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Dropping mortality by increasing connectivity in plant epidemics
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Pathogen introduction in plant communities can cause serious impacts and biodiversity losses that may take a
long time to manage and restore. Effective control of epidemic spreading in the wild is a problem of paramount
importance because of its implications in conservation and potential economic losses. Understanding the
mechanisms that hinder pathogen propagation is, therefore, crucial. Usual modelization approaches in epidemic
spreading are based in compartmentalized models, without keeping track of pathogen concentrations during
spreading. In this contribution we present and fully analyze a dynamical model for plant epidemic spreading
based on pathogen abundances. The model, which is defined on top of network substrates, is amenable to a deep
mathematical analysis in the absence of a limit in the amount of pathogen a plant can tolerate before dying. In
the presence of such death threshold, we observe that the fraction of dead plants peaks at intermediate values
of network connectivity, and mortality decreases for large average degrees. We discuss the implications of our
results as mechanisms to halt infection propagation.

DOI: 10.1103/PhysRevE.105.064301

I. INTRODUCTION

Introductions of new plant pathogens into previously un-
colonized areas is a major problem, since the feasible lack
of defenses of the individuals in the area might cause fatal
losses [1]. One example is sudden oak death, caused by the
broad host range oomycete Phytophthora ramorum, which
has caused devastating impacts on some North American and
European forests [2]. In particular, it has killed millions of
oak and tanoak in California since its first detection in 1995.
Another noteworthy example of the impact of plant pathogen
introduction is the massive economic damage caused by
Xylella fastidiosa, a bacterium that affects 563 plant species
from the Americas, Europe, the Middle East, and Asia. For
example, an exhaustive study of the impact of this pathogen
in olive trees can be found in Ref. [3].

During an epidemic outbreak, control decisions must be
taken to lessen pathogen impact [4]. However, the restricted
amount of time in which actions must be taken and the lack
of information early in the epidemic often make the choice of
action difficult [5,6] and the consequences can be extremely
detrimental. The previously mentioned sudden oak death is a
clear example: as pointed out by Cunniffe et al. [1], insuf-
ficient measures taken to eradicate the disease in California
have led to a point where statewide action to even slow the
spread of Phytophthora ramorum is no longer feasible; the
pathogen has spread far enough that the only possible solution
at present is local containment [1].

Thus, developing tools that allow us to better understand
the behavior of new epidemics, and that help us predict what
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the outcome of different control measures might be, is a ques-
tion of paramount importance. The main aim of this work is
the analysis of the dynamics and stability, under different con-
ditions, of a model for the spread of infections in wild plant
populations, so that it can later be applied to real epidemics.

Most epidemiological models are based on a compart-
mentalization of individuals according to their disease status
[7,8]. This is a notable simplification, for many details of the
epidemic are neglected, for example, differences in response
between individuals. The study of infection propagation on
networks provides a way to include in the simulations differ-
ent parameters related to the shape of the field in which the
epidemic occurs, such as the spatial location of the individuals
and the connectivity between different individuals. It also
allows a better mechanistic understanding of the spread of
the epidemic [9]. Traditionally, networks have been success-
fully used in human and animal epidemiology; however, not
much work has been done for plant epidemics [10]. Here,
we aim at modeling pathogen propagation infecting plant
individuals on a spatial substrate. Plants have fixed spatial
locations; hence contacts between individuals—due to neigh-
boring relationships—are fixed as well (i.e., do not change
over time), and such plant-to-plant spatial interaction medi-
ated by the pathogen can be modeled by a static network
of contacts between plant individuals. Even though plants
do not change their location, plant-to-plant connectivity can
vary if environmental conditions are taken into account: for
example, intense wind conditions can help expand the effec-
tive number of contacts reachable from an infected plant. To
properly model contagion in people or animal ensembles, one
should unavoidably take into account a network of contacts
whose structure varies temporally as individuals change their
position.

Compartmentalized models like susceptible-infected-
susceptible (SIS), susceptible-infected-removed (SIR), and
further extensions of these generally do not track pathogen
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concentrations over time. Instead, those models provide tem-
poral variation of the fraction of individuals belonging to each
class (infected, susceptible, recovered, etc.) during infection
propagation over networked substrates [10,11]. Clustering
individuals, e.g., plants or trees, into different classes
makes infection dynamics more tractable. Instead, in this
contribution we focus on pathogen densities across infected
individuals and their variation over time, and we introduce
and fully analyze a dynamical model for infection spreading
defined by density-independent, per-capita fluxes of pathogen
between individuals. In addition, we extract meaningful
information when individuals are classified according to their
response to infection. In particular, we assume that an indi-
vidual is dead when pathogen abundance increases above a
certain threshold. This means that the individual is effectively
removed from the network, and does not contribute to the
pathogen’s propagation to other neighboring plants. Individ-
uals can tolerate moderate epidemic charges (below the death
threshold). It is precisely the presence of this threshold that
enriches infection dynamics, which otherwise is amenable to
analytical treatment in the absence of such a death threshold.

There is empirical evidence that individual plant death is
related to pathogen load. Although the examples we used to
motivate our study are protists infecting plants (Phytophthora
ramorum or Xylela fastidiosa), the pathogens that spread over
plant species range from viruses to fungi. In broad contexts
(not only in the case of plant pathogens), it is commonly ad-
mitted that pathogen loads are correlated with the severity of
active infections, which in turn leads to increased death odds.
For example, there are many studies that correlate viral load
with virulence and mortality (see, for instance, Refs. [12,13]).
The same relationship has been reported for bacterial host-
pathogen systems [14]. Experimental studies controlling the
amount of Phytophthora ramorum infecting plant individuals
show that pathogen load can be an indicator of the severity
of the infection for a variety of host species [15]. Although
surely there are exceptions to this rule, in general one can
consider that increased pathogen loads lead to augmented
harmful effects in the host, probably leading to frequent host
mortality. The effect of uncontrolled pathogen propagation is
particularly alarming in the case of the Californian sudden oak
death caused by Phytophthora ramorum [16].

The effect of the substrate (mean field, network, lattice,
etc.) on which epidemics take place has been extensively
studied [17–22]. In these references a network’s mean degree
is usually fixed and epidemiological parameters controlling
transmissivity are varied [23]. However, to the best of our
knowledge, a comprehensive, quantitative assessment of the
influence of network average connectivity on the fractions of
healthy, infected, or dead individuals has been overlooked,
surprisingly. Our main result is related to the number of dead
individuals in the presence of a finite death threshold. We
find that the fraction of dead plants peaks at intermediate
network connectivity: for small connectivity, networks are
basically disconnected and infection comes to a halt with a
small number of dead plants. When networks are connected,
increasing average degree favors channeling the pathogen
across the network: the larger the mean connectivity, the
smaller the fraction of dead individuals. Therefore, an effec-
tive mechanism to lessen the epidemiological impact in plant

communities can be the facilitation of pathogen spreading
over the network—for instance, by planting new pathogen
hosts. Such a mechanism can be regarded as an alternative
to obstructing or limiting propagation by isolating infected
individuals.

II. EPIDEMIC SPREADING DYNAMICS

Our approach is based on a deterministic epidemic dy-
namics that unfolds on top of a network substrate, for which
model parameters are random variables drawn from speci-
fied distributions. Across the network, each node represents
an individual plant. Consider a plant pathogen infecting a
network formed by n plants or trees belonging to the same
species. Let xi be the density of pathogen in plant individual
i. When isolated (i.e., the pathogen is not transported among
individuals), a logistic growth is assumed with rate r > 0
for pathogen abundance in each plant. This implicitly means
that there is a carrying capacity K within each individual
that limits pathogen abundance. The growth rate r has to
be interpreted as a net rate r = r+ − r− equal to the differ-
ence of the intrinsic birth rate minus mortality rate of the
pathogen. Here, we take r > 0 because the pathogen has to
grow (exponentially) in isolation in order for the infection
to progress. Such exponential growth is attenuated by the
carrying-capacity term when growth takes place within the
host. This term effectively accounts for host immune systems
in a way that pathogen growth is halted and the individual
ends up with an asymptotic, constant amount of pathogen
inside.

Plant individuals are accessible to host pathogen particles
coming from adjacent plants. Pathogen transport is bidirec-
tional: infected individuals can release pathogen particles
to neighbors, and can also receive additional particles from
neighboring plants. Such a flux of pathogen occurs among
connected individuals i and j, for i �= j. Networks are de-
fined in a way such that two plants are connected if there
is a nonzero probability of contagion between them. This
probability depends on the dispersal ability of the pathogen,
which is usually correlated to the distance between plant pairs.
Therefore, we can assume that plants are disconnected if this
probability is small; in other words, only pairs of individuals
with probability of contagion above a threshold will be con-
nected.

