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Sustainable optimal transport in multilayer networks
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Traffic congestion is one of the major challenges faced by the transportation industry. While this problem
carries a high economic and environmental cost, the need for an efficient design of optimal paths for passengers
in multilayer network infrastructures is imperative. We consider an approach based on optimal transport theory
to route passengers preferably along layers that are more carbon-efficient than the road, e.g., rails. By analyzing
the impact of this choice on performance, we find that this approach reduces carbon emissions considerably
compared to shortest-path minimization. Similarly, we find that this approach distributes traffic more homoge-
neously, thus alleviating the risk of traffic congestion. Our results shed light on the impact of distributing traffic
flexibly across layers guided by optimal transport theory.
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I. INTRODUCTION

Traffic congestion is a major problem in the transporta-
tion industry, with significant economic and environmental
repercussions. The impacts of the environmental cost, such
as carbon emissions and other air pollutants, on public health
can be sizable and need to be properly studied [1]. Com-
bining different transportation modalities, as in multilayer
networks, can mitigate congestion and thus improve urban
sustainability [2]. Modeling traffic congestion on multilayer
networks is crucial to investigate the efficiency and cost of
operating such infrastructures [3]. Addressing this problem
requires extracting what paths passengers take from source
to destination, information that can then be used to analyze
traffic patterns. Many route extraction methods are based on
shortest-path minimization [4–7] or assignment strategy [8].
However, the shortest path (i.e., selfish routing) might not
always be the optimal path in a congested network [9–11],
hence the need for coordinated traffic congestion. In addition,
empirical results have shown that passengers may not always
consider the shortest route [12,13]. While efforts have been
made to go beyond shortest-path minimization using the cav-
ity method or message-passing algorithms [10,14–17], these
approaches are only valid in single-layer networks. In mul-
tilayer networks, several works focus more on analyzing the
properties of passenger flows rather than proposing models
to extract trajectories. They consider random walks [4] or
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shortest-path optimization [5–7] to extract flows, thus neces-
sarily influencing the results of subsequent analysis based on
these strategies. Fewer models have been targeting transport
optimization in multilayer networks [3]. For instance, Ref. [8]
proposed a flow-assignment strategy on multilayer networks,
while Ref. [18] developed a recurrent algorithm for commu-
nication networks.

A principled and efficient approach for extracting optimal
paths of passengers in networks is optimal transport (OT)
theory [19–22]. This approach has been applied recently to
multilayer networks [23], where the key idea is to flexibly
tune between different cost functions in each of the different
layers, thus capturing the specificity of each type of infras-
tructure. For instance, a road network is more sensitive to
traffic congestion than a rail one, while the infrastructure
of a rail network may be more costly to build. Our work
builds from these ideas by adapting this model to study and
evaluate optimal paths on multilayer networks under different
scenarios. The goal of our work is to study the trajectories
of optimal paths and compare them with those extracted
from standard approaches relying on shortest-path minimiza-
tion to identify key properties that are better optimized if
one considers the multilayer character of the network. Our
main contribution is threefold: First, we consider an optimal
transport-based approach to extract optimal paths for passen-
gers in multilayer networks, contrary to standard approaches
based on shortest-path minimization. Second, we propose a
variant of this OT-based method that interpolates between
OT and shortest-path minimization. While the extracted paths
of the two OT-based models are longer than those obtained
by shortest-path minimization, the rail layer is used by more
passengers. Finally, we show that by using the optimal routes
extracted by OT-based algorithms, passengers are more likely
to encounter little or no traffic while emitting less CO2, lead-
ing to a reduced environmental cost. Our empirical results
on synthetic and real data show the need for approaches that
exploit the multilayer nature of multimodal transportation net-
works.

