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Effective dimensions of infinite-dimensional Hilbert spaces: A phase-space approach
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By employing Husimi quasiprobability distributions, we show that a bounded portion of an unbounded phase
space induces a finite effective dimension in an infinite-dimensional Hilbert space. We compare our general
expressions with numerical results for the spin-boson Dicke model in the chaotic energy regime, restricting its
unbounded four-dimensional phase space to a classically chaotic energy shell. This effective dimension can be
employed to characterize quantum phenomena in infinite-dimensional systems, such as localization and scarring.
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I. INTRODUCTION

If the phase space associated with a quantum system
has finite volume, then the Hilbert space must be finite-
dimensional. A bounded phase space can only “accommodate
a finite number of Planck size cells, and therefore a finite
number of orthogonal quantum states” [1].

Quasiprobability distributions, such as the Husimi function
[2–7], may be used to study the distribution of a quantum
state in the phase space. Even when the phase space is
unbounded, normalization prevents a state from extending
beyond a bounded portion. Thus, relevant information about
the state may be extracted from the distribution of its Husimi
function within a fixed bounded portion of the phase space.

The Dicke model [8] is a fundamental model of quantum
optics that has become a paradigm of the study of quantum
chaos [9–17]. It has an unbounded four-dimensional phase
space, but the energy shells in the classical limit are bounded,
such that by averaging the moments of the Husimi function
over them, it is possible to define relative phase-space oc-
cupation measures [18–21], which gauge the spreading of
a quantum state within a single classical energy shell. In
Ref. [22] it is shown that these measures may be used to
detect quantum scars [23–25], and their maximum value for
pure states can be derived from the average entropy of random
states in a finite-dimensional Hilbert space [26]. The latter
result is intriguing, given that the Dicke model is not finite-
dimensional.

If a bounded phase space implies a finite-dimensional
Hilbert space, does a bounded portion of an unbounded phase
space generate a finite effective dimension in an infinite-
dimensional Hilbert space? In this work, we explore this
question and show that the answer is affirmative. We exhibit
that it is possible to define an effective dimension associated
with the classical energy shells of the Dicke model through

averages of the Husimi function of random states. This ex-
plains why in Ref. [22] the localization of random states
within the classical energy shells is described by that of
random states in a finite-dimensional Hilbert space: the
energy shells induce a finite dimension within the infinite-
dimensional Hilbert space.

The article is organized as follows. In Sec. II we introduce
the Dicke model, its classical limit, and its associated phase
space. We also describe a general expression to calculate
averages within single energy shells in this phase space. In
Sec. III we define an effective dimension for classical energy
shells, which relies on the Husimi function of random pure
states. Next, in Sec. IV we obtain analytical expressions for
the effective dimension of classical energy shells, and we
compare them to numerical results in the chaotic energy re-
gion of the Dicke model. In Sec. V we contrast this effective
dimension and the quantum participation ratio with each other
using random states with a rectangular energy profile. Finally,
we present our conclusions in Sec. VI.

II. DICKE MODEL

As a general model of spin-boson interaction, the Dicke
model is widely used in physics, specifically in quantum op-
tics, to describe atoms interacting with electromagnetic fields
within a cavity [8]. The most common picture of the model
takes into account a set of N two-level atoms with excitation
energy ω0 (using h̄ = 1), and a single-mode electromagnetic
field with radiation frequency ω. Their interaction is modu-
lated by the atom-field coupling strength γ , whose critical
value γc = √

ωω0/2 divides two phases in the model. That is,
the system develops a quantum phase transition going from
a normal phase (γ < γc) to a superradiant phase (γ > γc)
[27–30].
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The Hamiltonian of the Dicke model is given by

ĤD = Ĥ0 + Ĥγ , (1)

Ĥ0 = ωâ†â + ω0Ĵz, (2)

Ĥγ = γ√
N

(â† + â)(Ĵ+ + Ĵ−), (3)

where Ĥ0 is the noninteracting Hamiltonian and Ĥγ includes
the atom-field interaction. â† (â) is the bosonic creation (an-
nihilation) operator of the field mode which satisfies the
Heisenberg-Weyl algebra, and Ĵ+ (Ĵ−) is the raising (lower-
ing) collective pseudospin operator, defined by Ĵ± = Ĵx ± iĴy.
The collective pseudospin operators are defined by means of
the Pauli matrices σ̂x,y,z as Ĵx,y,z = (1/2)

∑N
k=1 σ̂ k

x,y,z, and they
satisfy the SU(2) algebra.