Consider a focal plant i. If there is a link in the network
between i and j, the per-capita (per unit of pathogen abun-
dance of the source individual) ingoing flux of pathogen from
individual j to i is denoted as ai j > 0, and the per-capita
outgoing flux of pathogen from i to j as b ji > 0. Flux direc-
tion is determined by the reverse order in indices, ai j = ai← j

and b ji = bi← j . Otherwise, if i and j are disconnected, then
ai j = a ji = 0 as well as bi j = b ji = 0. In addition, we set
aii = bii = 0 for i = 1, . . . , n. Then, the amount of pathogen
transported from j to i is equal to ai jx j , and the abundance
transferred from i to j is equal to bjixi. Refer to Fig. 1 for the
interpretation of in- and outgoing pathogen fluxes.

Observe that, as defined, the nonzero entries of A and B
define the network structure. If there is no link between i
and j, then the corresponding entries in A and B are equal
to zero, and vice versa. In other words, one can think of
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FIG. 1. Scheme for in- and outgoing fluxes of pathogen between
nodes i and j, depending on which one is the focal plant.

M = (mi j ) as the adjacency matrix of a directed graph, rep-
resenting the links that are actually realized in the network
(mi j = mji = 1 if there is a link between i and j, and zero
otherwise). Then, one can define full random matrices A′ and
B′ representing pathogen fluxes, and then set actual per-capita
flux matrices A = M ◦ A′ and B = M ◦ B′, where ◦ stands for
the Hadamard, component-wise matrix product. Therefore,
nonzero elements of matrices A and B take into account re-
alized links over the network.

Consequently, the coupled dynamics of pathogen concen-
trations are driven by a system of n coupled differential
equations,

dxi

dt
= rxi

(
1 − xi

K

)
+

n∑
j=1

ai jx j − xi

n∑
j=1

b ji, (1)

for i = 1, . . . , n. Observe that sums run over the set of neigh-
bors of node i, given the restrictions imposed above for ai j

and bi j . The connectivity of the plant community defines
two matrices, A = (ai j ) and B = (bi j ). These per-capita in-
and outgoing fluxes will be considered random variables. The
parameters that define pathogen growth in isolation (r and K)
will be varied throughout this study. Graphs are nondirected,
meaning that if there is a flux of pathogen from individual j to
individual i, there is also pathogen transfer from i to j. These
fluxes, however, do not have to be balanced (this depends on
the values of ai j and b ji).

If the fluxes of pathogen were to be conserved across
each link, then b ji = a ji and bi j = ai j (see Fig. 1). In this
case, A = B and a single matrix would suffice to model this
situation. In reality, losses or gains of pathogen occur: the
ideal situation A = B, in which pathogen is conserved across
any channel, is unrealistic. If there are pathogen losses at
each link, a possible way to model that would be imposing
bi j � ai j ; i.e., the amount of pathogen that comes out from j
to i, bi jx j , is greater than the amount received by i, ai jx j .

Observe that, if no restrictions are imposed to matrices A
and B, the amount of pathogen transferred from a node is not
necessarily equal to the overall pathogen amount that all its
neighbors receive. In that case, the overall amount of pathogen
in the plant community can increase (in the presence of an ex-
ternal source) or decrease (if there are additional mechanisms

that channel pathogen particles out of the system). Otherwise,
the overall amount of pathogen that comes out from any node
i can be distributed among its neighbors. If the amount that
comes out from i equals the overall quantity received by all its
neighbors, then there are no losses of pathogen during infec-
tion spreading and the transport process is conservative. This
condition can be easily formulated, because the total amount
of pathogen that comes out from i is equal to xi

∑
j b ji, ac-

cording to previous definitions. On the other hand, a neighbor
j receives from node i an amount of pathogen equal to ajixi,
so the total quantity received by neighbors is xi

∑
j a ji, just by

summing over the neighbors of node i. Thus, the conditions
for no pathogen losses during transport are

n∑
j=1

a ji =
n∑

j=1

b ji (2)

for i = 1, . . . , n. If these conditions are satisfied, we say that
the transport process is conservative, because there are no
losses of pathogen during transfers between individuals. This
scenario conserves the overall pathogen transmitted through
links over the network, a more general situation that does
not necessarily force that fluxes are exactly the same across
each channel (as for the A = B case). Observe that the only
restriction imposed to matrices A and B is that their row sums
are conserved. This case, however, can be modeled using
only a single matrix, because if one inserts condition (2) into
Eq. (1), the dynamics only depends on matrix A:

dxi

dt
= rxi

(
1 − xi

K

)
+

n∑
j=1

ai jx j − xi

n∑
j=1

a ji. (3)

Although at any time there are no gains or losses of pathogen
during transport processes in the conservative case, the overall
amount of pathogen in the system is not constant over time
because its infectious particles reproduce within hosts. This
can be deduced from Eq. (3) by summing all the equations.
Then one gets

d

dt

n∑
i=1

xi = r
n∑

i=1

xi

(
1 − xi

K

)
, (4)

because in a conservative situation internal fluxes are glob-
ally balanced across the network [i.e., the two last terms in
Eq. (3) cancel when summing over i]. The right-hand side of
Eq. (4) is not initially equal to zero, so the overall amount of
pathogen can increase or decrease until reaching equilibrium.
Due to pathogen reproduction inside each individual, the total
pathogen abundance in the system can increase from its level
at time t = 0 until reaching the steady state.

Unless the contrary is specified, we will not impose any
restriction on matrices A and B, for the sake of generality.
This is the most general setup, which indeed can be fully
studied, both analytically and numerically. Other situations
that conserve fluxes across links, or globally across each
node’s neighbors, are basically particular cases of this general
formulation.

For our model, we have defined three plant states (node
compartments) depending on the host’s epidemic concentra-
tions xi: individuals can be healthy (pathogen concentration
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equal to zero), infected (pathogen abundance above zero
and below a certain death threshold δ), or dead (pathogen
concentration above the death threshold). Therefore, the
death threshold can be interpreted as the maximum pathogen
amount an individual can hold to remain alive. When the death
threshold is exceeded, the plant dies and disappears from the
network. At this moment, it is assumed that the complete con-
centration of pathogen vanishes. Thus, plant death modifies
immediately network topology as well as pathogen dynamics.

III. QUALITATIVE ANALYSIS WITHOUT MORTALITY

Before reporting simulation results obtained for different
network architectures, here we briefly summarize the qualita-
tive analysis of Eq. (1) in the absence of plant mortality (i.e,
in the limit δ → ∞) in two scenarios besides the conservative
case defined above:

(i) A per-capita flux balance condition is satisfied. In this
case, the overall ingoing per-capita flux of a node is balanced
by the overall outgoing per-capita flux associated to the same
node. This condition reduces, for an arbitrary node i, to

n∑
j=1

ai j =
n∑

j=1

b ji, i = 1, . . . , n. (5)

Notice the difference between Eq. (2) and Eq. (5).
(ii) No restriction is imposed in per-capita flux matrices A

and B.
We do not make here explicit assumptions about network

structure, which is implicitly contained in matrices A and B.
Case (i) has been contemplated because it is amenable to a

complete stability analysis. The proofs of the following results
are provided in Appendix A. It can be shown that, if the net-
work is connected, our model always exhibits two equilibrium
points: x� = 0 := (0, . . . , 0) and x� = K1 = (K, . . . , K ), for
1 := (1, . . . , 1). Moreover, the first equilibrium point, which
corresponds to pathogen clearance, is unstable. The second
one, associated to a full infection situation (all individuals are
infected), is globally asymptotically stable, though. Therefore,
in the absence of a death threshold, it is expected that all
individuals within a connected component of the network will
end up infected.

The stability analysis yields comparable results for the
general case of arbitrary (unrestricted) per-capita pathogen
fluxes between individuals. In case (ii) it is not possible to
compute explicit expressions for the equilibrium points. How-
ever, if matrices A and B are random, it is almost sure that, for
connected networks (i.e., there is a single giant component),
the only equilibria observed for Eq. (1) correspond to either
pathogen clearance, x� = 0, or full infection, x� = (x�

i ), with
x�

i > 0 for every node, x�
i not necessarily equal. Two situ-

ations can occur, depending on network connectivity: (a) a
single equilibrium point emerges, x� = 0, which is stable; and
(b) both equilibrium points arise, one associated to pathogen
clearance being unstable, and one relative to pathogen full
infection being stable. Note that the full infection equilibrium
emerges and is stable when the pathogen clearance one be-
comes unstable.

Although it is difficult to analytically show that the full
infection equilibrium exists [case (b)], we numerically found

that this is precisely the most probable case, especially for
sparse random networks above (but close to) the percolation
threshold. For larger network average connectivity, case (a)
becomes more frequent (not dominant, though), and model
realizations in which infection disappears can be observed
in simulations (see Fig. 8 in Appendix B). Observe that the
qualitative analysis summarized here for the general case
(ii) applies as well for the conservative scenario defined by
Eq. (2).