2470-0045/2022/105(6)/064302(8) 064302-1 Published by the American Physical Society

https://orcid.org/0000-0003-0704-4092
https://orcid.org/0000-0002-8421-9872
https://orcid.org/0000-0002-8634-0211
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.105.064302&domain=pdf&date_stamp=2022-06-08
https://doi.org/10.1103/PhysRevE.105.064302
https://creativecommons.org/licenses/by/4.0/


IBRAHIM, LEITE, AND De BACCO PHYSICAL REVIEW E 105, 064302 (2022)

α γ
FIG. 1. Multilayer structure with Nα = 15 and Nγ = 4. The net-

work edges are represented by continuous lines (magenta and brown)
and the two-edge path by dashed lines. The thicker magenta nodes
represent stations belonging to both layers.

II. OPTIMAL TRANSPORT FOR TRAFFIC DISTRIBUTION
IN MULTILAYER NETWORKS

We denote a multilayer network as a graph denoted as
G({Vα}α, {Eα}α, {Eαγ }αγ ), where Vα , Eα , and Eαγ denote the
set of nodes, edges in layer α, and interlayer edges between
layers α and γ ; α = 1, . . . , L, where L is the number of layers.
We denote the number of nodes and edges as N and E , and
we assume that edges have length le > 0, which determines
the cost of traveling through them. We consider the case of a
two-layer network, but all results are valid for a higher number
of layers. We denote the two layers as α, γ and consider a road
network for α and a rail network for γ , as explained in detail
in Sec. III. We show an example of this structure in Fig. 1.

We consider passengers traveling through the networks and
distinguish them by their origin and destination (traffic de-
mands) stations (oi, ti ), where oi, ti ∈ V = ∪αVα . We denote
as S = {(oi, ti )} the set of all origin-destination pairs, and
|S| = M denotes their number.

We briefly describe the model of [23] to find optimal
paths in multilayer networks using optimal transport theory.
It considers two main quantities on network edges: fluxes Fe

of passengers traveling through edge e, and conductivities μe

determining Fe passing through an edge e. To keep track of
the various routes that passengers have, a multicommodity
approach is considered [22,24] in which passengers are distin-
guished based on their entry station i ∈ S . With this approach,
the flux Fe is an M-dimensional vector, where entries F i

e
denote the flux of passengers of type i traveling on edge e.
We assume the fluxes are determined by pressure potentials
pi

u and pi
v defined on nodes as follows:

F i
e := μe

le

(
pi

u − pi
v

)
, e = (u, v), (1)

where le is the length of edge e. Kirchhoff’s law is imposed on
network nodes to properly enforce mass conservation. Finally,
the dynamics assumes that the conductivity μe depends on
flux Fe as follows:

μ̇e = μ
βqe
e

∑
i∈S (pi

u − pi
v )2

l2
e

− μe, ∀e ∈ E, (2)

FIG. 2. Example trajectories. We show the trajectory of one type
of passenger (black edges) whose origin and destination stations are
the green and magenta nodes, respectively. We also highlight the
total fluxes on edges, solutions of the OT problem including all other
passengers, for a total of M = 300. Blue and red edges denote road
(α) and rail (γ ) layers, respectively. Edge widths are proportional
to the amount of passengers traveling through an edge. The exact
width of the black edge has been either increased (for SP) or reduced
(for OT-based methods) in order to distinguish the flux of this type
of passengers from the overall trajectories. Origin-destination pairs
have been selected so that 80% of the passengers are directed towards
a central node; βα = 0.5 and βγ = 1.9.

where qe encodes the layer to which the edge e belongs.
The parameter 0 < βqe < 2 determines the type of optimal
transport problem one aims to solve: 0 < βqe < 1 discourage
traffic congestion, 1 < βqe < 2 encourage path consolidation
into few highways, while βqe = 1 is shortest-path-like. Inter-
preting the conductivities as quantities proportional to the size
of an edge, this dynamics enforces a feedback mechanism
such that the edge size increases if the flux through that edge
increases, and it decreases otherwise.