The squared total pseudospin operator, Ĵ
2 = Ĵ2

x + Ĵ2
y + Ĵ2

z ,
has eigenvalues j( j + 1). These values correspond to differ-
ent invariant atomic subspaces of the model. Here, we work
with the totally symmetric subspace, defined by the maximum
pseudospin value j = N /2 that includes the ground state. Al-
though the atomic sector is finite, the complete Hilbert space
of the model is infinite due to the bosonic sector. However,
wave functions can be computed to arbitrary numerical preci-
sion by appropriately truncating the bosonic sector.

The Dicke model has a rich combination of chaotic and
regular behavior displayed as a function of the Hamiltonian
parameters. In this work, we consider the resonant frequency
case ω = ω0 = 1, a coupling strength in the superradiant
phase, γ = 2γc = 1, and we use rescaled energies ε = E/ j
to the system size j = 100. For this set of Hamiltonian pa-
rameters, the classical dynamics is fully chaotic at energies
ε � −0.8 [31].

A. Classical model and phase space

The bosonic Glauber and the atomic Bloch coherent states,
represented by the canonical variables (q, p) and (Q, P), re-
spectively, are defined as

|q, p〉 = e−( j/4)(q2+p2 )e[
√

j/2(q+ip)]â† |0〉,

|Q, P〉 =
(

1 − Q2 + P2

4

) j

e
[

(Q+iP)/
√

4−Q2−P2
]

Ĵ+| j,− j〉,
(4)

with |0〉 the photon vacuum and | j,− j〉 the state with all the
atoms in the ground state. By considering the tensor product of
these coherent states |x〉 = |q, p〉 ⊗ |Q, P〉, a classical Hamil-
tonian for the Dicke model can be obtained [10,11,15,24,
31–33]. Taking the expectation value of the quantum Hamilto-
nian ĤD in these states and dividing by the size j of the atomic
sector, one gets

hcl(x) = 〈x|ĤD|x〉
j

= h0(x) + hγ (x), (5)

h0(x) = ω

2
(q2 + p2) + ω0

2
(Q2 + P2) − ω0, (6)

hγ (x) = 2γ qQ

√
1 − Q2 + P2

4
, (7)

where h0(x) represents the Hamiltonian of two harmonic os-
cillators, and hγ (x) is a nonlinear coupling between them.

The phase space M of the classical Hamiltonian hcl(x) is
four-dimensional, with canonical variables x = (q, p; Q, P).
While the bosonic variables (q, p) can take any real value, the
atomic variables (Q, P) are bounded by Q2 + P2 � 4. This
phase space can be partitioned into a family of classical energy
shells given by

M(ε) = {x ∈ M | hcl(x) = ε}, (8)

where the rescaled classical energy ε = E/ j defines an effec-
tive Planck constant h̄eff = 1/ j [34]. The finite volume of the
classical energy shells M(ε) is given by∫

M
dx δ(hcl(x) − ε) = (2π h̄eff )

2ν(ε), (9)

where ν(ε) is a semiclassical approximation to the quantum
density of states (in units of ε−1) obtained with the Gutzwiller
trace formula [35,36] and whose analytical expression [37]
can be found in Ref. [22].

We calculate the average 〈 f 〉ε of an arbitrary function
f (x) in the bounded classical energy shells of the Dicke
model M(ε) by integrating f (x) with respect to the three-
dimensional surface measure dx δ(hcl(x) − ε) and dividing
the result by the total volume of the energy shell (2π h̄eff )2ν(ε)
[see Eq. (9)] [22],

〈 f 〉ε = 〈 f (x)〉x∈M(ε)

≡ 1

(2π h̄eff )2ν(ε)

∫
M

dx δ(hcl(x) − ε) f (x). (10)

III. EFFECTIVE DIMENSION FOR CLASSICAL
ENERGY SHELLS

In a finite Hilbert space of dimension N , the average of the
squared projection of an arbitrary state |	〉 over all possible
(normalized) states |
〉, that is, 〈 |〈	|
〉|2〉|
〉, has been ex-
plicitly calculated in Ref. [26]. This average is given by

〈 |〈	|
〉|2〉|
〉 = �(N )

�(N + 1)
= 1

N
, (11)

where � is the Gamma function, and the identity �(N + 1) =
N �(N ) was used.