Therefore, in the absence of a death threshold, it is
expected that the pathogen spreads throughout the entire
network with high probability if the network is connected.
Considering a maximum value in pathogen concentration
above which an individual is regarded as dead, however,
makes it very difficult to predict which plant is to become
extinct and which one will survive (although infected) starting
from arbitrary initial conditions, unless one is resorting to the
numerical integration of the system of differential equations.

IV. PLANT MORTALITY AND NETWORK DYNAMICS

In the presence of a (finite) death threshold δ, every in-
fected plant whose epidemic charge exceeds the mortality
threshold will die. When mortality occurs, automatically, the
corresponding node is disconnected from the network, as well
as the associated in- and outgoing fluxes (which are set equal
to zero). Importantly, network topology is temporally cou-
pled with the infection propagation dynamics. Initial networks
can change their size and topological properties due to the
demise of some of the individuals during the epidemic. As
we will show below, the introduction of a mortality threshold
in pathogen concentrations changes drastically the scenario
portrayed in the qualitative analysis of the model without such
an upper bound on tolerable epidemic charges.

We use two different network architectures: random graphs
drawn from the Erdős-Rényi (ER) model [24], and random
geometric (RG) [25] models. In the absence of any particular
knowledge about plant locations, we assume that links are
drawn at random. Specifically, it is assumed that there is a
uniform probability of linking two nodes, as defined by the
classical ER model. The outcome of the ER model is a graph
G(n, p) in which n is the number of nodes and p is the
probability that two nodes are linked; i.e., links are placed
randomly and independently between distinct pairs of nodes
with probability p.

In situations governed by short-range pathogen dispersal,
however, the probability of contagion is related to distance.
As a consequence, it is natural to assume that closer nodes
have a larger probability of being connected. This assumption
is applied to build RG networks. A random geometric network
is the simplest kind of spatial network. Nodes are embedded in
a metric space, and two nodes could be connected if and only
if the Euclidean distance between them is in a given range—
for instance, smaller than a certain neighborhood radius, R
[26]. Therefore, two nodes that are within the same area of
influence are randomly connected as in the ER model. Nodes
that are out of this area of influence are not connected.

Nodes in our RG networks are drawn uniformly on the unit
square [0, 1] × [0, 1]. We assume that connection probability
explicitly depends on the distance between nodes. We used
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FIG. 2. Number of healthy, infected, and dead plants. Upper (lower) panels correspond to ER (RG) graphs. (a) Top: Example of an ER
network drawn from G(100, 0.03) with a connection probability p = 0.03. Bottom: Example of a RG network with n = 100, R = 0.15, and
p = 1 on the unit square. (b) Number of healthy (green) and infected (red) nodes in simulations carried out without a death threshold (δ → ∞)
as functions of mean degrees of networks. (c)Number of healthy (green), infected (red), and dead (black) nodes in the presence of the death
threshold (δ = 0.9K ) as functions of initial network mean degree. In (b) and (c), the horizontal axis is calculated as the expected mean degree
of the initial network, i.e., the mean averaged degree over realized networks, which is equal to E[k] = (n − 1)p for ER sampled graphs. The
shaded areas are defined by the 10th and 90th percentiles. Here, r = 0.5 and K = 1. A maximum in the number of dead nodes arises in both
cases; in ER networks this happens at a mean degree of around 3, and in RG networks at a mean degree of around 5. Each panel was calculated
by averaging over 1200 initial conditions, networks, and matrix realizations.

the following continuous function:

pi j =
{[

1 − ( di j

R

)2]
p, di j � R

0, di j > R,
(6)

which means that when the distance between i and j is smaller
than R, there is a nonzero probability of connection depen-
dent on that distance (the closer the nodes are, the greater
the chance they are connected). The parameter 0 < p � 1 is
interpreted as follows. When the distance between pairs of
nodes is above the radius, they are never connected. In the
limit R → ∞, the distance cutoff R is removed and nodes
are connected with probability p; i.e., two nodes are linked at
random with probability p, as in the ER model. Therefore, RG
networks yield ER graphs in the limit of large distance cutoffs.
Throughout this work we present results for RG networks with
p = 1 (we choose RG networks to be as far away as possible
from ER ones). Samples of the RG network model with size
n and radius R will be denoted by G(n, R). Our results are not
dependent of the specific functional form (quadratic, in this
case) of connection probability given by Eq. (6).

In simulations, the entries of matrices A and B were inde-
pendently and randomly drawn from a uniform distribution
U (0, 1). The dynamical model (1) was integrated numerically
until convergence to an equilibrium steady state. As the dy-
namics unfolds, a number of nodes can go extinct if their
concentration is above the threshold δ, and this process con-
tinues until no concentration exceeds the threshold across the
system. Nodes that remain alive will reach the corresponding
equilibrium state.

Simulations were conducted using networks formed by 100
nodes. Unless the contrary is specified, we used a growth rate
value r = 0.5 and a carrying capacity value K = 1. As for the
death threshold, we set it as δ = 0.9K . As the initial condition,
we picked up randomly a node as infected with an initial
pathogen load randomly drawn from the uniform distribution
U (0, δ).

V. SIMULATION RESULTS

In Fig. 2 we report results for the infection process oper-
ating on networks with increasing connectivity. Figure 2(a)
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shows two samples of ER and RG network models with
about L = 150 links overall. Clearly, for that number of links,
ER graphs are closer to the percolation threshold—estimated
as pc ≈ 1/n [27]—which is evidenced by a large connected
component. For L ≈ 150, RG networks are comprised of more
isolated nodes and smaller components. The radius above
which a giant component arises in RG graphs is estimated as
Rc ≈ √

log n/(nπ ) [26]. Figure 2(b) shows how the numbers
of healthy and infected nodes vary as functions of the mean
degree when plant mortality is not considered (i.e., when the
death threshold goes to infinity), whereas Fig. 2(c) reports the
same results for the number of healthy, infected, and dead
nodes versus mean degree in the presence of a finite death
threshold. We observe in both panels that ER and RG curves
are similar, but displaced to the right for RG graphs.

As shown in Appendix B, when the network is connected,
we expect that every node is infected (at least in the range
of average degrees reported in Fig. 2) in the absence of plant
mortality. For mean degrees well above the percolation thresh-
old, this is what we observe in Fig. 2(b). On the other hand,
if the network is not connected, it is apparent that pathogen
spreading will not progress in those components that were not
initially infected. It is only close to the percolation threshold
of these networks that the curve of healthy individuals starts
declining. This is consistent with the expected degree E[k] at
the percolation threshold (ki stands for the degree of node
i). For an ER graph G(n, p), E[k] ≈ (n − 1)p [27], which
is of the order of unity at p = pc ≈ 1/n. For a RG graph
G(n, R), E[k] ≈ nπR2 [26], which reduces to E[k] ≈ log n at
R = Rc ≈ √

log n/(nπ ). Therefore, for n = 100 we expect the
transition at mean degrees about 4.6 for RG networks and
about 1 for ER networks. The decline of the number of healthy
plants in both cases is observed at mean degrees consistent
with these estimations (Fig. 2). This analysis suggests that
network connectivity is an important driver of the overall
outcome of infection spreading.

Plant mortality arises for finite values of the death thresh-
old δ. According to Fig. 2, the number of dead nodes peaks
at a mean degree value around E[k] ≈ 3 for ER graphs and
around E[k] ≈ 5 for RG networks. We observe this maximum
in mortality independently of the values taken by the growth
rate, carrying capacity, and death threshold. These parameter
values do affect the location of the maximum, though. The
same phenomenon occurs in the conservative scenario for ER
graphs (see Fig. 3). Conservation of transported pathogen in
RG networks yields similar results.

These maxima in the number of dead plants seem counter-
intuitive. One might expect that the higher the connectivity
of the network, the lower the number of dead plants, be-
cause the pathogen should be effectively distributed among
a larger number of neighbors, leading to less plants above
the death threshold. However, there is an intermediate net-
work connectivity with the highest death rate. To test whether
these maxima were due to the networks being disconnected
for lower mean degrees, we repeated these simulations for
small-world networks (Appendix C). We used the Watts-
Strogatz (WS) small-world model [28], which introduces link
rewiring of regular networks yielding graphs formed by a
single connected component. In this case, we do not observe a
maximum in the number of dead nodes for any mean degree;

FIG. 3. Conservative model. Here we reproduce Figs. 2(b) and
2(c) for the dependence of the number of individuals within com-
partments (healthy, infected, or dead) with ER network mean degree,
when conservation of pathogen [Eq. (2)] is imposed in the dynamics.

plant mortality decreases monotonically as the mean degree
increases. The reason is that, in small-world networks, no
matter how low the mean degree is, the network is always
connected. Infection can spread throughout the network, and
for larger degrees the epidemic load can be channeled out
through a higher number of ways, thus reducing the asymp-
totic pathogen abundance of each node and, consequently, not
exceeding the death threshold.