It can be shown [22,23] that the stationary solutions of
Eq. (2) minimize the multilayer transport cost function:

Jβ =
L∑

α=1

∑
e∈Eα

le||Fe||�(βα )
2 , (3)

where �(βα ) = 2(2 − βα )/(3 − βα ) for all α, and the 2-norm
is calculated over the M entries of each Fe. Intuitively, solv-
ing the system of Eqs. (1) and (2) and Kirchhoff’s law is
equivalent to finding the optimal trajectories of passengers in
a multilayer network, where optimality is given with respect
to the transport cost in Eq. (3). We refer to this OT-based
algorithm as MultiOT.

A. MultiOTsp: Interpolating between OT and
shortest-path minimization

The paths extracted by MultiOT will encourage path con-
solidation along with the rail network and traffic minimization
on the road network. Empirically, we observe that this model
tends to distribute passengers of the same type (i.e., the same
origin and destination) along various routes, as shown in
Fig. 2. While most of these passengers take the shortest among
these routes, some distribute on longer ones to prevent traffic
congestion. This suggests an alternative algorithm that inter-
polates between MultiOT and shortest-path minimization to
select only the main relevant routes for each origin-destination
pair among those extracted by MultiOT. This can be done
by inputting the solution of MultiOT for each passenger type
i into a weighted shortest-path algorithm with edge weights
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Algorithm 1 MultiOTsp

Input Graph G(V, E ,W ), set S of origin-destination pairs,
β = (β1, . . . , βL )

Output Fluxes {Fe}e

1: function MULTIOTSP(G,S, β)
2: {Fe}e ← MultiOT(G,S, β)
3: for i = 1, . . . , M do
4: {F i

e }e ← weighted Dijkstra (G,S, w) with we = le/|F i
e |

5: end for
6: Fe = (F 1

e , . . . , F M
e ), ∀ e

7: end function

defined as

we = le
|F i

e | , (4)

where the fluxes Fe are those extracted from MultiOT. All the
passengers of type i are then routed along the output path.
We call this algorithm MultiOTsp and show a pseudocode
in Algorithm 1. The advantage of this weight function we is
that weakly used edges are consolidated on others that are
on the optimal path (according to OT) of many passengers.
These edges thus become more desirable when designing an
individual “consensus” OT-based path that takes into account
both path length and optimal fluxes. The paths selected by
MultiOTsp rely strongly on how the fluxes are selected in
the first place to determine the weights we. As the Fe are
calculated by considering all the passengers simultaneously
(using MultiOT), the final optimal trajectories of MultiOTsp
are significantly distinct from those obtained by shortest-path
minimization, which are independent from the surrounding
environment. We show an example of this in Fig. 2.

In the following, we study the trajectories of optimal paths
extracted by the three approaches: MultiOT, MultiOTsp, and
shortest-path minimization (SP). We use the implementation
in [25] for MultiOT, while for SP we use the Dijkstra algo-
rithm [26].

III. EMPIRICAL RESULTS

To investigate the relevant properties of the optimal paths
extracted by the different algorithms, we simulate a variety of
realistic traffic scenarios. Specifically, we generate a dataset
of synthetic two-layer planar networks, where α simulates a
road network and γ simulates a rail network (e.g., a tram).
The layer α is constructed first by randomly placing Nα nodes
in [0, 1] × [0, 1], and extracting its Delaunay triangulation
[27]. We then select among them a subset of Nγ nodes to
build the layer γ with an analogous procedure, thus ensuring
that the two layers are connected. In total, in this construction
the multilayer network has N = Nα nodes and resembles the
situation in which all the stations in the second layer also have
access to the road network. Notice that other constructions
are possible, but this choice does not impact the validity of
our model. In our simulations, we set Nα = 300 and Nγ = 60.
We extract 20 different networks and 100 random samples
of origin-destination pairs for each of them, for a total of
2000 realizations for each parameters’ configuration. With

FIG. 3. Average total path-length ratio. We show the ratio of the
average total path length to the one extracted from SP. We set p =
0.5, βα = 0.5, and vary 0 < βγ < 2. The results are averaged over
20 different network realizations with 100 randomly selected origin-
destination pairs for each network realization. The markers and error
bars are averages and standard deviations.