If, instead of averaging over the whole Hilbert space, we
consider averages over normalized states in a vector subspace
W with dimension NW < N , since |	〉 may have orthogonal
components to the vector subspace, we obtain

〈 |〈	|φ〉|2〉−1
|φ〉∈W � NW . (12)

The equality holds if and only if |	〉 belongs to the subspace
W . The inequality remains valid if we consider an additional
average, but now over an ensemble S of states |	〉,

〈〈 |〈	|φ〉|2〉|φ〉∈W 〉−1
|	〉∈S � NW . (13)

A. Dimensionality and effective dimension

An arbitrary pure state |ψ〉 of the Dicke model can be
represented in phase space employing the Husimi quasiproba-
bility distribution [2], Qψ (x) = |〈ψ |x〉|2 � 0. The average of
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the Husimi function over a classical energy shell M(ε),

〈Qψ 〉ε ≡ 〈 |〈ψ |x〉|2〉x∈M(ε), (14)

can be obtained with Eq. (10) using f (x) = Qψ (x) =
|〈ψ |x〉|2. Equation (14) is similar to the average in Eq. (12),
taking W to be the set of coherent states |x〉 with x ∈ M(ε).
However, this set is not a vector subspace, and, consequently,
there may be states in the Hilbert space that are strongly
correlated with all the members of the set. To eliminate these
correlations, we consider an ensemble S of random pure states
|ψR〉.

Because the Dicke model has an infinite spectrum, we con-
sider random states whose energy components follow a given
energy profile ρR(ε) � 0 such that

∫
dε ρR(ε) = 1. The com-

ponents of the random states will be weighted by this energy
profile, such that the resulting random states are contained
within it. The shape of the energy profile in principle could be
arbitrary. In Sec. IV we study in detail the cases in which ρR

is a rectangular and a Gaussian profile. We center ρR at a fixed
energy and use the average value over different random states
with the same energy profile to define the effective dimension
of the energy shell, Deff(ε). This is done by considering an
inequality similar to Eq. (13), as follows.

We construct random states |ψR〉 in the energy eigenbasis,

|ψR〉 =
∑

k

ck|ϕk〉, (15)

where ĤD|ϕk〉 = Ek|ϕk〉. The components ck are complex
numbers with random phases and magnitudes given by [24]

|ck|2 = rk ρR(εk )

M ν(εk )
, (16)

where rk are positive random numbers from an arbitrary distri-
bution whose first momentum is 〈r〉. As shown in Appendix A,
the results we present below are independent of the exact form
of the distribution of rk . M is a normalization constant that is
approximately given by M ≈ 〈r〉 (see Appendix A for details).
The density of states ν(ε) in the denominator ensures that the
members of the ensemble S have the chosen energy profile
ρR(ε).

Now, we consider Eq. (14) and take the inverse of its
average over the ensemble of random states |ψR〉 with energy
profile ρR,

D(ε, ρR) ≡ 〈〈QψR〉ε〉−1
ψR

. (17)

We call D(ε, ρR) the dimensionality of the ensemble of ran-
dom states over the energy shell M(ε).

Next, inspired by Eq. (13), we define the effective dimen-
sion Deff(ε) of the classical energy shell M(ε) by minimizing
the dimensionality D(ε, ρR) with respect to arbitrary energy
profiles

Deff(ε) ≡ min
ρR

[D(ε, ρR)]. (18)

It immediately follows that

D(ε, ρR) ≡ 〈〈 |〈ψR|x〉|2〉xεM(ε)〉−1
ψR

� Deff(ε), (19)

which has the same form as Eq. (13). We emphasize that the
set of coherent states |x〉 in the classical energy shell M(ε) is

not a vector subspace, but Eq. (18) allows us to measure the
number of orthonormal states available for this set [38,39].

