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Antipersistent random walks in time-delayed systems
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We show that the occurrence of chaotic diffusion in a typical class of time-delayed systems with linear
instantaneous and nonlinear delayed term can be well described by an antipersistent random walk. We numer-
ically investigate the dependence of all relevant quantities characterizing the random walk on the strength of
the nonlinearity and on the delay. With the help of analytical considerations, we show that for a decreasing
nonlinearity parameter the resulting dependence of the diffusion coefficient is well described by Markov
processes of increasing order.
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I. INTRODUCTION

Chaotic diffusion is a widely studied phenomenon in non-
linear dynamical systems, where the state variable shows
diffusion. It is well understood in low-dimensional systems
such as low-dimensional Hamiltonian systems [1–4] and one-
dimensional iterated maps [5–8], where the latter can be
motivated by driven pendula, Josephson junctions, or phase-
locked loops [9,10]. Beyond normal diffusion, also anomalous
diffusion, which is characterized by nonstationarity, non-
ergodicity, and infinite invariant measures, was extensively
analyzed in such systems [11–16]. In contrast, there are
only a few papers that consider chaotic diffusion in high-
dimensional systems. For instance, the works in Refs. [17–20]
consider chaotic diffusion of dissipative solitons in certain
partial differential equation systems. In this paper, we fo-
cus on another class of infinite-dimensional systems given
by time-delay systems that are defined by delay differential
equations (DDEs) [21–23], which appear in all branches of
science [24–28] and engineering [26,29,30]. While certain
results can be inferred from the literature on diffusion in
stochastic time-delay systems [31–36], there are only a few
works on deterministic time-delay systems. In Refs. [37–41],
chaotic diffusion was observed in feedback loops with time-
delay τ that are described by the DDE ẋ(t ) = μ sin[x(t − τ )].
An integrated version of the Ikeda DDE [42] was considered
in Refs. [43,44]. Recently, we demonstrated that introducing
a modulation of the time delay, i.e., τ = τ (t ), can lead to a
giant increase of the diffusion constant over several orders
of magnitudes [45], which is associated with certain types
of chaos induced by the time-varying delay [46,47]. In this
paper, we show that, even if the delay is constant, chaotic
diffusion in time-delay systems exhibits interesting features,
where we focus on antipersistence. In general, antipersistent
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random walks are characterized by negatively correlated in-
crements, i.e., a step forward increases the probability that the
next step is backwards and viceversa. As a result, this leads
to a reduction of the diffusion constant [48]. They can be
observed, for instance, in the diffusion of charged particles
[49], in the dynamics of the basketball score during a game
[50], and in chaotic diffusion of dissipative solitons [19,20].
Antipersistence is also present in fractional Brownian motion
with Hurst exponent H < 1/2 [51], which can be observed,
for example, in crowded fluids [52], albeit H < 1/2 not nec-
essarily implies antipersistence in more general systems [53].
While it is known for stochastic systems that a time-delay can
cause oscillations of the correlation function between positive
and negative values [54], to the knowledge of the authors,
antipersistence in time-delay systems is not well understood,
especially in the case of chaotic diffusion.

II. DELAY EQUATION

We consider a typical class of delay differential equa-
tions (DDEs) with a linear instantaneous term and a nonlinear
delayed term,

1

�
ẋ(t ) = −x(t ) + f [x(t − 1)], (1)

where the parameter � sets the timescale, and f (x) is a
nonlinear function. Different choices of the nonlinearity f
lead to several time-delayed systems well known in the lit-
erature. For instance, for f (x) = μx/(1 + x10), one obtains
the Mackey-Glass equation [55] describing the time evolu-
tion of the concentration of white blood cells, whereas for
f (x) = μ sin(x), one gets the Ikeda equation [42,56] describ-
ing the dynamics of the transmitted light from an optical
ring cavity system, where the nonlinearity is similar to the
one in models for certain optoelectronic oscillators [57,58].
There are several other nonlinearities that have been investi-
gated [27]. The timescale transformation t ′ = �t transforms
Eq. (1) to the DDE ẏ(t ′) = −y(t ′) + f [y(t ′ − �)] with y(t ′) =
x(t ′/�) demonstrating that large values of � correspond
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to the large delay limit. Since we consider � � 1 in this
work, our results contribute to the highly developed theory of
singularly perturbed DDEs and systems with large delay (cf.
Refs. [56,59–71]). In this article, we investigate nonlinearities
f for which the corresponding iterated map zt+1 = f (zt ) is
known to show chaotic diffusion [5–8]. More specifically, we
consider maps with reflection f (−x) = − f (x) and discrete
translational symmetry f (x + 1) = f (x) + 1. It was shown
that for sufficiently large damping, differential equations de-
scribing Josephson junctions, phase-locked loops, or driven
damped pendula [9,10] can be reduced to such iterated maps
[5]. A paradigmatic example is the climbing-sine map given
by