this, we aim at capturing different transportation scenarios
in the two layers, as rail networks are less subject to traffic
congestion but more costly to build, while we can state the
opposite for road networks. MultiOT (and thus MultiOTsp)
can capture these differences by suitably tuning β in each
layer: to discourage traffic congestion in the road layer, we
set βα = 0.5 and vary βγ in 0 < βγ < 2 to study various sce-
narios. In realistic scenarios, passengers have different origins
and destinations; see Fig. 2 for an example. As we may expect
in many urban scenarios that the most frequent destination
is located in the city center, we assign to each passenger
type its destination by default to be a central node. Then,
to explore alternative scenarios where destinations are more
heterogeneous, we consider a rewiring probability p = [0, 1]
to rewire its destination at random. Specifically, for each
passenger type, we rewire its destination to a random node
with probability p. Hence, p = 0.0 corresponds to having a
monocentric destination where all passengers move towards a
central node and p = 1.0 corresponds to selecting all passen-

FIG. 4. Coupling between layers. We show the coupling coeffi-
cient as defined in Eq. (5). All other settings remain the same as in
Fig. 3.
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FIG. 5. Carbon emission ratio. We show the ratio of the average
carbon emissions as defined in Eq. (6) to that obtained by SP. All
other settings remain the same as in Fig. 3.

gers’ destinations at random. We consider p = {0.2, 0.5, 0.8},
but we show results for p = 0.5, as the qualitative behavior

FIG. 6. Traffic distribution. Top: Gini coefficient of the traffic
on the road layer α. Bottom: optimal trajectories. Edge widths are
proportional to ||Fe||1 averaged over 10 samples of origin-destination
configurations; p = 0.5, βα = 0.5. When βγ > 1, OT-based methods
are consolidated into fewer edges in layer γ . The SP, on the other
hand, is not affected by this parameter, showing flows of passengers
on more edges compared to OT-based methods, which consolidate
into fewer edges. Blue and red edges correspond to road (α) and rail
(γ ) layers, respectively.

FIG. 7. Carbon emissions on the Bordeaux network. Ratio of the
average carbon emission over that of SP. Here, we set p = 0.2, thus
favoring monocentric destinations. The gray-dashed line shows the
minimum value obtained byMultiOTsp, corresponding to βγ = 1.3.
Inset: zoom-in of MultiOTsp values for 1.1 � βγ � 1.9.

is similar to that for the others; see Appendix. These settings
exhibit three important properties of the OT-based algorithms.

IV. LONGER LENGTHS BUT HIGHER RAIL
NETWORK USAGE

Shortest-path optimization is utilized to minimize the total
path length taken by passengers, hence we expect MultiOT
and MultiOTsp to underperform SP on this task. In fact, the
performance of OT-based algorithms is expected to decrease
as βγ increases, as shown in Fig. 3 by the average path length
〈 l 〉 = 1

M

∑
e∈E le||Fe||1 over the one obtained from a shortest-

path algorithm.
This is expected given that higher βγ encourages more

traffic to be routed towards the rail network at the cost of
increased distance to cover, as the rail network has fewer and
more distant nodes to reach than a road network. We then
measure how passengers are distributed in the two layers by
defining a coupling coefficient, a known concept to describe
how well two layers are linked [6]. We define

λ = 1

M

∑
i∈S

( ∑
e∈Eγ

|F i
e |∑

e∈Eα∪Eγ
|F i

e |

)
, (5)

where the numerator inside the parentheses contains only
the flux in the rail layer so we can distinguish how many
passenger types effectively use that layer in their trajecto-
ries. This definition is valid for two-layer networks, such
as the empirical networks studied here. However, one can
appropriately generalize it for networks with more than two
layers. The usage of the rail layer increases monotonically
for both OT-based algorithms, as shown in Fig. 4, with Mul-
tiOTsp reaching higher usage values. This suggests that the
shortest-path routes selected from the possible paths output
by MultiOT are composed of a significant amount of rail
edges. This also shows that the raw solution output of Mul-
tiOT consider paths more distributed across the road layer, as
qualitatively observed in Fig. 2.
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FIG. 8. Traffic distribution on the Bordeaux network. We set p = 0.2 and βα = 0.5. Left: Gini coefficient calculated using the traffic on
the road network. Error bars (standard deviation) are smaller than marker size. Center-right: Traffic distribution for each of the algorithms with
βγ = 1.9. Red and blue edges denote tram and road layers, respectively. Node and edge sizes are proportional to the amount of passengers
traveling through them. The results are averaged over 100 samples of origin-destination pairs.