Moreover, we can define the dimensionality of a
given eigenstate |ϕk〉, with eigenenergy εk = Ek/ j, over an
energy shell M(ε), by considering the particular energy pro-
file ρk (ε) = δ(ε − εk ). This gives the inverse of the average
of the Husimi function of eigenstate |ϕk〉 over the classical
energy shell M(ε),

D(ε, ϕk ) ≡ D(ε, ρk ) = 〈Qϕk 〉−1
ε

, (20)

where the average is calculated with Eq. (14) as

〈Qϕk 〉ε = 〈 |〈ϕκ |x〉|2〉x∈M(ε). (21)

In the following section, we provide analytical and nu-
merical evidence that shows that the minimum value of the
dimensionality D(ε, ρR) is attained for energy profiles ρR

centered at ε = ∫
dε′ρR(ε′)ε′ with an energy standard devia-

tion σR =
√∫

dε′ρR(ε′)(ε′ − ε)2 which is much smaller than
the energy standard deviation of the coherent states given by
Eq. (4). An analytical expression for this minimum is also
provided and shown to be approximately equal to the dimen-
sionality of the eigenstate εk closest to ε,

Deff(ε) ≈ D(εk ≈ ε, ϕk ) ≡ 〈Qϕk 〉−1
εk≈ε . (22)

IV. FINDING THE MINIMUM OF THE DIMENSIONALITY

In this section, we discuss the process to find the minimum
value of the dimensionality D(ε, ρR). By substituting the ran-
dom states of Eqs. (15) in (17), we obtain

D(ε, ρR) ≈
(∑

k

〈 |ck|2〉ψR〈Qϕk 〉ε
)−1

, (23)

where, as is shown in Appendix A, we have used that the
phases of the components of |ψR〉 are randomly distributed.
The dimensionality can be further simplified by performing
the ensemble average of the squared magnitude of the com-
ponents (16). This calculation, whose details are presented in
Appendix A, leads to

D(ε, ρR) ≈
(∑

k

ρR(εk )

ν(εk )
〈Qϕk 〉ε

)−1

. (24)

To find the minimum value of the dimensionality, it is neces-
sary to obtain an expression for the average of the Husimi
function of eigenstates over arbitrary energy shells 〈Qϕk 〉ε .
Such an expression can be obtained by using generic prop-
erties of the coherent states |x〉, as explained in the following.

A. Average of eigenstates over classical energy shells

We turn our attention to the average of the Husimi function
of an eigenstate with eigenenergy εk = Ek/ j over a classical
energy shell M(ε). By assuming that both the energy of the
classical shell ε and the eigenenergy εk are far enough from
the ground-state energy, it can be shown that (see Appendix B
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(a)

(b)

FIG. 1. (a) Dimensionality D(εk, ϕk ) = 〈Qϕk 〉−1
εk

(black circles) [see Eq. (20)] for all eigenstates |ϕk〉 with eigenenergies contained in the
energy interval εk ∈ [−0.6, −0.4] and analytical approximation (red solid line) given by Eq. (27). (b) Energy profiles of the Husimi function
〈Qϕk 〉ε

(colored solid curves) [see Eq. (21)] as a function of the energy ε for some eigenstates contained in the same energy interval εk ∈
[−0.6, −0.4]. The selected eigenstates are specified by the energy spectrum indices k = 7960, 8460, 8960, 9460, 9960, and their eigenenergies
are indicated by the colored solid dots, which are also shown in panel (a). The system size in both panels (a) and (b) is j = 100.

for details)

〈Qϕk 〉ε ≈ 1√
2πν(εk )

〈exp
(−(εk−ε)2

2σ 2
x

)
σx

〉
x∈M(ε)

, (25)

where σx is the energy standard deviation of the coherent state
|x〉,

σx = 1

j

√
〈x|Ĥ2

D|x〉 − 〈x|ĤD|x〉2, (26)

which can be calculated analytically in the Dicke
model [40,41] (the analytical expression is shown in
Appendix C).

As the energy of the classical shell ε moves away from
the corresponding eigenenergy εk , the value given by Eq. (25)
decays exponentially. In contrast, if we take the average of the
eigenstate Husimi function over the classical energy shell of
its eigenenergy, ε = εk , then the shell average of the eigenstate
Husimi function attains its maximum value, which is given by
Eq. (25) as

〈Qϕk 〉εk
= 1

D(εk, ϕk )
≈ 1√

2πν(εk )σ c(εk )
, (27)

where σ c(εk ) is the harmonic mean of the energy standard
deviations σx of all coherent states contained in the classical

energy shell M(εk ), that is,

σ c(εk ) ≡ 〈
σ−1

x

〉−1

x∈M(εk ), (28)

which is the inverse of the mean of the inverse elements, in
contrast to the standard mean defined as 〈σx〉x∈M(εk ).