Once the network is connected, or has just a few isolated
nodes, if nodes are connected on average with a higher num-
ber of neighbors, pathogen particles can be transported more
efficiently between plants and the overall pathogen charge is
distributed across the network, leading to more individuals
with concentrations below the threshold δ. It is difficult for
the pathogen to reach the death threshold in a given individual,
for there are many outgoing fluxes to many other individuals,
swiftly distributing the pathogen.

This hypothesis can be confirmed in Figs. 4 and 5, which
show the relationship between network connectivity and

064301-6



DROPPING MORTALITY BY INCREASING CONNECTIVITY … PHYSICAL REVIEW E 105, 064301 (2022)

FIG. 4. Random network connectivity and pathogen temporal dynamics. ER networks with mean degrees (a) E[k] = 1, (b) E[k] = 3, and
(c) E[k] = 8. Upper panels depict the end state of sampled networks after the disease has spread. Healthy (green), infected (red), and dead
(black) nodes are represented. Blue links remain after reaching the end state (links connecting dead nodes are colored in grey). In all cases,
in the initial state of the network only one node is infected. As for the end state, in (a) the fractions (H, I, D) of healthy, infected, and dead
plants are (H, I, D) = (0.95, 0.03, 0.02). In (b) and (c) we end up with fractions (H, I, D) = (0.04, 0.66, 0.3) and (H, I, D) = (0, 0.89, 0.11),
respectively. Lower panels show the temporal variation of each node’s pathogen concentration. The dashed line indicates the death threshold
value.

pathogen temporal dynamics. We have considered ER graphs
with three connectivity values: (i) below the maximum in
the number of death nodes (E[k] = 1), (ii) at the maximum
(E[k] = 3), and (iii) well above the maximum (E[k] = 8).

For these cases, we have obtained (Fig. 5) the distributions
of the size of the connected component which the initially
infected node belongs to, as well as the size distribution of
the largest connected component that ends up fully infected.

FIG. 5. Size of the largest infected components. Colors correspond to those of Figs. 4(a)–4(c), i.e., ER networks with mean degrees
E[k] = 1 (blue), E[k] = 3 (purple), and E[k] = 8 (orange). (a) Distribution of the size of the connected component which the initially infected
node belongs to (1200 realizations for each mean degree). (b) Size distribution of the largest completely infected component at the end of
simulations, showing that networks break up once the dynamics unfolds. The location of the distributions, which correlates to existence of a
giant component, is put into correspondence with temporal dynamics, leading to a small fraction of infections and deaths (blue), a maximum
number of dead nodes (purple), and the distribution of pathogen loads across the network, leading to fewer deaths (orange).
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FIG. 6. Fraction of dead nodes for variable death threshold and
growth rate. For fixed growth rates, mortality decreases as the
death threshold increases. When the death threshold is constant,
the fraction of dead nodes augments for increasing growth rates
until reaching a rather constant plateau. This can occur sharply or
smoothly depending on the values of the death threshold.

Note that, according to our analytical results, once the pro-
cess has relaxed and every survivor has abundance below
the death threshold in an infected component, we expect that
the full component will remain infected until reaching the
steady state (this is illustrated in Fig. 4, lower panels). As the
initially infected node is in a larger component, we observe
that the temporal dynamics leads to increasing death events.
However, for mean degrees leading to fully connected net-
works, the average pathogen load per individual is smaller,
because pathogen particles are more evenly distributed due
to the network’s higher connectivity. Indeed, for low mean
degree (E[k] = 1), the size of the initially infected component
is small, and the network is initially broken into pieces, so
infection is able to progress only within the initial group and
the expected number of deaths is low. For intermediate mean
degree (E[k] = 3), the initially infected component is large,
but the epidemic process breaks the network and, as a conse-
quence, the size of the largest component that ends up fully
infected lowers. For large connectivity (E[k] = 8), almost ev-
ery plant belongs to the initially infected component. Such
connectivity allows for an effective distribution of the overall
pathogen load across nodes, many of them remaining below
the death threshold. The initial component size in this case
decreases because dead nodes are removed from the initial
cluster. Hence, the maxima in mortality are explained: once
a network is connected, higher connectivity implies lower
mortality rates, due to the distribution of pathogen over a
larger number of nodes as the epidemic spreads.

To see how remaining model parameters affect plant mor-
tality, we set the carrying capacity to K = 1 and varied
the death threshold (δ ∈ [0.1, 1]) and the growth rate (r ∈
[0.1, 5]). The percentage of dead nodes as function of the
growth rate and the death threshold are shown in the heat map
represented in Fig. 6.

For fixed values of the growth rate, the number of dead
nodes decreases as the death threshold increases. This is an
intuitive result, since a higher death threshold implies a lesser
fraction of killed plants. When the death threshold is equal
to the carrying capacity (K = 1), the number of death nodes
for any growth rate is significantly lower than with any other
death threshold.

If the death threshold is fixed, mortality increases as the
growth rate augments until reaching an approximately con-
stant value that depends on δ. Such an increase can be sharper
(smoother) for smaller (larger) values of δ. This is due to the
fact that when the ratio between growth rate and death thresh-
old is large enough, nodes die too quickly, disconnecting the
network and hindering the spread of the disease. In sum-
mary, mortality becomes more pronounced for large pathogen
growth rates and small values of the maximum pathogen con-
centration that an individual can tolerate.

We have tested the robustness of our main result, i.e., the
emergence of a peak in mortality as the network’s average
connectivity increases, in three scenarios: (i) when each in-
dividual plant has a characteristic death threshold δi (instead
of the case of constant δ studied above), (ii) when per-capita
fluxes are drawn from distributions with different means, and
(iii) when the remaining concentration of pathogen after an
individual’s death is not neglected and can infect other neigh-
bors. We summarize the results of these robustness tests in
Appendix D. Our results remain robust when these modifica-
tions are taken into account.

VI. DISCUSSION

In this work we have presented and fully analyzed a mathe-
matical model of pest dynamics, acting on plant communities,
that keeps track of pathogen concentration across individuals
over time. Our approach considers a death threshold, above
which plants die. We have shown that the introduction of
this threshold modifies substantially the infection dynamics.
Contrary to the case where no threshold exists, individual
deaths modify network topology over time, because individ-
uals whose pathogenic charge exceeds the threshold are no
longer connected. A counterintuitive result appears: networks
with higher connectivity yield a larger fraction of individ-
uals that survive. We can explain the phenomenon using a
channeled flux analog: if the percolation threshold has been
crossed over and there exists a giant component, for equal
pathogen growth rate and death threshold values, a higher
connectivity enables a better drainage of pathogen particles
across the network, which precludes a larger number of indi-
viduals from reaching their death threshold. What remains is
a network formed by infected individuals that are resistant to
the pathogen in the long run.

Phytophthora ramorum is a pathogen mainly transmitted
by air. However, many plant pathogens are transmitted by
insects. Our model could be effectively modified to consider
vectors transmitting the infection. We decided not to con-
sider an explicit species mediating the infection to keep the
model as simple as possible. In any case, the overall pathogen
transport in our model is taken into account by matrices A
and B. Then, the average effect due to the explicit consider-
ation of a new species mediating infection propagation could
be subsumed into the transport mechanisms represented by
both matrices. Given that there are at most 2n(n − 1) coeffi-
cients in both matrices, for large n there are free parameters
enough to fit any mechanism of transmission mediated by a
number of vectors carrying the pathogen themselves between
individuals.
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As for the robustness of our main result, we have used
different network structures (ER and RG) and implemented
different conditions relative to potential pathogen losses or
gains during transportation (balanced fluxes, conservative ap-
proach, and unrestricted fluxes). The maximum in mortality
arises as long as the network changes from being discon-
nected to connected—we do not find the maximum in model
networks that have no percolation transition, such as in the
WS model. Therefore, the incidence of the epidemic across
a population is determined by network structure. As far as
we know, fatality rates in plant epidemics have not been
previously connected with network average connectivity. In
addition, we varied model parameters (pathogen growth rate
and death threshold) and—not surprisingly—we found that
restrictive death thresholds and highly reproductive pathogens
yield the highest fractions of dead nodes.

We have also tested the robustness of this result us-
ing idiosyncratic (individual-dependent) values of the death
threshold as well as different mean values for transport co-
efficients, and tracked how the remaining pathogen (after an
individual death) diffuses across the system. Throughout this
contribution we used random values for per-capita fluxes of
pathogen between individuals. Random matrices represent an
appropriate framework to model large systems for which it
is difficult to infer actual interaction strengths, as well as to
provide consistent predictions about diversity and stability
[29,30].