V. MULTILAYER OPTIMIZATION CAN DECREASE
CARBON CONSUMPTION

As more passengers take longer paths while being encour-
aged to use the rail network, they also consume less carbon
per unit of length. The question is whether the increased
length can be properly compensated by the decrease in carbon
consumption. We tested this on the same paths extracted to
plot Fig. 3 by measuring the average CO2 consumption per
passenger as

〈 CO2 〉 = 1

M

∑
e∈E

rqe le||Fe||1, (6)

where rα is the carbon emission rate in layer α. This has a
dimension of unit of mass (e.g., g) per passenger per unit of
length (e.g., pkm). For instance, a bus on average generates
101.87 g/pkm [28] while a train generates 28.39 g/pkm [29].
Hence, defining rα as the rate of the road layer and consider-
ing buses traveling on it, we can set rγ = 28.39rα/101.87 =
0.28 rα . These values can be changed accordingly with more
specific values if a traffic manager has precise statistics of
vehicle types traveling on the network. By leveraging optimal
transport with a bias towards shortest paths, MultiOTsp is able
to decrease carbon consumption the most compared to SP,
measured by the ratio of its 〈 CO2 〉 over that produced by SP.
A minimum is reached for 1.1 � βγ � 1.5 where MultiOTsp

FIG. 9. Transport cost on the road layer α of the Bordeaux net-
work. The cost is defined as in Eq. (8); here p = 0.2.

produces 25% fewer emissions than a shortest-path routing
algorithm, as shown in Fig. 5. This important result is a
consequence of flexibly tuning the cost to be optimized in
each layer, as allowed by β in Eq. (3). In particular, βγ > 1
encourages paths to consolidate on the rail layer, while βα =
0.5 controls for traffic congestion on the road layer. The fact
that the minimum consumption of MultiOTsp has not been
realized at the highest value βγ = 1.9, where the paths are
consolidated into the fewest rail routes, further suggests that
there is a tradeoff between keeping the path lengths short
while directing more passengers towards the rail layer. In fact,
at βγ = 1.9, as the number of passengers redirected towards
the second layer increases, they also have to take longer
routes, thus emitting more carbon. A value of β = 1.3 results
in a nice tradeoff between these two competing behaviors in
terms of carbon emission. On the contrary, MultiOT shows a
monotonic decreasing behavior with a minimum reached at
β = 1.9, but still higher than that emitted by SP. This is a
consequence of the higher number of possible paths that pas-
sengers can take as routed by MultiOT, which are by default
longer than those obtained by MultiOTsp and use more edges
of the road layer. As a consequence, the longer length does
not seem to justify the higher usage of the rail layer.

VI. TRAFFIC CONGESTION

All the results of the previous section were interpreted with
the assumption that the flow of passengers is regular, even on
high-traffic edges. Instead, if we account for traffic slowing
down the flow on edges with a high density of travelers, those
vehicles emit more carbon while they keep their engines on
longer. The routes suggested by MultiOT are less sensitive to
this, hence we also expect a lower carbon emission than that
shown in Fig. 5 when accounting for traffic. We thus measure
traffic load on edges as