In Fig. 1(a) the black dots mark D(εk, ϕk ) = 〈Qϕk 〉−1
εk

for
all eigenstates of the Dicke model inside the chaotic energy
interval εk ∈ [−0.6,−0.4]. The red line plots the analytical
approximation given by Eq. (27). Note that this approximation
captures the overall tendency. Figure 1(b) shows the averaged
Husimi function 〈Qϕk 〉ε as a function of the energy ε [see
Eq. (25)] of some eigenstates |ϕk〉 contained in the same
energy interval εk ∈ [−0.6,−0.4]. All the selected eigenstates
show an averaged Husimi function with a Gaussian shape. In
addition, this figure shows that indeed the maximum of 〈Qϕk 〉ε
is attained at ε ≈ εk .

As mentioned above, the coherent-state energy standard
deviations σx centered on the classical energy shell M(ε)
play a fundamental role in the building of the dimensionality
D(ε, ρR) of the ensemble of random states S . Their values
were evaluated over the classical energy shell at ε = −0.5,
which is at the center of the chaotic energy interval ε ∈
[−0.6,−0.4]. In Fig. 2(a1) we show the three-dimensional
(3D) distribution of energy standard deviations σx for all co-
herent states in the classical energy shell x ∈ M(ε = −0.5),
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FIG. 2. Panels (a1)–(a4): 3D distribution (a1) of coherent-state
energy standard deviation σx [see Eq. (26)] in the classical energy
shell at ε = −0.5, and its values along orthogonal planes Q-P (a2),
Q-p (a3), and P-p (a4). In panel (a1) the color planes represent
each orthogonal plane: red (a2), green (a3), and blue (a4). The left
color scale depicts the distribution of the energy standard deviations
from the smaller (purple) to the larger (red). Panel (b): Statistical
distribution of coherent-state energy standard deviations σx dis-
played in panel (a1). Vertical black dashed lines depict the harmonic
〈σ−1

x 〉−1
x∈M(ε) = 0.1389 and the standard 〈σx〉x∈M(ε) = 0.1563 mean

of these standard deviations, respectively (see the yellow boxes). The
system size in all panels (a1)–(a4) and (b) is j = 100.

as well as their values along three orthogonal planes Q-P
(p = 0), P-p (Q = 0), and Q-p (P = 0) in Figs. 2(a2)–2(a4),
which show more clearly the behavior of such energy standard
deviations σx within the 3D distribution. It can be seen that the
widest states are concentrated in the region with Q < 0, while
the thinnest ones are concentrated along the external ring in
Q = 0 [see Fig. 2(a3)]. In Fig. 2(b) we show the distribution
of the energy standard deviations σx for the complete set of
coherent states contained in the classical energy shell x ∈
M(ε = −0.5). This distribution concentrates around the har-
monic mean 〈σ−1

x 〉−1
x∈M(ε) = 0.1389, with a clear asymmetry:

the number of narrow states is almost linear with the standard
deviation, and almost constant for the wider states, which are
less overall. In the same figure, we plot the standard mean
〈σx〉x∈M(ε) = 0.1563. We see that these two mean values are
similar, but do not coincide exactly.

One important result in this work is the fact that the har-
monic mean 〈σ−1

x 〉−1
x∈M(ε), not the standard one 〈σx〉x∈M(ε), is

the one that best approximates the mean value of the Husimi
function for eigenstates 〈Qϕk 〉εk

, as shown in Eq. (27).

B. Analytical expression of the effective dimension

Having analyzed the classical energy shell averages of
eigenstates, we can now discuss the minimum of the di-
mensionality for random states D(ε, ρR) and determine the
effective dimension of the classical energy shell M(ε).