f (x) = x + μ sin(2πx), (2)

which shows chaotic diffusion for μ > μc = 0.732644... [5]
and which is chosen as nonlinearity for the rest of the article.
The resulting time-delayed system, Eq. (1) with Eq. (2), is
of the nature of an Ikeda equation and can in principle be
experimentally realized by time-delayed feedback systems
such as phase-locked loops [37,38], microwave oscillators
[40,41], or optoelectronic oscillators [57,58]. In a previous
article [45], we discussed that our DDE, Eq. (1) with Eq. (2),
leads to chaotic diffusion for large enough �, where the state
variable x can thereby be interpreted as an unbounded phase
variable. In this article, we show that the diffusion process is
well described by an antipersistent random walk. Although
the following numerical results were all obtained for the
climbing-sine nonlinearity, our qualitative findings, however,
are general in so far as we checked that they occur also for
other nonlinearities such as the iterated map studied by Klages
et al. [72] or the climbing tent map [7] in a wide range of
parameters.

Equation (1) can be formally solved by the method of steps
[73] leading to an iteration of solution segments xn(t ) defined
on time intervals [n − 1, n] given an initial function x0(t ) on
the time interval [−1, 0] [61],

xn+1(t ) = xn(n)e−�(t−n) +
∫ t

n
�e−�(t−t ′ ) f [xn(t ′ − 1)] dt ′.

(3)
This equation shows that for large values of �, states x for
instants of time on the interval [n − 1, n] are mapped to the
subsequent time interval by the action of the nonlinearity f
and then are smoothed by the kernel � exp[−�(t − t ′)] of
width 1/�. We numerically solved Eq. (1) using the two-
stage Lobatto IIIC method with linear interpolation [74] and
a step width �t = 0.001. A typical solution of Eq. (1) on
a short timescale is depicted in Fig. 1(a) and shows strong
fluctuations of width 1/� due to the chaos generating map
f and the smoothing kernel. If we consider an ensemble of
solutions of Eq. (1) on a large timescale shown in Fig. 1(b),
we observe a diffusive spread of the trajectories that is rem-
iniscent of Brownian motion. To check whether this spread
follows the laws of normal diffusion, we calculate the mean-
squared displacement (MSD) 〈�x2(t )〉 defined by 〈�x2(t )〉 =
〈[x(t ) − x(0)]2〉, where the angle brackets denote an ensemble
average over many solutions of Eq. (1) with slightly different
initial functions. Figure 1(c) shows the numerically deter-
mined MSDs for different values of the parameter �. They all

FIG. 1. (a) A single solution x(t ) of the DDE, Eq. (1), on a
short timescale shows strong oscillations typical for turbulent chaos.
(b) On a larger timescale, an ensemble of solutions spreads dif-
fusively reminiscent of Brownian motion. (c) The mean-squared
displacements for different values of � numerically obtained from
N = 104 trajectories of duration T = 2 × 104 increase linearly
(� = 25, 50, 100 from top to bottom). (d) The covariance func-
tion C1(�t ) = 〈δx1(t )δx1(t + �t )〉 of the increments δx1(t ) = x(t +
1) − x(t ) shows peaks of alternating algebraic sign, clearly demon-
strating antipersistence. Parameters of the simulations are � = 50
and μ = 0.9.

have in common a linear increase in time typical for normal
diffusion, where the slope of the MSD defines the diffusion
coefficient D � 〈�x2(t )〉/t . To understand the origin of the
diffusion process from a microscopic point of view, one typ-
ically considers statistics of the increments of the process.
Here, we define an increment by δxη(t ) = x(t + η) − x(t ).
A first natural choice is η = 1 due to the method of steps.
The covariance function Cη(�t ) of the increments is defined
by Cη(�t ) = 〈δxη(t )δxη(t + �t )〉. Here, we assumed that the
covariance function is stationary, i.e., does not depend on
t , what can be expected from the time-translational invari-
ance of Eq. (1) and was in addition confirmed numerically.
The numerically determined covariance function of the incre-
ments for η = 1 is shown in Fig. 1(d). It consists of peaks
of alternating algebraic sign at integer values n revealing an
anticorrelation, i.e., an antipersistence, of two “successive”
increments δx1(t ) and δx1(t + 1). This finding suggests an
interpretation of the diffusion process as a time-discrete an-
tipersistent random walk, which will be specified in the next
section.