Te = 1

n
||Fe||1, (7)

where n is the total number of passengers and measures the
Gini coefficient Gini (Te) ∈ [0, 1] as a global network met-
ric of inequality of how traffic is distributed on the network
[30], with a Gini close to 1 meaning high inequality in flow
assignment along edges. As the road layer is the one more
sensitive to potential traffic bottlenecks, we consider only the
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traffic on road edges and denote with Gini (T (α)
e ) the Gini co-

efficient calculated using only e ∈ Eα . As expected, MultiOT
has more balanced traffic than the other two algorithms, as
shown in Fig. 6. While congestion increases with βγ , even at
the maximum β = 1.9 the Gini coefficient is lower than that of
SP. The reason for this increase is that paths consolidate more
on those fewer road edges that allow a connection to the rail
layer, as can be seen on the example optimal routes in Fig. 6,
a behavior also observed in previous studies [31,32]. This is
exacerbated in MultiOTsp, as one can notice that central road
edges are overly trafficked when many passengers exit the rail
to reach the final destination in the center. This also causes
the Gini coefficient of MultiOTsp to be higher than that of SP.
In other words, few central edges cause most of the traffic for
MultiOTsp. This can be partially alleviated by increasing p to-
wards 1 as fewer destinations are directed towards the network
center, although this may become an unrealistic assumption in
urban scenarios. Alternatively, one can simply add rail stations
in the center, so that passengers do not have to commute one
extra mile to reach their final destination, a scenario that we
explore below in the case of a real network.

VII. REAL MULTILAYER NETWORK

Next, we examine these properties on a real two-layer net-
work of the city of Bordeaux [33], where α and γ represent the
bus and tram networks, respectively. Similar to the synthetic
network, we compare the performances of OT-based algo-
rithms with SP on this network. We set p = 0.2 to consider
the situation in which the majority of passengers are directed
towards the city center, a central node coinciding with a tram
station, and we extract 100 realizations of origin-destination
pairs.

The tram in this city travels through its own reserved lanes,
independently from other vehicles. Hence, although the two
layers are physically located next to each other, there is no
mixing of fluxes from the two layers on edges. This may differ
in other real situations. While in principle our model is best
suited for independent usage of the space by the various layers
(e.g., road and subway or the case studied here), the results
shown here may still apply if we assume that the physical
presence of the tram only marginally impacts the traffic in
the road layer, compared to other vehicles. Specifically, the
combination of high enough capacity (number of passengers
that can fit into a tram) and lower frequency of trams than
other vehicles on the road may allow us to assume indepen-
dence between the tram and road layer. In fact, while the
tram may have many passengers traveling at any given time
along an edge, these are all entering inside the same wagons.
Thus, the space occupied by the tram is limited by its physical
shape. Instead, the same amount of passengers would need to
distribute in many different cars, thus occupying much more
space, potentially creating congestion. In general, in situations
in which trams have reserved lanes that cars cannot enter, our
treatment applies without any further assumption.

We find that MultiOTsp produces 25% fewer carbon emis-
sions than SP for 1.1 � βγ � 1.5, as shown in Fig. 7, similar
to what is observed on synthetic networks. MultiOT has a
minimum at βγ = 1.9, but the emissions are higher than SP.
We argue that also in this case this is due to the assumption

FIG. 10. Additional results on synthetic data for varying p. The
results are averages and standard deviations over 20 different net-
work realizations with 100 independent samples of origin-destination
pairs on each network realization. Other parameters used here are
βα = 0.5, Nα = 300, Nγ = 60.
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that the flow of vehicles is smoothly moving, with no traffic
congestion causing velocity to decrease, and thus causing
emissions to increase nearby traffic bottlenecks. To assess
this hypothesis, we investigate the distribution of fluxes on
the road layer by measuring the traffic Te on edges in layer
α. We find that indeed MultiOT has path trajectories more
homogeneously distributed across the road layer as measured
by the Gini coefficient plotted in Fig. 8 along with an example
solution, potentially lowering the number of traffic jams. As
we can see from an example solution in the same figure, the
two OT-based variants distribute passengers in higher amounts
along the tram network, thus lowering the road’s usage, while
SP makes use of the tram mainly in the vicinity of the central
node. We can further notice how MultiOT uses the road with
higher intensity than MultiOTsp, but the road edges have less
traffic than those obtained by SP. As for MultiOTsp, the road
edges with the most traffic are those near tram stations, like
those in the upper left corner in the figure.