Given that 〈Qϕk 〉ε decays exponentially as a function of
the binomial (ε − εk )2 [see Eq. (25)], the minimum of the
dimensionality is obtained for energy profiles centered at ε.
From Eq. (23), it is clear that the dimensionality is min-
imized when the energy profile ρR is concentrated on the
classical energy shell, having an energy standard deviation

σR =
√∫

dε′ρR(ε′)(ε′ − ε)2 ∼ 0. For such profiles, only the
eigenstates with energy close to the classical energy shell
contribute. So

〈|ck|2〉ψR ∼
{�= 0 for εk ≈ ε,

0 otherwise, (29)

and it becomes evident that D(ε, ρR) is bounded from below
by 〈Qϕk 〉−1

εk
≈ √

2πν(εk )σ c(εk ) [see Eq. (27)], allowing, thus,
to determine the effective dimension of the classical energy
shell as

Deff(ε) =
√

2πν(ε)σ c(ε). (30)

This effective dimension is plotted as a solid line in Fig. 1(a).
The relatively small dispersion in the dots depicting D(εk, ϕk )
is caused by the variance of the coherent-state energy standard
deviations σx inside of the classical energy shell.

The order of magnitude of the effective dimension obtained
in Fig. 1(a) can be understood by simple arguments: From
the semiclassical analysis, each of the two degrees of freedom
causes a scaling (2π h̄eff )−1 = j in the density of states ν(ε),
which, consequently, scales proportional to j2 in agreement
with Eq. (9). Since we project the coherent states into the
classical energy shells, which have half a degree of freedom,
σx and σ c scale with j−1/2, and then the effective dimension
must scale as j2/ j1/2 = j3/2. For the value of j we use in
Fig. 1(a), j = 100, this yields an order of magnitude of 103,
which is indeed what we obtain in the figure.

Note that the density of states ν(ε) is precisely the
three-dimensional volume of the energy shell divided by the
four-dimensional volume of a Planck cell [see Eq. (9)]. Con-
sequently, Eq. (30) says that there are a total of Deff(ε) Planck
cells contained in the four-dimensional phase-space region
bounded by M(ε − �ε/2) and M(ε + �ε/2), where �ε ∼√

2πσ c(ε).

C. Random states with rectangular
and Gaussian energy profiles

To illustrate that the minimum of the dimensionality
D(ε, ρR) is correctly described by Eq. (30), we consider two
particular ensembles of random pure states: first, one with
a rectangular energy profile ρ̂r

R, and then a second with a
Gaussian energy profile ρ̂

g
R.
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The average of the components of an ensemble of states
|ψ r

R〉 with a rectangular energy profile ρr
R is given by

〈∣∣cr
k

∣∣2〉
ψ r

R
=

{ 1
2
√

3ν(εk )σr
if εk ∈ [ε − √

3σr, ε + √
3σr],

0 otherwise,
(31)

where ε is the center of the profile and σr is its energy standard
deviation. The number of eigenstates |ϕk〉 contained within
this rectangular energy window is given approximately by
2
√

3ν(ε)σr , where we have evaluated the density of states in
the center of the distribution, ν(εk = ε). It is straightforward
to show that, for this particular energy profile, Eq. (24) leads
to (see Appendix D 1 for the derivation)

D
(
ε, ρr

R

) = 2
√

3ν(ε)σr

〈
erf

(√
3

2

σr

σx

)〉−1

x∈M(ε)

, (32)

where erf(x) = 2√
π

∫ x
0 dt e−t2

is the error function. Equa-
tion (32) has the following limiting behaviors:

D
(
ε, ρr

R

) ≈ ν(ε)

{
2
√

3 σr if σr � σ c(ε),√
2π σ c(ε) if σr  σ c(ε).

(33)

Now, for states |ψg
R〉 coming from a random ensemble

with a normalized Gaussian energy profile ρ
g
R centered in the

classical energy shell at M(ε), the average amplitudes are
given by

〈∣∣cg
k

∣∣2〉
ψ

g
R

=
exp

(−(εk−ε)2

2σ 2
g

)
√

2πν(εk )σg

, (34)

where σg defines the energy standard deviation of the Gaus-
sian profile. For this case, Eq. (24) yields the following result
for the dimensionality (see Appendix D 2 for the derivation):

D
(
ε, ρ

g
R

) =
√

2πν(ε)σg

〈[
1 +

(
σx

σg

)2]− 1
2
〉−1

x∈M(ε)