III. ANTIPERSISTENT RANDOM WALK

Motivated by the method of steps, which introduces a
discretization in time of Eq. (1) via the iteration of solution
segments xn(t ) defined on state intervals [n − 1, n], and to get
rid of the strong fluctuations per state interval, we consider
another quantity that is able to capture the diffusive properties
of our system very well, namely, the mean value Sn per state
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FIG. 2. Time evolution of the mean value per state interval (thick
blue line) on a large timescale (main figure) and on a short timescale
(inset) compared with the corresponding solution x(t ) of the DDE
(thin red line). Same parameters as described in the caption of Fig. 1.

interval defined by

Sn =
∫ n

n−1
xn(t ) dt . (4)

By introducing increments δSn of this average via δSn =
Sn+1 − Sn, the dynamics of the mean value per state interval
can be interpreted as a time-discrete random walk, whose
diffusion coefficient is determined by the statistics of its in-
crements. In the inset of Fig. 2, we compare a typical solution
of Eq. (1) with the time evolution of its mean value on a
short timescale, whereas the main figure shows the temporal
behavior of the mean value on a larger timescale. The antiper-
sistence, i.e., a positive increment of the mean value is more
likely to be followed by a negative increment and viceversa,
is clearly visible.

This behavior is confirmed in Fig. 3, which shows the two-
dimensional probability density p(δn, δn+1) of two successive
increments δSn and δSn+1. We can see that, for instance,
a large positive value of δn is typically connected with a
large negative value of δn+1, which leads to the observed
antipersistence. The one-dimensional distribution p(δn) of the
increments is Gaussian as shown in the inset of Fig. 3. As
expected, the mean value 〈δSn〉 of the increments is equal to
zero leading to a pure diffusion process without any drift.

For a normal random walk, the diffusion coefficient
is essentially determined by the variance σ 2 = Var(δSn) =
〈δS2

n〉 = Cov(δSn, δSn) of the increments, D = σ 2. For an
antipersistent random walk, however, correlations of the in-
crements have to be taken into account. For the following
numerical and analytical considerations, we define the cor-
relation coefficient c of two successive increments by c =
Cov(δSn, δSn+1)/σ 2 and the correlation coefficient d of next-
nearest increments via d = Cov(δSn, δSn+2)/σ 2. We first start
with a numerical investigation of these quantities in depen-
dence on the nonlinearity parameter μ of the DDE, Eq. (1)
with Eq. (2), and the delay determined by the parameter �.
In Figs. 4(a) and 4(b), we compare the diffusion coefficient
D of the DDE and the variance σ 2 of the increments, respec-

FIG. 3. The two-dimensional probability density p(δn, δn+1) of
two successive increments δSn and δSn+1 of the mean value per
state interval visualizes the antipersistence (main figure), and the
one-dimensional probability density p(δn) is well described by a
Gaussian distribution N (0, σ 2) (black line) with zero mean and
variance σ 2 = 〈δS2

n〉 ≈ 0.0077 (inset). Same parameters as described
in the caption of Fig. 1.

tively, in dependence on μ for three different values of �.
A first observation is that both quantities roughly get halved
if the value of � is doubled. This is in agreement with a
previous finding of the authors in Ref. [45], where it was
shown that the diffusion coefficient asymptotically vanishes
as D ∼ 1/�. Furthermore, we can see that for larger values of
μ, the diffusion coefficient and the variance of the increments
coincide, whereas for smaller values of μ, there are distinct
discrepancies between these two quantities that can only be
explained by taking the antipersistence into account. This is

FIG. 4. μ-dependence of the diffusion coefficient D of the DDE
(a), the variance σ 2 of the increments δSn of the mean value per state
interval (b), the correlation coefficient c of two successive increments
δSn and δSn+1 (c), and the correlation coefficient d of next-nearest
increments δSn and δSn+2 (d) for three different values of � (� =
25, 50, 100 from top to bottom). Panels (c) and (d) show that the
correlation coefficients c and d do not depend on � asymptotically,
whereas the diffusion coefficient D and the variance σ 2 in panels
(a) and (b) are roughly proportional to 1/�. (μ > 0.77).
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confirmed by looking at the correlation coefficients c and d in
Figs. 4(c) and 4(d), which are different from zero for smaller
values of μ, but go to zero for larger values of μ. In the former
case, the correlation coefficient c of two successive increments
is negative, while the correlation coefficient d of next-nearest
increments is positive, reflecting the antipersistence of the in-
crements in this parameter range. Furthermore, we recognize
that both correlation coefficients do not depend on �.

