ↑ and ↓ copies of the category vectors agree, and
all top-layer category vectors for a given word in the lexicon
also agree. To ensure that the copies of the syntax tensor agree
we set

PB(t s�) =
∑

s′�′ t s′�′∑
s′�′

(B1)

for all s and �.
Next, we ensure that the copies of the category vectors

agree by setting

PB(vs�i↑) = vs�i↑ + vs�i↓

2
= PB(vsli↓) (B2)

for all s, l , and i except in the bottom and top layers. To ensure
that all categories are used at least once, for every X that is
not the start symbol and is not one of the cl designated lexical
categories, we keep track of the (s, �, i) with the largest value
of [PB(vs�i↑)]X. If this largest value is less than 1, then we set

[PB(vs�i↑)]X = 1 = [PB(vs�i↓)]X (B3)

at the (s, �, i) at which the largest value occurred.

In the bottom layer there is no ↓ copy, so PB(vs00↑) = vs00↑.
In the top layer there are no ↑ copies but here we must enforce
the lexical rule restrictions. Let �w be the set of ordered pairs
(s, i) specifying the sentences s and positions i within the
sentence at which w appears. For each w ∈ � we set

PB(vs�si↓) = v̄w =
∑

(s′,i′)∈�w
vs′�s′ i′↓

|�w| (B4)

for all (s, i) ∈ �w. We need to ensure that all of the designated
lexical categories are used here, so for each of these categories
X we record v̄w

X for every word w. If there is no w such
that v̄w

X � 1, then in principle the distance-minimizing change
would be to choose the w∗ such that

|�w∗ |(1 − v̄w∗
X)2

is smallest and set

[PB(vs�si↓)]X = 1 (B5)

for all (s, i) ∈ �w∗ . In practice, we have discovered that the
algorithm works even more efficiently if we instead choose
w∗ such that

(1 − v̄w∗
X)2

is smallest.
Just like the upper bound on the number of syntactic rules,

the upper bound on the number of lexical rules is imposed via
the L2 norm. Including the h > 0 homograph allowance, we
must check if ∑

w

(v̄w)2 = r � |�| + h.

If not, then we multiply the top layer category vectors by√
(|�| + h)/r.

When h = 0 this rescaling is not necessary because the dis-
crete A constraint already ensures the category vector for each
word is 1-hot.

APPENDIX C: DIVIDE-AND-CONCUR NETWORKS IN
THE LANGUAGE OF FEED-FORWARD NETWORKS

This Appendix is aimed at the 99.9999% of readers who
are familiar with feed-forward neural networks but have never
encountered divide-and-concur (DC), let alone its deployment
on networks. The treatment is light and relies on the power of
language and analogy to describe the unfamiliar in familiar
terms.

The “A constraint” of DC comes closest to the nonlinear
activation functions of feed-forward networks. Consider the
extreme case of step-activation. If the inputs to the activation
functions are approximately two-valued, say 0/1 (as a result
of other step activations), then with suitable bias parame-
ter the activation function can model OR gates, AND gates,
and things in between (depending on the number of inputs).
We will consider the simplest case where all the activation
functions/gates in the network have two inputs and the bias
decides whether each is to be an OR or AND.

Figure 4 shows how two-input step-activation functions
would be implemented in a DC network. Let the variables

064303-10

LEARNING GRAMMAR WITH A DIVIDE-AND-CONCUR … PHYSICAL REVIEW E 105, 064303 (2022)

FIG. 4. Logic assignment projection, PA, applied to a gate (semi-
circle) taking two inputs. The gate may have two states: f = 0 for
OR and f = 1 for AND.

for the two inputs be x1 and x2 and the output be y. Instead
of a bias parameter, the “state” of the gate is encoded by
a 0/1-valued parameter f . By convention f = 0 is an OR

gate and f = 1 is an AND gate. On the left of the figure we
see the network with values x1 = 0.4, x2 = 0.2, y = 0.8, and
f = 0.6.

Here is where we see some important differences between
DC and feed-forward networks. First, there is no “feed-
forward” at all. Instead there is a constraint that acts equally
between inputs, the output, and the state f of the gate. This
constraint is imposed by the operator PA (projection to the A
constraint) that appears through its reflection RA in the update
equation (1). The result of PA is shown in the right of the
figure and is simply the 0/1 assignment to (x1, x2, y, f) that
is (i) consistent with the OR/AND interpretation of f (eight
possible assignments) and (ii) minimizes the distance

(x1 − 0.4)2 + (x2 − 0.2)2 + (y − 0.8)2 + (f − 0.6)2. (C1)

The reader is invited to check that the other seven valid as-
signments have a greater distance.