, (35)

with the corresponding limiting behaviors

D
(
ε, ρ

g
R

) ≈
√

2πν(ε)

{
σg if σg � σ c(ε),
σ c(ε) if σg  σ c(ε). (36)

Equations (32) and (35) and their respective asymptotic
limits (33) and (36) show that the dimensionalities increase
with σr and σg, the energy standard deviations of each energy
profile. In general, the dimensionalities depend on the partic-
ular energy profile chosen for the ensemble. However, if the
energy standard deviation of the profile is much less than the
harmonic mean of the coherent-state energy standard devia-
tions in the classical energy shell σ c(ε), the dimensionality
becomes independent of the energy profile and is given by the
reciprocal of the average of the Husimi function of eigenstates
over their respective energy shells near the classical shell
at energy ε [see Eq. (27)]. This confirms that, indeed, the
effective dimension of the classical energy shell is given by
Eq. (30).

Figure 3 illustrates these findings by plotting the dimen-
sionality D(ε, ρR) for the two previous ensembles of random
states with rectangular and Gaussian energy profiles, ρr

R and
ρ

g
R, as a function of their respective energy standard deviations

σr and σg. In all cases, we consider energy profiles centered

FIG. 3. Analytical dimensionalities D(ε, ρr
R ) and D(ε, ρg

R) for
ensembles of random states with rectangular ρr

R (red solid thin line)
[see Eq. (32)] and Gaussian ρ

g
R (orange solid thin line) [see Eq. (35)]

energy profile, respectively. Both energy profiles are centered in the
classical energy shell at ε = −0.5, and their dimensionalities are
plotted as a function of their respective energy standard deviations
σr and σg. Dashed lines represent the asymptotic value of both
dimensionalities for large profile energy standard deviations. The
blue dashed line shows the rectangular energy profile [see Eq. (33)],
and the green dashed line shows the Gaussian energy profile [see
Eq. (36)]. The system size is j = 100.

around ε = −0.5. We can see that, for large σr and σg, the
dimensionality depends on the form of the energy profile
with D(ε, ρR) growing faster for the rectangular profile than
for the Gaussian profile. However, when σr, σg → 0, the di-
mensionalities of both profiles attain a minimal value that is
independent of the energy profile and is given by evaluating
Eq. (30) in the classical energy shell at ε = −0.5, that is,
Deff(ε = −0.5) = 4201.

V. DIMENSIONALITY AND PARTICIPATION RATIO

In this section, we discuss the dimensionality D(ε, ρR) as
defined in Eq. (24) and its relation with the so-called partici-
pation ratio

PR =
(∑

k

|ck|4
)−1

, (37)

with ck = 〈φk|ψ〉. This measure is widely employed to esti-
mate the number of states of a given orthonormal basis {|φk〉}
that conform to an arbitrary state |ψ〉.

We are interested in studying the relationship between the
dimensionality of an ensemble of random pure states |ψR〉
and the corresponding participation ratio PR defined in the
energy eigenbasis {|ϕk〉}. To this end, as in the previous sec-
tion, we build random states |ψ r

R〉 with a rectangular energy
profile ρr

R, delimited by the energy interval [εi, ε f ]. The num-
bers between ki and k f enumerate the eigenstates |ϕk〉 with
eigenenergies εi � εk � ε f . For each k in the set of indices
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K = {ki, ki + 1, ki + 2, . . . , k f }, let

cr
k =

{
zk/

√∑
l∈K |zl |2 if k ∈ K,

0 otherwise
(38)

be the coefficients of these random pure states |ψ r
R〉. These

coefficients are built sampling random numbers zk from a
distribution with mean 0. For example, we could take zk

from a real normal distribution with unitary standard deviation
[Gaussian orthogonal ensemble (GOE)], or we could take
zk from a complex normal distribution with unitary standard
deviation [Gaussian unitary ensemble (GUE)].