To connect the dependence of the diffusion coefficient
on the nonlinearity parameter with the μ dependence of the
quantities σ 2, c, and d , we consider Markov models for the
dynamics of the increments, as it was successfully applied
in modeling persistence effects in chaotic diffusion in ex-
tended two-dimensional billards [75] and one-dimensional
maps [76]. In the simplest case, a Markov process of zeroth
order, where successive increments are completely indepen-
dent from each other, the diffusion coefficient is just given by

D = σ 2 (5)

as known from standard random walk theory. The previous
numerical results showed that this is only the case for larger
values of μ where c ≈ d ≈ 0. As a next step, we consider a
Markov process of first order for the dynamics of the incre-
ments. The numerical results in Fig. 3 support that the proba-
bility density p(δn, δn+1) of two successive increments δSn and
δSn+1 is given by a two-dimensional Gaussian distribution,

p(δn, δn+1) = 1√
(2π )2det(�)

exp

(
−1

2
δT �−1δ

)
, (6)

with δ = (δn, δn+1)T , and the covariance matrix reads

� = σ 2

(
1 c
c 1

)
. (7)

By using the one-dimensional probability density p(δn) of the
increments,

p(δn) = Nδn (0, σ 2) = 1√
2πσ 2

exp

(
− δ2

n

2σ 2

)
, (8)

we can calculate the conditional probability density

p(δn+1|δn) = p(δn+1, δn)

p(δn)
= Nδn+1 [cδn, σ

2(1 − c2)] (9)

of finding an increment δSn+1 at discrete time n + 1 given
an increment δSn at time n. This is the fundamental quantity
that defines the Markov process of first order and is also
known as propagator. With the help of the propagator, one
can determine all joint probability densities. This allows us to
calculate the covariance function of the increments,

Cov(δSn, δS0) = 〈δSnδS0〉 =
∫
R

∫
R

δnδ0 p(δn, δ0) dδn dδ0,

(10)
where the joint probability density p(δn, δ0) is a marginal dis-
tribution of the overall probability density p(δn, δn−1, . . . , δ0)
that can be expressed by the propagator leading to

〈δSnδS0〉 =
∫
R

· · ·
∫
R

δn p(δn|δn−1) p(δn−1|δn−2)

· · · p(δ1|δ0) δ0 p(δ0) dδn · · · dδ0. (11)

The (n + 1)-fold integral on the right-hand side of Eq. (11)
can be evaluated with the help of the propagator in Eq. (9),

〈δSnδS0〉 = σ 2cn. (12)

From the covariance function of the increments, we can
calculate the MSD,

〈(Sn − S0)2〉 =
〈(

n−1∑
i=0

δSi

)2〉
=

n−1∑
i=0

n−1∑
j=0

〈δSiδS j〉

=
n−1∑
i=0

〈
δS2

i

〉 + 2
n−1∑
i=1

i−1∑
j=0

〈δSiδS j〉

= σ 2n + 2σ 2
n−1∑
i=1

i∑
k=1

ck . (13)

For the MSD of the mean value per state interval, we obtain

〈(Sn − S0)2〉 = 1 + c

1 − c
σ 2n + 2σ 2 cn+1 − c

(1 − c)2
, (14)

and, therefore, for the diffusion coefficient of the DDE, we get

D = 1 + c

1 − c
σ 2, (15)

which coincides with the result for the antipersistent random
walk on a one-dimensional lattice considered in Ref. [48].
This formula contains the special case of the zeroth-order
Markov process for c = 0. Similarly, we can also consider a
Markov process of second order, which takes the correlation
coefficient d of next-nearest increments into account. The
details of the definition of this process as well as the
corresponding derivations are provided in Appendix A. Here,
we only state the final analytical result, i.e., the diffusion
coefficient in dependence on σ 2, c, and d ,

D = 1 + c

1 − c

1 + d − 2c2

1 − d
σ 2. (16)

This formula contains the special case of the first order
Markov process for d = c2. Note that a similar expression for
an antipersistent random walk on a one-dimensional lattice
was derived in Ref. [77], where the diffusion coefficient
depends on persistence probabilities.