Except for the position of the maximum, which in RG
networks takes place at larger mean degrees, we did not find
remarkable differences with the dynamics on ER networks
regarding fatality and infectivity. The RG model is more
realistic because nodes are embedded in a plane, as plants
in communities, and neighboring relations between them are
better defined depending on distance. However, these features
are not determinant when it comes to quantifying mortality
rates during epidemic spreading.

Temporal dynamics shown in Fig. 4 illustrate the appear-
ance of the maximum in mortality. When a giant component
starts forming, most of the nodes get infected, resulting in the
propagation of the disease. However, since the mean degree
is not very high, it takes longer to reach all the nodes [see
Fig. 4(b), lower panel]. Pathogen grows inside infected hosts
and take longer to spread, so a higher number of plants can
effectively cross over the death threshold, increasing mortality
numbers. Larger connectivity (above the maximum), however,
implies that dead nodes reach the threshold in a more syn-
chronous way [Fig. 4(c), lower panel]. Because connectivity
is large, the network remains connected and the qualitative
analysis provided in Sec. III ensures that a full infection equi-
librium state (for the plants that remain alive) will be reached
with high probability.

Our work has broader implications beyond plant epidemic
propagation on spatial substrates. Equation (1) can be in-
terpreted as a metapopulation model on top of a network
substrate connecting patches, in which individual plants are
the counterpart of patches and pathogen particles are equiv-
alent to a population’s individuals moving between patches.
It is important to remark that the network of patches is not
new to this contribution [31]. Our results directly apply to
situations where the occupancy of each patch is to be lim-

ited by a maximum number of individuals and, being fully
occupied, the patch becomes disconnected from the network.
Then the fraction of “fully occupied patches” should peak
as the average degree increases. Other than that, we provide
a fully detailed mathematical analysis of the metapopulation
model when random transport coefficients are considered, so
the qualitative analysis we carried out can also be useful in the
context of ecological metapopulation models.

There are many examples of plant and crop infection situ-
ations that are mediated by diffusive processes. For example,
recently it has been shown that plant pathogen spores spread-
ing fungal diseases can be dispersed even in the complete
absence of rain or strong winds [32]. More importantly, short-
distance aerial and rain-splash dispersal has been reported
for Phytophthora ramorum [33]. Surely there are many more
examples of plant pathogen dispersal in which short-distance
transport mechanisms drive disease propagation, with a well-
defined distance cutoff. For these cases, one has to resort to
short-range dispersal mechanisms to see how infection pro-
gresses, and our approach based on RG networks can be a
good starting point. Even in the case that long-range dispersal
drives epidemic spreading, any modeling attempt should in-
clude a combination of local infections and long-range jumps.
One can separate both processes and use our model as well:
consider an infected region where a long-range jump to an un-
colonized area takes place. Then spreading starts in that region
with a single infected plant (as in our approach) far away from
the originally infected individuals. This infective propagule
can cause local dispersion dynamics in the neighborhood of
the initially infected plant, which could be modeled as a sepa-
rate system from the original focus.

Countless studies based on compartmentalized models
have focused on finding thresholds in effective spreading rates
above which infection progresses and reaches every node
(see Ref. [34] and references therein). For SIS models on
heterogeneous networks, the mean field epidemic threshold is
known to be equal to 〈k〉/〈k2〉, where 〈·〉 stands for an average
value [35]. Such thresholds do not arise in our model because
pathogen can be effectively spread across the giant compo-
nent. For that reason, our results have to be recast in terms of
how pathogen distributes depending on network connectivity.

It is important to stress that our model tracks pathogen
dynamics on each individual plant, without using aggregated
variables within compartments; i.e., we do not model the frac-
tions of susceptible (healthy), infected, and removed (dead)
plants as functions of time, as standard SIR effective models
do. Our microscopic dynamics describes the concentration
xi(t ) of pathogen over time, which is the one that truly takes
place during infection propagation, and then (thanks to the
introduction of the death threshold δ) we categorize each plant
into three classes (healthy, infected, or dead) depending on
pathogen concentrations. Our approach is bottom up, trying
to infer the fractions of individuals within compartments from
a microscopic dynamics, without modeling those fractions
themselves. In principle, there is no certainty that an effective
model, similar to standard SIR dynamics, would reproduce
the microscopic dynamics, so it is fair to question whether
these two temporal dynamics can be comparable or not. In
Appendix E, we provide a detailed comparison of the micro-
scopic dynamics, aggregated into classes, compared to two
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formulations of the SIR model, which both fail to capture
quantitatively the occupancies of each class.

Our work helps infer effective mechanisms that can hinder,
or even halt, epidemic spreading across plant communities.
For communities in which plants are scattered, it is dificult
for the infection to propagate among disconnected network
components, at least, in short time scales. Obviously, long-
range dispersal can occur and uncolonized components can
become infected in the long run. However, in diverse commu-
nities, packed individuals are accessible to pathogen transfers.
Probably local containment to restrict propagation is not ef-
fective in highly connected systems. Our results suggest that
a plausible mechanism to alleviate pathogen charges across
communities is precisely increasing the connectivity by plant-
ing new individuals. Then a “dilution effect” can take place
[36], because a higher number of susceptible individuals will
reduce the disease burden in a focal plant because other sus-
ceptible neighbors will share the load of pathogens.

For example, Viburnum acerifolium [37] is a shrub that
coexists with the Californian oak, and both are infected by
Phytophthora ramorum [38]. Shrub individuals grow fast
compared to oaks and could alleviate oak pathogen levels
shortly after being planted, if oak epidemic spreading could
be effectively approximated by the mechanisms that drive
our model dynamics. New individuals will “drain” pathogen
particles from the species to be protected. Although infection
may pervade the whole system, larger connectivity values
will lower pathogen loads, which will be more tolerable for
plants targeted by conservation strategies. Thanks to pathogen
reduction measures like this, infected individuals, ultimately,
will survive until recovery protocols are available.

Obviously, for this strategy to be effective, shrubs should
be more resistant to the pathogen; otherwise, they could act
as superspreaders and increase pathogen loads in oaks. This
could be effectively achieved if Kshrub 
 Koak, so that in iso-
lation the pathogen reaches a lower saturation level in shrubs
than in oaks. A similar way to obtain the same outcome is
choosing a shrub species such that the pathogen grows slower
than in oaks, i.e., rshrub 
 roak. Although our model should
incorporate a second species to properly draw this conclusion,
current evidence from our work suggests such a possibility
and leaves open its viability to be checked in further refine-
ments incorporating two separate species.

APPENDIX A: STABILITY RESULTS FOR PER-CAPITA
FLUX BALANCE

In this section we provide proofs for the results stated in
Sec. III for the per-capita flux balance dynamics. We first
calculate the attractors of the dynamics.

Theorem 1. Assume that the graph M associated to ma-
trices A and B is connected, and that per-capita fluxes are
balanced; i.e., Eq. (5) holds. Then the only equilibrium points
of Eq. (1) are either x�

1 = · · · = x�
n = 0 or x�

1 = · · · = x�
n = K .

Proof. We want to solve the nonlinear system of equations

rx�
i

(
1 − x�

i

K

)
+

n∑
j=1

ai jx
�
j − x�

i

n∑
j=1

b ji = 0, (A1)

i = 1, . . . , n. Completing squares, we can write the system as

(
x�

i − K

2

)2

= K2

4
+ K

r

(
n∑

j=1

ai jx
�
j − x�

i

n∑
j=1

b ji

)
= 0. (A2)

Define the new variables yi := x�
i − K

2 . With these new vari-
ables, the system reduces to

y2
i = K2

4
+ K

r

(
n∑

j=1

ai jy j − yi

n∑
j=1

b ji

)
= 0. (A3)

Without loss of generality, we can sort the entries of vector y
by relabeling equations and write −K

2 � y1 � y2 � · · · � yn.
Then Eq. (A3) for i = 1 yields

y2
1 = K2

4
+ K

r

(
n∑

j=1

a1 jy j − y1

n∑
j=1

b j1

)

� K2

4
+ K

r

(
n∑

j=1

a1 j −
n∑

j=1

b j1

)
y1 = K2

4
, (A4)

where we have used the assumption that y j � y1 for j =
2, . . . , n and the equality of in- and outgoing fluxes [cf.
Eq. (5)]. From Eq. (A4) we have that either y1 = −K

2 or
y1 � K

2 . We consider these two cases separately.
(a) Let y1 = −K

2 . Since the network is connected, a short-
est path over the network exists such that node 1 is connected
to node n, either directly through an existing link or by a finite
series of steps using intermediate nodes. Let {i1, i2, . . . , is}
denote the index sequence for the path connecting node 1 and
node n. Then a1,i1 > 0 and assume that yi1 > −K

2 . Because∑
j a1 jy j > −K

2

∑
j a1 j (notice that the strict inequality is due

to the variables being sorted, which implies that yk > −K
2 for

k > i1), Eq. (A3) for i = 1 reduces to

0 =
n∑

j=1

a1 jy j + K

2

n∑
j=1

b j1 >
K

2

(
−

n∑
j=1

a1 j +
n∑

j=1

b j1

)
=0,

(A5)

which is obviously a contradiction. Therefore, yi1 = −K
2 ,

which implies that y1 = · · · = yi1 = −K
2 . This argument can

be iterated until reaching node n. Now consider node i1, which
in the path is connected to i2. If i2 > i1 then we apply the same
argument [using that ai1,i2 > 0 in Eq. (A3) particularized for
i = i1] to prove that y1 = · · · = yi2 = −K

2 . If i2 < i1, then we
iterate the procedure for the following node in the sequence,
i3. At the end of the path we will reach node is, connected to
the end point at node n. Then Eq. (A3) for i = is, together with
the fact that ais,n > 0, implies that y1 = y2 = · · · = yn = −K

2
in this case. This solution reduces to x�

1 = · · · = x�
n = 0.