The PA computation just described is performed syn-
chronously on all the gates of the network. This is possible
because each gate output, such as y, and the gate inputs it
feeds into, say x3, x4, . . ., are allocated different variables.
This is the origin of the term “divide” in DC: The constraints
of the problem are divided into independent sets. To recover a
solution to the original problem the other projection operator,
PB, imposes equality of the variable copies. In this case,

y = x3 = x4 = · · · . (C2)

The “concur value” c, shared by all these variables, minimizes

(c − y)2 + (c − x3)2 + (c − x4)2 + · · · , (C3)

and it is equal to the average of the numbers y, x3, x4, . . .

Depending on the application, the concur values may be
supplanted by known values, say at the inputs and outputs
of the network in the case of supervised learning, or, in the
case of unsupervised learning, just at the outputs when only
the outputs are known (and the network is also tasked with
reconstructing an input that goes with each output).

Because the DC learning algorithm or optimizer is built
from the operators PA and PB just described, we see that there
are no gradient computations or calculus of any kind. Instead,
the RRR update Eq. (1) generated by PA and PB is applied
over and over until there is a fixed point. Writing the update

in terms of the projections (instead of the reflectors),

x′ = x + β(PB(2PA(x) − x) − PA(x)), (C4)

we see that x′ = x implies that

PB(2PA(x) − x) = PA(x) = xsol (C5)

is a solution because it is a point that lies in both constraint
sets, A and B. In our example, all the gate inputs, outputs and
states will be 0/1 (set A) and the output of each gate will agree
with the input it supplies to other gates in the network or a
known output value (set B). Notice that the simpler update
x′ = PB(PA(x)) does not have this property. If x′ = x, then it
is possible that PA(x) �= x and therefore does not lie in set B
(violating concur). In fact, because the set A is nonconvex, this
scenario is in practice highly probable and makes “alternating
projections” not a viable update rule.

The synchrony of the PA and PB operations represents
another difference with feed-forward networks. Training the
latter involves passing information forward in the inference
part of the update and then backward when back-propagating
the gradient information. By contrast, in DC information is
propagated (via the action of PA and PB) in both directions
in each application of the update rule. The hyperparameter β

controls the rate at which this information is propagated, and
is roughly analogous to the learning rate hyperparameter η

of feed-forward networks. Gradient descent is only exact in
the limit η → 0, but any β ∈ (0, 2) gives local convergence to
fixed points of the RRR update (Theorem 26.11 of Bauschke
et al. [22]).

Whereas a large value, say β = 1, makes sense because the
variables see significant change at a higher rate, there is also a
good reason to keep β small. Because information propagates
at a finite rate, only between connected gates (neurons) in each
update, keeping β small ensures there is more time for the
information to find its way around the entire network before
variables are significantly changed. This is a good strategy
when networks are small and learning representations needs
to be more of a cooperative process than is suggested by the
lottery ticket hypothesis [23].

When DC is applied to training networks, new hyper-
parameters naturally arise. Notice that in our example of a
network of gates the state f of a gate was treated no differently
from the node variables (gate inputs/outputs) by the PA oper-
ator. In retrospect, it seems arbitrary that the change in f was
given the same weight as the changes at the nodes. By intro-
ducing a multiplier μ > 0 to the term in the distance for f one
can make the gates more (μ < 1) or less (μ > 1) compliant
than the nodes when projecting to the logic assignment. This
is important in that it provides an intervention for one of DC’s
failure modes. This is when one type of variable, say the node
variables in our example, remain essentially static and only
the other type, the f ′s of the gates, are changing significantly.
If the former variables are stuck on the wrong values, then the
constraint problem for the latter is insoluble and the algorithm
executes a fruitless search. To remedy this one increases μ,
making the gate states less compliant, thereby forcing the
node variable to try other assignments. Conversely, when only
the node variables are changing, and the gate-state variables
are stuck on the wrong values, μ should be decreased.

064303-11

SEAN DEYO AND VEIT ELSER PHYSICAL REVIEW E 105, 064303 (2022)

Weight-sharing is important in many applications and is
another instance where feed-forward networks and DC differ.
The best-known example is convolutional networks, where
the translational symmetry of feature detection in images is
exploited by allocating a single set of weight parameters to all
the neurons in the lowest layers of the network. Similarly, in
the grammar inference problem there should be a single set of
weights that define the syntax rules wherever they are applied
when parsing a sentence.

DC handles the sharing of variables differently. First, note
that we use the term “variables” even for the parameters (e.g.,
weights) that are learned. We do this because DC trains on
data-batches synchronously. In the example above, of learn-
ing OR/AND assignments to gates that explain all the data in
a batch (pairs of network inputs/outputs), there would be dif-
ferent node variables for each network instantiation while the

gate “parameter-variables” (f ′s) are shared across the batch.
In keeping with the local mindset, DC allocates different
gate parameter-variables to the different data instantiations of
the network (divide) and uses a concur constraint to enforce
equality (sharing) of those parameter-variables. The shared
parameter-variables in the grammar inference network of the
main text are the elements of the syntax tensor t . These are
shared, via the DC trick, across all sentences and layers of the
parse trees where syntax rules are applied.