In Fig. 5, we compare the numerically determined diffu-
sion coefficient from the DDE with the diffusion coefficient
obtained by a Markov process of zeroth, first, and second
order (from left to right) for the increments of the mean value
per state interval. We thereby used Eqs. (5), (15), and (16)
with numerical values for σ 2, c, and d from Fig. 4. As a
final conclusion, we can state that whereas the Markov pro-
cess of zeroth order is good enough to describe the diffusion
coefficient for large values of the nonlinearity parameter μ,
for smaller values of the parameter μ, Markov processes of
increasing order are needed.

IV. DISCUSSION AND SUMMARY

So far, we considered the antipersistent random walk of
the mean value per state interval. For a continuous-time
dynamical system such as the DDE in Eq. (1), how-
ever, there are several possible discretizations in time that
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FIG. 5. Comparison of the numerically obtained diffusion coefficient D of the DDE for different values of the nonlinearity parameter μ

(red lines) with the diffusion coefficients that are obtained for a Markov process of order zero (a), one (b), and two (c) (black lines) via Eqs. (5),
(15), and (16) from the numerically determined values for the variance σ 2 and the correlation coefficients c and d in Fig. 4. (� = 50).

can lead to different discrete-time random walks. Let us
consider again increments δxη(t ) = x(t + η) − x(t ) of solu-
tions of Eq. (1) and their covariance function defined by
Cη(�t ) = 〈δxη(t )δxη(t + �t )〉. In Fig. 6, we compare the
covariance functions C1/2(�t ) and C1(�t ). We can see that
whereas the covariance function C1(�t ) consists of a se-
quence of sharp peaks of alternating algebraic sign at integer
values n, the covariance function C1/2(�t ) is described by
an oscillating function with a slowly decreasing amplitude.
C1/2(�t ) shows that there is a strong antipersistence of these
“half increments” for �t = 1/2. The reason is the nearly peri-

FIG. 6. The covariance function Cη(�t ) = 〈δxη(t )δxη(t + �t )〉
of the increments δxη(t ) = x(t + η) − x(t ) of solutions x(t ) of the
DDE, Eq. (1), shows oscillations with slowly decreasing amplitude
for η = 1/2 (a) and sharp peaks of alternating algebraic sign for
η = 1 (b) (red curves). The black lines are corresponding analyti-
cal results obtained from the stochastic delay differential equation,
Eq. (17), with ς ≈ 0.035 in panel (a) and ς ≈ 0.066 in panel (b).
Same parameters as described in the caption of Fig. 1 are used for
Eq. (1).

odic structure of chaotic solutions of Eq. (1) with period equal
to the constant delay as shown in the inset of Fig. 2. Note that
there is a simple relation between both covariance functions,
namely, C1(�t ) = C1/2(�t − 1/2) + 2C1/2(�t ) + C1/2(�t +
1/2), because the corresponding increments are related by
δx1(t ) = δx1/2(t ) + δx1/2(t + 1/2). This means that the infor-
mation contained in C1(�t ) is also included in C1/2(�t ) but
not viceversa. By using the approximation in Eq. (B5) for
C1/2(�t ), one gets exactly zero for C1(�t ). This demonstrates
that C1(�t ) describes the deviations from the perfect trian-
gular shape in Eq. (B5) that are hardly visible in Fig. 6(a).
Moreover, in Fig. 6, the antipersistence in C1(�t ) is difficult
to realize from C1/2(�t ). This can also be seen in the inset
of Fig. 2. The antipersistence of the “half increments” is
clearly visible due to the nearly periodicity of the solution
x(t ), while the antipersistence of the “full increments” only
becomes visible by considering the mean value. The nearly
periodic structures of the DDE seem to be a very robust
phenomenon because they can also be observed in linear
stochastic delay differential equations (SDDEs). Replacing
the term μ sin[2πx(t − 1)] in Eq. (1) with Eq. (2) by Gaussian
white noise ξ (t ) with 〈ξ (t )〉 = 0 and 〈ξ (t )ξ (t ′)〉 = δ(t − t ′)
leads to the SDDE

1

�
ẋ(t ) = −x(t ) + x(t − 1) + ςξ (t ). (17)