(b) Assume now that y1 � K
2 . Now particularize Eq. (A3)

for i = n. Using that y j � yn, we can find the following upper
bound for y2

n:

y2
n = K2

4
+ K

r

(
n∑

j=1

an jy j − yn

n∑
j=1

b jn

)

� K2

4
+ K

r

(
n∑

j=1

an j −
n∑

j=1

b jn

)
yn = K2

4
, (A6)
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which implies that −K
2 � yn � K

2 . Since y1 � yn � K
2 and

y1 � K
2 by hypothesis, we get y1 = yn = K

2 . This obviously
leads to the solution x�

1 = · · · = x�
n = K .

This completes the proof of the theorem. �
Observe that this result is general for connected graphs,

irrespective of the specific network structure yielded by matrix
M. In other words, we have not made any assumption on the
distribution of the links, some of which can be absent (some
ai j = 0 or bi j = 0), to prove that the only equilibrium points
are those associated to full infection or to the absence of the
infection.

We now focus on the stability of these equilibrium points.
It can be shown that the equilibrium point associated to
pathogen coexistence across individuals, x� = K1, is globally
asymptotically stable. We proceed as follows: (i) first we show
that x� = K1 is asymptotically stable; (ii) then we show that
the other equilibrium point, x� = 0, is unstable; and (iii) as
the origin is unstable, the global stability of the coexistence
equilibrium arises because the state space of feasible solutions
is invariant to the dynamical system, which implies that every
trajectory with positive initial conditions will converge to
x� = K1.

The Jacobian matrix can be expressed as J = D + A, where
D is a diagonal matrix D = (dii ) whose diagonal entries are
given by

dii = r − 2rx�
i

K
−

n∑
j=1

b ji. (A7)

The stability of the coexistence equilibrium point follows as
a corollary of the Gershgorin circle theorem, which we repro-
duce here for the sake of completeness:

Theorem 2. Let S be a complex n × n matrix with entries
si j . Let Ri = ∑

j �=i |si j | be the sum of the absolute values of
the nondiagonal entries in the ith row. Let D(sii, Ri ) ⊆ C be a
closed disk centered at sii with radius Ri (such a disk is called
a Gershgorin disk). Then every eigenvalue of S lies within at
least one of the Gershgorin disks D(mii, Ri ).

Then, stability follows directly:
Corollary 1. If condition (5) is satisfied, the equilibrium

point of Eq. (1) associated to full infection, x�
1 = · · · = x�

n =
K , is asymptotically stable.

Proof. The Jacobian matrix, in this case, reduces to J =
D + A with dii = −r − ∑

j b ji. The Gershgorin circle theo-
rem helps show that all the eigenvalues of J have a strictly
negative real part. Indeed, for each row of J , the radius of
the ith disk is Ri = ∑

j ai j because ai j � 0. Therefore, each

disk D( − r − ∑
j b ji,

∑
j ai j ) is centered on the real axis, and

each one is contained in the complex semiplane Re z � −r,
because the right-most point of the disk is the real number
−r − ∑

j b ji + ∑
j ai j = −r. Thus, any eigenvalue satisfies

Re λ � −r and has a strictly negative real part. Hence the
equilibrium point is asymptotically stable. �

Again, this result is independent of whether matrices A
and B have an adjacency matrix M superimposed or not. It
is general as long as the condition of per-capita flux balance,
Eq. (5), holds.

On the other hand, we can show that the equilibrium point
associated to pathogen clearance, x� = 0, is unstable. We state
this as a proposition:

Proposition 1. If condition (5) holds, the equilibrium point
of Eq. (1) associated to full pathogen extinction, x�

1 = · · · =
x�

n = 0, is unstable.
Proof. The Jacobian matrix has diagonal entries given by

dii = r − ∑
j b ji. Then trivially the vector 1T is an eigenvector

of J with eigenvalue r, because
∑

j Ji j = dii + ∑
j ai j = r +∑

j ai j − ∑
j b ji = r. As J has constant row sums, then 1 is an

eigenvector with eigenvalue equal to each row sum. Because
there is an eigenvalue with a strictly positive real part, this
point is unstable, as stated. �

To finish with the qualitative analysis, we need to rule out
the possibility that trajectories do not cross the boundaries of
the space of feasible solutions, xi = 0, i = 1, . . . , n. But it is
easy to check that any trajectory starting with initial condition
x(0) in the interior of the space Rn

+ = {x ∈ Rn|xi � 0, i =
1, . . . , n} remains in that space; i.e., the space of feasible
solutions is invariant. We state this as a proposition:

Proposition 2. The state space of feasible solutions associ-
ated to Eq. (1), Rn

+, is invariant.
Proof. First consider the initial condition x(0) = 0. Since

x = 0 is an equilibrium point, the trajectory remains in Rn
+.

Now consider an initial condition such that xi(0) � 0 for
all i = 1, . . . , n and some of the initial values verify x j (0) >

0. Then it is easy to see that xi(t ) � 0 for all t > 0 and all
i = 1, . . . , n. Assume that some variable xk (ta) = 0 vanishes
at t = ta > 0. At that time it holds that

dxk

dt

∣∣∣∣
t=ta

=
n∑

s=1

aksxs(ta) � 0. (A8)

Because the derivative is non-negative, the flux of the ordi-
nary differential equations (ODE) system does not allow the
trajectory to cross the axis xk = 0. The same holds for the
remaining variables. Hence any initial condition x(0) ∈ Rn

+
yields a trajectory contained in the state space of feasible
solutions. �

This proposition, together with Corollary 1 and Proposition
1, yields the following corollary:

Corollary 2. If condition (5) is satisfied, the equilibrium
point of Eq. (1) associated to full infection, x�

1 = · · · = x�
n =

K , is globally asymptotically stable.
Proof. This follows trivially because the state space Rn

+ is
invariant and the unique stable equilibrium point is x� = K1.
Hence all trajectories will converge to x� = K1 and its basin
of attraction will be Rn

+ − {0}, i.e., the full state space except
the unstable equilibrium point. �

APPENDIX B: STABILITY RESULTS
FOR THE GENERAL CASE

The behavior described in Appendix A for the flux-
balanced model is recovered almost surely if no restrictions
are imposed in matrices A and B. Regarding the system’s equi-
libria, it is always found to be the one associated to pathogen
clearance, x� = 0. According to the results provided below
in this Appendix, it is very likely that an equilibrium point
associated to full infection, x� with x�

i > 0 for i = 1, . . . , n,
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exists. But, if the network is connected, no equilibria can arise
that combine infected and healthy individuals almost surely:

Proposition 3. Consider the dynamics (1) with unre-
stricted, random per-capita flux matrices A and B (with
independent and identically distributed entries). If the adja-
cency matrix M defines a connected graph, almost surely no
equilibrium points x� exist such that some pathogen abun-
dances are positive and some of them are exactly equal to zero.

Proof. Assume, without loss of generality, that the first k
abundances of x� are equal to zero, x�

1 = · · · = x�
k = 0, and

the remaining ones are positive, x�
i > 0 for i = k + 1, . . . , n.

Then Eq. (A1) reduces, for i = 1, . . . , k, to

n∑
j=k+1

ai jx
�
j = 0. (B1)

Let A1 be the submatrix of A formed by the columns from
j = k + 1 to j = n and the rows from i = 1 to i = k. Then if
Eq. (B1) was true, this would imply that the random matrix
A1 is not full rank. But this is a contradiction because any
(connected) random matrix is full rank (see Corollary 1.2 in
Ref. [39]).