Batch normalization is the most global update rule in
the training of feed-forward networks. It too has a coun-
terpart in DC networks when there are global constraints,
such as the upper bounds on the number of syntactic
and lexical rules in the grammar (items 2 and 3 in Sec. III B).
These are implemented by rescaling the concur values
(Appendix B).

[1] D. Jurafsky and J. H. Martin, Speech and Language Processing
(Pearson, London, UK, 2009).

[2] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P.
Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, and
S. Agarwal, Language models are few-shot learners, Advances
in Neural Information Processing Systems 33, 1877 (2020).

[3] G. Marcus, The deepest problem with deep learning, Medium
1, 2018 (2018).

[4] E. M. Bender, T. Gebru, A. McMillan-Major, and S. Shmitchell,
On the dangers of stochastic parrots: Can language models be
too big? in Proceedings of the ACM Conference on Fairness,
Accountability, and Transparency (Association for Computing
Machinery, New York, 2021), pp. 610–623.

[5] J. L. Elman, Finding structure in time, Cognit. Sci. 14, 179
(1990).

[6] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, Attention is all you need,
in Advances in Neural Information Processing Systems (MIT
Press, Cambridge, MA, 2017), p. 5998.

[7] V. Elser, Learning without loss, Fixed Point Theory Algor. Sci.
Eng. 2021, 12 (2021).

[8] C. G. Nevill-Manning and I. H. Witten, Identifying hierarchical
structure in sequences: A linear-time algorithm, J. Artif. Intell.
Res. 7, 67 (1997).

[9] A. Clark, Unsupervised induction of stochastic context-free
grammars using distributional clustering, in Proceedings of the
ACL Workshop on Computational Natural Language Learning
(ConLL) (ACL, Philadelphia, PA, 2001).

[10] H. Déjean, Allis: A symbolic learning system for natural
language learning, in Proceedings of the 4th Conference on
Computational Natural Language Learning and the 2nd Learn-
ing Language in Logic Workshop (ACL, Philadelphia, PA,
2000).

[11] Z. Solan, D. Horn, E. Ruppin, and S. Edelman, Unsupervised
learning of natural languages, Proc. Natl. Acad. Sci. USA 102,
11629 (2005).

[12] G. Petasis, G. Paliouras, V. Karkaletsis, C. Halatsis, and C. D.
Spyropoulos, e-grids Computationally efficient grammatical in-
ference from positive examples, Grammars 7, 69 (2004).

[13] S. Watkinson and S. Manandhar, A psychologically plausible
and computationally effective approach to learning syntax, in
Proceedings of the ACL Workshop on Computational Natural
Language Learning (ConLL) (ACL, Philadelphia, PA, 2001).

[14] S. Gravel and V. Elser, Divide and concur: A general approach
to constraint satisfaction, Phys. Rev. E 78, 036706 (2008).

[15] V. Elser, Reconstructing cellular automata rules from obser-
vations at nonconsecutive times, Phys. Rev. E 104, 034301
(2021).

[16] J. M. Springer and G. T. Kenyon, It’s hard for neural networks to
learn the Game of Life, in Proceedings of the International Joint
Conference on Neural Networks (IJCNN) (IEEE, Piscataway,
NJ, 2021), pp. 1–8.

[17] N. Chomsky, New Horizons in the Study of Language and Mind
(Cambridge University Press, Cambridge, UK, 2000).

[18] S. Deyo and V. Elser, Avoiding traps in nonconvex problems,
Journal of Applied and Numerical Optimization 4, 143 (2022).

[19] S. Bird, E. Klein, and E. Loper, Natural language process-
ing with python, retrieved from https://www.nltk.org/book/
(2021).

[20] S. G. Bird and E. Loper, NLTK The Natural Language Toolkit,
in Proceedings of the 42nd Annual Meeting of the Association
for Computational Linguistics (Association for Computational
Linguistics, 2004), pp. 1–4.

[21] L. Carroll, Jabberwocky, ARC (Amsterdam University Press,
Amsterdam, 2018).

[22] H. H. Bauschke, P. L. Combettes et al., Convex Analysis
and Monotone Operator Theory in Hilbert Spaces, Vol. 408
(Springer, Berlin, 2011).

[23] J. Frankle and M. Carbin, The lottery ticket hypothesis Finding
sparse, trainable neural networks, in 7th International Con-
ference on Learning Representations, May 2019 (Amherst,
Massachusetts, 2019).

064303-12

https://doi.org/10.1207/s15516709cog1402_1
https://doi.org/10.1186/s13663-021-00697-1
https://doi.org/10.1613/jair.374
https://doi.org/10.1073/pnas.0409746102
https://doi.org/10.1103/PhysRevE.78.036706
https://doi.org/10.1103/PhysRevE.104.034301
https://www.nltk.org/book/