For this SDDE, one can derive the correlation functions
C1/2(�t ) and C1(�t ) as numerically determined inverse
Fourier transforms of the corresponding analytically derived
power spectra; see Appendix B. These results are also dis-
played in Fig. 6. We can see that while the SDDE reproduces
the shape of the covariance function C1/2(�t ) very well, the
antipersistence of the covariance function C1(�t ) cannot be
reproduced by the SDDE. The SDDE can explain the antiper-
sistence of the “half increments” because its solutions show
the same nearly periodic structures, but the antipersistence
of the “full increments” or the mean value (also discussed
in Appendix B) is not captured by the SDDE. In principle,
one can derive the diffusion coefficient of the DDE from all
covariances discussed so far, but we think that the antipersis-
tent random walk defined in the previous section is the most
natural one and because of the suppression of the strong fluc-
tuations per state interval due to the averaging over these state
intervals, probably most suited to investigate the influence of
antipersistence on the diffusive properties of DDEs.
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In the literature [78–82], there is an increasing interest in
the relation between the chaotic dynamics of time-delayed
systems governed by DDEs and spatially extended systems
ruled by partial differential equations (PDEs). The so-called
spatiotemporal representation [78,80] or dynamical represen-
tation [81,82] allows us to approximate a DDE in terms of
a PDE, which often has the form of a reaction-diffusion
equation with an additional drift term. We would like to
mention, however, that the corresponding diffusion term is
not related to the diffusive behavior discussed so far. In
our time-delayed system, the solution segments xn(t ) them-
selves diffuse, whereas the drift and the diffusion term of
the corresponding PDE approximation capture the drift and
the broadening of structures in the solution of the DDE, re-
spectively, that are caused by the asymmetric integral kernel
of width 1/� in Eq. (3). Additional nonlinear mechanisms
in such PDEs, however, can lead to chaotic diffusion as it
was found in another infinite-dimensional dynamical system,
namely, the diffusion of dissipative solitons in the cubic-
quintic complex Ginzburg-Landau equation [19,20]. Also in
this equation, a diffusion term appears, but the correspond-
ing diffusion coefficient does not coincide with the one of
the solitons. The random motion of the latter can also be
statistically described by an antipersistent random walk but
the diffusing object is completely different from the one in
the current article. For the solitons, it is the spatial position
of their center of mass that exhibits diffusion, while in our
time-delayed system, the mean value of the solution segments
behaves diffusively, or in other words, in the PDE, it is the
structure in the solution that shows diffusion, whereas in our
DDE, the whole solution itself diffuses.

In summary, we have shown that chaotic diffusion appear-
ing in a typical class of DDEs with a linear instantaneous and
a nonlinear delayed term can be described by an antiperistent
random walk in a wide range of parameters. We investi-
gated the dependence of the antipersistence on the strength of
the nonlinearity and the delay and described the incremental
process with Markov models. With numerical and analytical
considerations, we demonstrated that for large nonlinearities,
the antipersistence gets lost, and the increments are com-
pletely uncorrelated, whereas for a decreasing strength of the
nonlinearity, Markov processes of higher order are needed. To
the best knowledge of the authors, the occurrence of antiper-
sistent random walks in DDEs has never been reported before
in the literature.
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APPENDIX A: DERIVATION OF EQ. (16)

In this Appendix, we derive the diffusion coefficient of
an unbiased antipersistent random walk, Sn+1 = Sn + δSn,
whose increments δSn follow a Markov process of second
order with Gaussian probability densities. Our objective is to
obtain the diffusion coefficient D in dependence on the vari-
ance σ 2 = 〈δS2

n〉 of the increments, the correlation coefficient

c = Cov(δSn−1, δSn)/σ 2 of two successive increments, and
the correlation coefficient d = Cov(δSn−2, δSn)/σ 2 of next-
nearest increments. The derivation is analogous to the one
in the main text for a Markov process of first order. The
distribution of three successive increments is given by the
three-dimensional Gaussian probability density

p(δn, δn−1, δn−2) = 1√
(2π )3det(�)

exp

(
−1

2
δT �−1δ

)
,

(A1)
where δ = (δn, δn−1, δn−2)T , and the covariance matrix is
given by

� = σ 2

⎛
⎝1 c d

c 1 c
d c 1

⎞
⎠. (A2)

The propagator, the conditional probability density of finding
an increment δSn at discrete time n given two increments
δSn−1 and δSn−2 at times n − 1 and n − 2, respectively, can
be obtained from Eq. (A1) with Eq. (A2) and the two-
dimensional distribution of the increments in Eq. (6),

p(δn|δn−1, δn−2) = p(δn, δn−1, δn−2)

p(δn−1, δn−2)

= Nδn (αδn−1 + βδn−2, γ ), (A3)

where we used the abbreviations Nδn (μ, σ 2) =
(2πσ 2)−1/2 exp[−(δn − μ)2/(2σ 2)] of a one-dimensional
Normal distribution and

α = c(1 − d )

1 − c2
, β = d − c2

1 − c2
, γ = σ 2 (1 + d − 2c2)(1 − d )

1 − c2
.