Observe that, if the graph were disconnected, then we
could find equilibria with nonzero entries within one or more
connected components and zero entries in other components.
Equation (B1) would not impose any restriction because ma-
trix elements ai j = 0 between disconnected components. For
example, if infection spreading starts in a node within a com-
ponent, at the end this component will reach a fully infected
state, whereas the remaining components will have healthy
individuals. �

Therefore, we can expect almost surely that the only equi-
librium points of Eq. (1) with unrestricted, random per-capita
flux matrices A and B are either x� = 0 or x� with all entries
x�

i > 0 for i = 1, . . . , n, if the latter is found as solution of
Eq. (A1). This is similar to what we found analytically in
Appendix A for the balanced case. In principle, more than
one single equilibrium associated to full infection with all
x�

i > 0 could arise. In practice, the majority of realizations
should exhibit only the two aforementioned equilibria, as in
the balanced case. Observe that this applies to the conservative
case, because it is a particular case of the unrestricted flux
situation.

Can we say something about the stability of these two
equilibria? The following proposition holds:

Proposition 4. Let x� = (x�
i ) be a solution of Eq. (A1), and

let

J (x�) = diag

(
r − 2rx�

i

K
−

n∑
j=1

b ji

)
+ A (B2)

be the Jacobian matrix evaluated at that equilibrium point,
where diag(u) stands for a diagonal matrix defined by vector
u. Then, if the full infection equilibrium x� (x�

i > 0) exists, it
holds that

(J (x�)x�)i = − rx�
i

2

K
, (B3)

for i = 1, . . . , n. Moreover, if the full infection equilibrium
arises, at the full pathogen’s clearance equilibrium we find that

(J (0)x�)i = rx�
i

2

K
, (B4)

for i = 1, . . . , n and x� the full pathogen infection equilibrium
point.

Proof. It is easy to compute that

(J (x�)x�)i = rx�
i − 2rx�

i
2

K
− x�

i

n∑
j=1

b ji + (Ax�)i

= − rx�
i

2

K
+ rx�

i − rx�
i

2

K
− x�

i

n∑
j=1

b ji + (Ax�)i,

(B5)

but in the last equality all the terms except the first vanish
because x� is a solution of Eq. (A1). Similarly,

(J (0)x�)i = rx�
i − x�

i

n∑
j=1

b ji + (Ax�)i

= rx�
i

2

K
+ rx�

i − rx�
i

2

K
− x�

i

n∑
j=1

b ji + (Ax�)i, (B6)

and we get Eq. (B4). �
Expressions (B3) and (B4) can be used to provide accurate

approximations of the rightmost eigenvalue of the Jacobian
matrix for both equilibria. If v = (vi ) was an eigenvector of J ,
we would have that (J (x�)v)i = λvi. If all entries are real and
vi > 0, then we could write λ as

λ = 1

n

n∑
i=1

(J (x�)v)i

vi
. (B7)

Numerically we find that the eigenvector v associated with
the eigenvalue that determines stability can be approximated
by x�, if this full infection equilibrium point exists. Then
Eqs. (B3) and (B4) can be written as

1

n

n∑
i=1

(J (x�)x�)i

x�
i

= − r

K
x� (B8)

and

1

n

n∑
i=1

(J (0)x�)i

x�
i

= r

K
x�, (B9)

respectively. Here v := 1
n

∑n
i=1 vi. If the full infection equilib-

rium exists and the approximation for the eigenvector v ≈ x�

is correct, then the right-most eigenvalue can be approximated
by − r

K x� for the full infection equilibrium (which will be
stable), and by r

K x� for the full pathogen clearance (which,
as a consequence, will be unstable). Figure 7 shows the good-
ness of such approximations for ER networks with different
connectivity values. We observe that the approximation works
better for increasing values of the connection probability p,
yielding an almost perfect agreement in the limit p → 1.

We conclude that, in situations where these two equilib-
rium points appear, the one associated to full infection is
stable, and the one associated to pathogen clearance is not.
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FIG. 7. Predicted and observed eigenvalues. Observed right-
most eigenvalue of the Jacobian matrix (B2) at x� = 0, together with
predicted values given by Eq. (B4) (green dots). Red dots stand
for predicted [cf. Eq. (B3)] vs observed stability eigenvalues at the
full infection equilibrium point, in realizations where both equilib-
ria coexist. A total of 104 Erdős-Rényi model network realizations
(n = 100 nodes) were taken to produce both panels. (a) p = 0.1 and
(b) p = 0.2; both values are well above the percolation threshold.
As p approaches 1, the agreement between predicted and observed
becomes almost perfect.

In summary, the qualitative behavior of critical points in the
general case is very similar to the case of per-capita flux
balance.

To finish the qualitative analysis of the general model, we
have studied the effect of network connectivity in ER graphs
on the stability of the two equilibria that can appear in this
case. We provide the results of this exploration in Fig. 8.

We observe that, for small mean degrees (in particular,
for those reported in Fig. 2), the full infection equilibrium is
always stable and the pathogen clearance is unstable. How-
ever, for largely connected networks, in some cases the latter
equilibrium becomes stable—in which cases the coexistence
equilibrium does not exist. This is more apparent for fully

FIG. 8. Probability of stability of the full infection and pathogen
clearance equilibria as a function of the expected mean degree. Ten
thousand ER model realizations (n = 100) were calculated for each
connection probability p, and we estimated probabilities as observed
frequencies for each equilibrium. As E[k] = (n − 1)p increases, the
equilibrium x� = 0 becomes more likely to be asymptotically stable.

connected networks, for which about a 5% of the realizations
yield pathogen clearance as an end state. It is worth mention-
ing that the sum of the two probabilities is numerically equal
to 1, so we did not find additional equilibria across all the
realizations.

APPENDIX C: SMALL-WORLD NETWORKS

In this contribution, we have shown that mortality peaks
at intermediate network connectivity values, and this phe-
nomenon can be ascribed to the potential fragmentation of
the network as infection spreads. However, not every model
of random network formation exhibits a percolation transition
due to the formation of a giant component. According to our
results, in this case the maxima should not appear.

Figure 9 summarizes simulation results for our epidemic
spreading dynamics of the WS model for small-world net-
work structure [compare these results with those reported in
Fig. 2(c)]. As the WS model generates connected networks,
infection spreads throughout the network for any value of the
mean degree. This explains that no maximum is observed in
plant mortality.

APPENDIX D: ROBUSTNESS OF RESULTS

We carried out additional simulations to test the robustness
of our main result, i.e., the existence of a peak in the number
of dead plants as the network’s average degree increases. We
analyze three variations of our model: (i) one that incorporates
variability in the death threshold δ, (ii) the case in which
flux matrices A and B do not have the same mean value, and
(iii) the case in which pathogenic concentrations in dead indi-
viduals are taken into account and can effectively contribute
to infection across the system after an individual’s death. In
these three robustness tests, we use ER network structures to
conduct simulations.

In the first test, we incorporate variability in δ to allow for
a specific pathogen’s tolerance for each individual. We drew n
values δi from a normal distribution N (0.9K, 0.1K ) checking
that no one of them was negative. We kept these values fixed
across simulations, where we averaged over realizations of
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FIG. 9. Small-world networks. Here the fraction of healthy, in-
fected, and dead nodes is represented as function of the mean degree
of network samples of the WS model—notice that the minimum
possible average degree in this model is E[k] = 2. Because model
networks are connected, we observe no maximum in the number of
dead nodes. We used a rewiring probability φ = 0.01 to generate WS
model networks. Parameter values for r, K , and δ are the same as in
Fig. 2. We averaged over 1200 realizations.

matrices A and B, as in Sec. II. Figure 10 shows how the
fractions of healthy, infected, and dead plants vary with mean
degree.

As shown in Fig. 10, our results remain robust to this
modification: the shape of each average’s curve is maintained,
although there is more variability than for the constant-δ
model.

FIG. 10. Variable mortality threshold. Fraction of individuals
within compartments, as a function of network mean degree (ER),
when the mortality threshold is plant dependent and drawn from a
distribution. Here values of δi were drawn at the beginning of the
simulation, and averages were taken over flux matrices A and B.

FIG. 11. Different means in transport matrices. Fraction of indi-
viduals within compartments, as a function of network mean degree
(ER), when ai j ∼ U [0, 1] and bi j = ai j + U [0, 1]. This is a possible
way to ensure that bi j � ai j , so that pathogen losses occur across
each link. Remaining parameters are maintained as in Fig. 2.

The second modification we have considered is the case
of different means for transport matrices A and B. Our model
is flexible enough to model situations in which fluxes are not
necessarily equally distributed. The simplest way to take this
into account is by considering different averages in matrices
A and B. For example, a particular scenario with different
means would be considering pathogen losses across links by
imposing B � A component-wise. Below we show results of
the proportion of healthy, infected, and dead nodes when ai j ∼
U [0, 1] and bi j = ai j + U [0, 1], one of the possible ways of
ensuring that B � A. These results are presented in Fig. 11.