To better quantify the potential impact of traffic congestion
as a proxy for the potential increase in CO2 emission, we
consider a measure of transport cost used before in similar
problems [14,15] and defined as

Jα =
∑
e∈Eα

le||Fe||21, (8)

where the exponent 2 discourage traffic. This should not be
confused with the definition of Eq. (3), which is the one used
to extract the optimal paths in our model, i.e., to solve the OT
problem. Specifically, Eq. (3) uses different β for edges in dif-
ferent layers. In particular, it allows us to encourage both path
consolidation in one layer and path distribution in another.
Instead, Eq. (8) only discourage traffic, as the exponent is
greater than 1. In addition, Eq. (3) considers the norm-2 of the
passengers’ flows, while Eq. (8) considers norm-1. While the
latter is more intuitive, as it is the total number of passengers
traveling along an edge, the former admits rigorous theoretical
guarantees for OT to converge to an optimal solution. This
does not apply to a cost function using norm-1; see Ref. [24]
for a detailed discussion.

As seen in Fig. 9, both OT-based algorithms outperform SP
as βγ increases, meaning that passengers traveling on paths
generated by the OT-based algorithms will generally record
less road traffic congestion compared with the paths extracted
by SP. Assuming that velocity decreases along congested
edges, we conjecture that this would result in MultiOT having
lower carbon emissions than SP.

VIII. DISCUSSION AND CONCLUSION

Designing and extracting optimal passenger flows in a
transportation network is crucial for reducing traffic conges-
tion and environmental costs. Methods based on shortest-path
optimization are optimal in terms of reducing the average
shortest-path length to reach destination, but they may fail
in terms of other relevant transportation metrics. In addition,
passengers do not always follow the shortest route [12], hence

the need for alternative approaches to extract path trajectories
and investigate their properties in multilayer networks. We
present two models based on optimal transport theory that
can flexibly tune the amount of traffic routed in the different
layers to encourage usage of rail networks while reducing
traffic on the road. As a result, optimal trajectories extracted
with these methods significantly decrease the amount of car-
bon emissions compared to shortest-path minimization, while
also being more robust to traffic congestions. In particular,
we found that MultiOTsp, by interpolating between optimal
transport and shortest-path minimization, can achieve the
lowest amount of carbon emissions under the hypothesis of
smooth flow of passengers in a network. Instead, MultiOT,
based purely on optimal transport, distributes paths more
homogeneously, thus being potentially more robust against
increased carbon emissions when accounting for passengers’
flow slowing down along traffic bottlenecks. This can be
tested quantitatively in real scenarios by having access to
empirical data of different velocities during traffic congestion,
along with detailed velocity limits imposed by regulations in
different parts of the network. One could potentially compare
the theoretical results with the empirical ones observed from
real data as in [34].

In general, we show that models based on optimal transport
can be used to design optimal routes for passengers in a mul-
tilayer network, and we investigate scenarios beyond those
obtained by using standard shortest-path algorithms. In this
work, we assumed fixed origin-destination pairs, but one can
further generalize this analysis by considering dynamical traf-
fic demands that change in time. This would require suitably
adapting the models studied in this work to account for this,
for instance borrowing ideas from [35–39]. Similarly, we did
not explore here the possibility of traffic diversions due to road
blockages or changing conditions in the network structure
[40–43]. Studying the robustness of the methods investigated
in this work to these scenarios would be an interesting subject
for future work. Finally, it would be interesting to investigate
more complex scenarios with more than two layers, possibly
on a larger scale than that of a unique urban scenario. To
facilitate future analysis, we provide an open source imple-
mentation of our code at [25].
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APPENDIX: ADDITIONAL RESULTS VARYING p

We set p = {0.2, 0.5, 0.8} to capture different traffic de-
mand scenarios, where p = 0.2 and 0.8 correspond to having
the majority and minority of the passengers with a monocen-
tric destination. We show in Fig. 10 the performance of the
algorithms in terms of the same metrics investigated in the
body of the manuscript. All displayed results have the same
settings described in Sec. III.
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