(A4)
Note that for a Markov process of first order, i.e., d = c2, we
recover the propagator in Eq. (9). The covariance function of
the increments is defined by

Cov(δSn, δS0) = 〈δSnδS0〉 =
∫
R

∫
R

δnδ0 p(δn, δ0) dδn dδ0,

(A5)
where the two-dimensional probability density p(δn, δ0) is
the marginal distribution of the overall probability density
p(δn, . . . , δ0, δ−1). The covariance function of δSn can be
expressed by the propagator in Eq. (A3) leading to

〈δSnδS0〉 =
∫
R

· · ·
∫
R

δn p(δn|δn−1, δn−2) p(δn−1|δn−2, δn−3)

· · · p(δ1|δ0, δ−1) δ0 p(δ0, δ−1) dδn · · · dδ0 dδ−1.

(A6)

We can calculate the (n + 2)-fold integral by performing step
by step the integrations with respect to δn, δn−1, and so on.
In the following, we consider the evolution of the prefactor
in front of the product of propagators after performing k
integrations,

k = 0 : δn,

k = 1 : αδn−1 + βδn−2,

k = 2 : (α2 + β )δn−2 + αβδn−3,

k = 3 : (α3 + 2αβ )δn−3 + (α2β + β2)δn−4. (A7)
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In general, after performing k integrations, we can write the
prefactor as

fkδn−k + β fk−1δn−k−1, (A8)

where the coefficients fk are the numbers of a generalized
Fibonacci sequence given by

fk = α fk−1 + β fk−2, f−1 = 0, f0 = 1. (A9)

This linear difference equation can be solved by the ansatz
fk = λk leading to the explicit formula

fk = (α +
√

α2 + 4β )k+1 − (α −
√

α2 + 4β )k+1

2k+1
√

α2 + 4β
. (A10)

From Eq. (A8) for k = n, we obtain for the covariance func-
tion of the increments

〈δSnδS0〉 =
∫
R

∫
R

( fnδ0 + β fn−1δ−1)δ0 p(δ0, δ−1) dδ0 dδ−1

= σ 2 fn + σ 2cβ fn−1.

(A11)

By using Eq. (13), we get for the MSD of the antipersistent
random walk

〈(Sn − S0)2〉 = σ 2n + 2σ 2
n−1∑
i=1

i∑
k=1

( fk + cβ fk−1). (A12)

The evaluation of the double sum on the right-hand side of
Eq. (A12) with the explicit formula in Eq. (A10) and the
abbreviations in Eq. (A4) leads to the diffusion coefficient
of the antipersistent random walk, i.e., the asymptotic linear
slope of its MSD,

D = 1 + c

1 − c

1 + d − 2c2

1 − d
σ 2. (A13)

Because a single discrete time step of the antipersistent ran-
dom walk of the mean value per state interval corresponds to
the iteration of one solution segment of length unity of the
DDE, we obtain Eq. (16) for the diffusion coefficient of the
DDE.

APPENDIX B: COVARIANCE FUNCTIONS
OF THE INCREMENTS

In this Appendix, the covariance functions Cη(�t ) of the
increments δxη(t ) = x(t + η) − x(t ) with η ∈ {1/2, 1} and
the increments δSn = Sn+1 − Sn of the mean value are an-
alyzed in the limit � → ∞ for the SDDE (17). Beyond
the numerical estimation from ensembles of time series
using the definition of the covariance function Cη(�t ) =
〈〈δxη(t ) δxη(t + �t )〉〉, for this system, there are at least four
possible approaches to compute or estimate Cη(�t ). The first
three approaches directly follow from the definition of the
covariance function. Assuming stationarity of the increments
δxη(t ), one has

Cη(�t ) = C(t + η, t + �t + η) + C(t, t + �t )

− C(t + η, t + �t ) − C(t, t + �t + η), (B1)

where C(t, t ′) is the covariance function of x(t ), which can
be obtained via the eigen mode expansion of the determin-

istic part of the SDDE (17) as shown in Ref. [83], or using
the analytical expression for the Green function as shown in
Ref. [32]. A third approach may be derived from the method
in Ref. [84], where it is shown that the correlation function of
x(t ) is a special solution of a certain deterministic DDE while
requiring stationarity of the system. However, in our case,
stationarity can only be assumed for the increments δxη(t )
but not for x(t ) since the considered system shows diffusion.
The fourth approach, which is the one we use in the following
analysis, uses the fact that the covariance function of a random
variable is given by the inverse Fourier transform of the power
spectrum of the random variable, which is known as Wiener-
Khinchin theorem [85,86]. Since the power spectrum Sη(ω)
of δxη(t ) is connected to the power spectrum S(ω) of x(t ) by
Sη(ω) = 2[1 − cos(ηω)]S(ω), Sη(ω) is given by