The actual average fraction of dead nodes in the case of
different means depends on the relative balance between the
difference of means, |〈A〉 − 〈B〉|, and the death threshold. For
the case shown in Fig. 11, 〈A〉 = 1

2 and 〈B〉 = 1. Here the flux
of pathogen losses across links is high enough for most of the
plants not reaching the death threshold, resulting in almost
a complete reduction of plant mortality. Lowering the death
threshold but keeping these means unbalanced can increase
the fraction of dead nodes as in the case of equal means,
leading to a peak in mortality. Additionally, if a smaller mean
difference between fluxes is chosen, the maximum in plant
mortality arises again.

The third extension of our model considers the dynamics
of remaining pathogen after an individual’s death. In the main
text, we basically ignore the pathogen that remains in dead
plants as able to infect other individuals, but in reality it can
be transported to other individuals and increase their pathogen
load. A reasonable way to model pathogen dynamics once
the host plant is dead is by releasing out pathogen concen-
tration, so that the remaining pathogen in dead hosts decays
exponentially at rate α, because pathogen reproduction will
be hindered due to the lack of healthy tissues in the plant.
This concentration is obviously nonzero until some relaxation
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FIG. 12. Eigenvalue spectrum of the Jacobian matrix of the dy-
namical model (1) modified by Eq. (D1) to account for pathogen in
dead nodes. Here, we show the spectrum for an ER model realization
with α = 1, r = 0.5, K = 1, n = 500, and p = 0.1, in which we have
imposed that 100 plants crossed over the threshold and died; for the
qualitative analysis of the interior equilibrium point, the transient
dynamics until all deaths have occurred is irrelevant. As shown, an
outlier eigenvalue makes the interior equilibrium point unstable; the
vertical dashed line marks the line Re(λ) = 0. This instability is less
likely as α grows.

time has elapsed. Therefore, this pathogen is still available to
be transported to other nodes.

The dynamical model is modified as follows. The ith equa-
tion of the coupled dynamics is given by Eq. (1) for any
time t such that xi(t ) � δ. Let ti be the time at which plant
i crosses over the threshold δ, xi(ti ) = δ. Then, for t � ti the
ith equation of (1) is substituted by

dxi

dt
= −αxi +

n∑
j=1

ai jx j − xi

n∑
j=1

b ji, for t � ti. (D1)

For this modification to be meaningful, the rate α at which
pathogen decays in dead nodes has to be large. Otherwise, we
can find examples of unstable dynamics (Fig. 12). Intuitively,
if α is small (i.e., pathogen concentration decays slowly in
dead nodes), the likelihood that the right-hand side of Eq. (D1)
becomes positive for a number of nodes is non-negligible,
which can lead to unbounded growth in pathogen concen-
tration at some nodes. There must be a critical value above
which no unstable equilibria are found. For that reason, this
model modification is meaningful in the limit of strong decay.
In terms of pathogen population dynamics in dead individuals,
this limit is consistent with situations in which healthy tissues
in the host are scarce. In principle, the per-capita decay rate α

should be a quantity increasing in time because of the increas-
ing lack of resources for pathogen reproduction. Instead of
considering an increasing function α(t ), we use an asymptotic
value large enough to ensure the stability of the dynamics.

Incorporating this effect we observe no qualitative change
in our main results. To check this, we have chosen α such that
pathogen declines fast enough in dead individuals. These sim-
ulations are shown in Fig. 13, demonstrating that our results
are robust to this modification: the peak in mortality remains.

FIG. 13. Fraction of dead plants as a function of network mean
degree (ER), when dead plants in simulations can release pathogen
to the exterior in a way that the pathogen concentration that remains
decreases exponentially with exponent α (here, α = 10). Again, av-
erages were taken over flux matrices A and B.

APPENDIX E: COMPARISON TO SIR MODELS

The first model that one can think of to effectively describe
pathogen dynamics is the standard SIR model (without vital
dynamics) [11,40]:

ds

dt
= −σ si,

di

dt
= σ si − i,

dr

dt
= i,

where we have used time units such that the rate γ from
infected to removed is equal to 1, and the contact number is
precisely the rate σ from susceptible to infected. Here s(t ),
i(t ), and r(t ) stand for the fractions of susceptible (healthy),
infected, and removed (dead) plants as functions of time.
The equations obviously preserve the condition s(t ) + i(t ) +
r(t ) = 1. It is easy to see, using this model, that asymp-
totically the fraction of infected individuals goes to zero,
irrespective of the initial condition. This is inconsistent with
the microscopic temporal dynamics reported in Fig. 4, for
which a nonzero fraction of infected individuals remain in
the long term—the infection is endemic in our model. Then
the standard SIR model has to be ruled out to reproduce
effectively our microscopic dynamics.

Next we consider a SIR model with vital dynamics,

ds

dt
= −σ s i − μs + μ,

di

dt
= σ s i−i−μi,

dr

dt
= i − μr,

(E1)

which still preserves the restriction s(t ) + i(t ) + r(t ) = 1
along the dynamics. The difference with a standard SIR model
is that each compartment is affected by the same mortality rate
μ, which is compensated in the fraction of susceptible individ-
uals, growing as ds

dt = μ(1 − s) in isolation. It is easy to check
that, asymptotically, the fractions in each compartment tend to

s� = 1 + μ

σ
, i� = μ

σ

(
1

s�
− 1

)
, r� = 1

σ

(
1

s�
− 1

)
.

(E2)
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FIG. 14. Fraction of individuals within compartments, for the SIS model (left) and our microscopic approach (right), which corresponds
to that depicted on Fig. 4(b). Left: Using the asymptotic values to be adjusted from the simulation in Fig. 4(b), (s�, i�, r�) = (0.02, 0.68, 0.3),
we solve Eq. (E2) for σ and μ to get μ = i�

1−s�−i� = 2.267 and σ = 1−s�

s� (1−s�−i� ) = 163.33. With these parameters, the numerical integration of
Eq. (E1) yields the temporal SIR dynamics depicted in the panel. Right: Microscopic model aggregated dynamics (dots) compared with the
time-dependent approximations given by Eq. (E4) (solid lines). We have aggregated into compartments the temporal dynamics presented in
Fig. 4(b). Here t0 ≈ 7.189 and μ remains unchanged in terms of i� and s�. Notice that the intermediate transient observed in the microscopic
model until t = t0 has no counterpart in the full SIR model (left).

This solves the problem described above for the standard SIR
model, because here it is possible that i� > 0, as we observe in
the microscopic pathogen dynamics. However, for networks
exhibiting a giant component [see Figs. 4(b) and 4(c)], it
is expected that the fraction of susceptible individuals tends
to a low, constant value after a short transient time (equal
to zero for fully connected networks). In other words, our
microscopic model predicts a fast decrease of the fraction of
healthy plants. Therefore, an effective SIR model with vital
dynamics will be able to reproduce our microscopic pathogen
propagation over almost fully connected networks in the limit
σ → ∞, because s(t ) will decay rapidly to an asymptotic
value s� ≈ 0. After that transient, s(t ) ≈ s� is approximately
constant, so we can set equal to zero the right-hand side of
the equation for s to obtain σ i(t )s� = μ − μs�. Substituting
into the equation for i(t ) we get a system of ODEs where only
infected and removed individuals remain (and s = s� is kept
fixed):

di

dt
= μ(1 − s�) − (1 + μ)i,

dr

dt
= i − μr, (E3)

which can be used to predict the dynamics for t � t0, t0 being
the time at which the fraction of dead individuals r(t0) starts
growing. This system preserves the condition s� + i(t ) +
r(t ) = 1. Equation (E3) leads to fractions i� = μ

1+μ
(1 − s�)

and r� = 1−s�

1+μ
= μi� in the steady state, so we can solve for

μ = i�

1−s�−i� in terms of equilibrium fractions. In this limit,
the approximate system becomes linear (and hence trivial),
yielding the analytical solution

i(t ) = i� + (i0 − i�)e−(t−t0 )(1+μ),

r(t ) = r� − (i0 − i�)e−(t−t0 )(1+μ), (E4)

with initial conditions i(t0) = 1 − s� and r(t0) = 0. Then, the
temporal dynamics is fully determined by the asymptotic frac-
tions i� and s�.

We can use the microscopic model’s average fractions of
infected and dead plants to find parameters values for μ =

i�

1−s�−i� and t0. First we determine from the simulation the
initial time t0 at which r(t ) starts growing. The asymptotic
fractions of healthy and infected individuals yield values for
i� and s�. Then we can immediately obtain the μ value that
reproduces the fractions within compartments in the long run
(Fig. 14).

The comparison between the SIR with vital dynamics and
the microscopic model’s fractions is shown in Fig. 14. Note
that the aggregated, microscopic temporal dynamics cannot
be accounted for with the two standard compartmentalized
models discussed here, because there is a transient period
before dead individuals start appearing. In addition, even for
t > t0 the adjusted temporal dynamics does not fit properly
microscopic model fractions within compartments.
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