Sη(ω) = 1 − cos(ηω)

1 − cos(ω) + ω
�

[
1
2

ω
�

+ sin(ω)
] ς2, (B2)

where S(ω) was obtained from the Fourier transform of the
SDDE (17) according to Ref. [32]. The covariance functions
Cη(�t ) for η = 1/2 and η = 1 shown in Fig. 6 were computed
numerically by approximating the inverse Fourier transform
of Eq. (B2) via a fast Fourier transform, where for each η a
ς was chosen such that the resulting covariance functions for
the SDDE (17) coincide with the numerical estimates of the
covariance functions for the DDE (1) at �t = 0.

In the limit of large �, S1/2(ω) is large in the vicinity of
ω ≈ ωk = 2πk[1 − (� + 1)−1] with |k| = 1, 3, 5, . . . and is
negligible elsewhere. S1/2(ω) can be approximated by a sum
of these peaks, which leads to

S1/2(ω) ≈
∑

k =0 odd

2ς2(�+1)2

πk2

π 1
2

(
2πk

(�+1)

)2[
1 + (

ω−ωk
1
2 ( 2πk

(�+1) )
2

)2] (B3)

and is in agreement with the observation made in Ref. [83] that
the power spectrum essentially is a sum of Lorentzians. The
summands were derived by approximating the denominator
of the fraction on the right-hand side of Eq. (B2) by its Taylor
series at ω = 2πk, while dropping terms with an order larger
than ω4. The resulting polynomial is minimized by ω ≈ ωk =
2πk[1 − (� + 1)−1] and can be approximated in the vicinity
of ωk by a second-order polynomial in the limit of large
�. The numerator was approximated by 1 − cos(ω/2) ≈ 2.
C1/2(�t ) is obtained by applying the inverse Fourier trans-
form, which gives

C1/2(�t ) ≈
∑

k=1,3,5,...

2ς2(� + 1)2

(πk)2
e− 1

2 ( 2πk
(�+1) )

2|�t |

× cos{2πk[1 − (� + 1)−1]�t}. (B4)

For |�t | → 0 or � → ∞, one has

C1/2(�t ) ≈ ς2(� + 1)2

4

×
[

1− 2

π
arccos(cos{2π [1 − (� + 1)−1]�t})

]
,

(B5)
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which confirms the triangular shape observed in Fig. 6. For
|�t | � �2, one has

C1/2(�t ) ≈ 2ς2(� + 1)2

π2
e− 1

2 ( 2π
(�+1) )

2|�t |

× cos{2π [1 − (� + 1)−1]�t}. (B6)

For η = 1, the previous approximation approach is not
suitable, since, in this case, the background of Sη(ω) is not
negligible compared to the peaks at ω ≈ ωk = 2πk[1 − (� +
1)−1] with |k| = 1, 2, 3, . . . . Nevertheless, the covariance
function C̄1(�n) = 〈δSnδSn+�n〉 = 〈δS0δS�n〉 of the incre-
ments δSn of the mean value can be derived from Eq. (B2) in
the limit � → ∞. Therefore, it can be shown via a straightfor-
ward calculation that C̄1(�n) is connected to the covariance
function C1 of the increments δxη(t ) by

C̄1(�n) =
∫ 1

−1
du (1 − |u|)C1(�n + u), (B7)

where only the definitions of the increments, the mean value,
Eq. (4), and the covariance function are used. Inserting the
inverse Fourier transform of Eq. (B2) for C1 and performing
the integral over u gives

C̄1(�n) = 2ς2

π

∫ ∞

0
dω

[1 − cos(ω)]2 cos(�n ω)

ω2
{
1 − cos(ω) + ω

�

[
1
2

ω
�

+ sin(ω)
]} .

(B8)

In the limit � → ∞, we obtain

C̄1(�n) = 2ς2

π

∫ ∞

0
dω

[1 − cos(ω)] cos(�n ω)

ω2

=
{
ς2 if �n = 0
0 else

. (B9)

As a result, the correlation of successive increments δSn van-
ishes in the limit � → ∞ and thus, for the system governed
by the SDDE (17), the random walk given by the mean value
Sn is not antipersistent in this limit.
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