Using Eqs. (24) and (25), and taking Eq. (31) for the rect-
angular energy profile ρr

R(ε), where ε = (εi + ε f )/2 is taken
at the center of the energy window, the average dimensionality
is calculated as

D
(
ε, ρr

R

) =
〈〈exp

(−(εk−ε)2

2σ 2
x

)
ν(εk )

√
2πσx

〉
k∈K

〉−1

x∈M(ε)

, (39)

where 〈 · · · 〉k∈K ≡ 1
|K|

∑
k∈K · · · denotes the average over the

indices of K, and |K| ≈ 2
√

3ν(ε)σr (see Appendix D 1 for
details). From Eq. (33) we obtain the asymptotic behaviors

D
(
ε, ρr

R

) ≈
{|K| if ε f − εi � σ c(ε),√

2πν(ε)σ c(ε) if ε f − εi  σ c(ε).
(40)

On the other hand, the participation ratio for the same ensem-
ble of random states |ψ r

R〉 is given by

〈
PR

(
ψ r

R

)〉
ψ r

R
= 〈|zk|4〉ψ r

R

〈|zk|2〉2
ψ r

R

|K|. (41)

From Eqs. (40) and (41), important differences between the
dimensionality and the participation ratio can be seen. The
dimensionality D(ε, ρr

R) becomes independent of the random
numbers zk and only depends on the properties of the en-
ergy shell and the energy profile. For wide energy windows,
D(ε, ρr

R) grows as |K| does, but for narrow energy intervals
it tends to the value

√
2πν(ε)σ c(ε). In contrast, 〈PR(ψ r

R)〉
is always proportional to |K| with the proportionality factor
given by the details of the specific distribution from where
the numbers zk are sampled. If the numbers zk are sampled
from a real normal distribution (GOE), then this factor
equals 〈|zk|4〉/〈|zk|2〉2 = 1/3, and if the numbers zk are
sampled from a complex normal distribution (GUE), then
〈|zk|4〉/〈|zk|2〉2 = 1/2.

Moreover, selecting only some of the eigenstates (like
those inside some symmetry subspace of the system) and
working only with a subset of K, the participation ratio would
evidently decrease in proportion to the number of eigenstates
that were discarded. Instead, note that in Eq. (39) there is no
direct dependence on the size of K. The dependence on K in
Eq. (39) is only indirect, through an average over its indices.
One may sample only a subset of these indices, and, assuming
that it is a uniform sampling, the average would remain the
same. This means that if one replaces K with a proper sub-
set K′ ⊆ K, where the indices are uniformly distributed, the
dimensionality of the resulting random states is unchanged.

As an illustration, in Fig. 4 we show the dimensionality
for random states |ψ r

R〉 over rectangular windows of varying
standard deviation in the chaotic region of the Dicke model.

FIG. 4. Dimensionality D(ε, ρr
R) (black dots) for 20 single ran-

dom states with rectangular energy profile |ψ r
R〉 = ∑

k∈K′ cr
k |ϕk〉,

whose coefficients cr
k are obtained according to Eq. (38) [replacing

K by K′ given by Eq. (42)] with zk real-normally-distributed random
numbers (GOE). The rectangular energy windows are centered in the
classical energy shell at ε = −0.5 and increase in standard deviation
according to the horizontal axis. Analytical dimensionality D(ε, ρr

R)
(red solid thin curve) for ensembles of the same random states as
a function of the energy spacing ε f − εi = 2

√
3σr [see Eq. (32)].

Number of eigenstates (blue solid thick line) within the rectangular
energy window, which coincide with the average participation ratio
for random states multiplied by a factor of 6, |K| = 6 〈PR(ψ r

R )〉 [see
Eq. (41)]. Effective dimensions Deff(εk ) = D(εk, ϕk ) (gray dots) for
100 eigenstates |ϕk〉 around the classical energy shell at ε = −0.5.
The system size is j = 100.

We build these states taking random numbers zk from a real
standard normal distribution (GOE), and we only select eigen-
states that have positive parity, that is, we work with the
indices in

K′ = {k ∈ K|〈Ek|�̂|Ek〉 = 1}, (42)

where the parity operator is defined as �̂ = exp[iπ (â†â +
Ĵz + j1̂)]. Because of these selections, the average of partici-
pation ratio is equal to 1/6 th of the total number of eigenstates
inside the rectangular energy window |K|. A factor 1/3 comes
from the GOE sampling, and an additional factor 1/2 comes
from the fact that half of the eigenstates have positive parity,
that is, |K′| = |K|/2. It is clearly seen that, for a wide energy
window, the dimensionality is equal to |K|, but, when the
standard deviation of this window is small, it tends to the min-
imum value, which is very similar to the effective dimension
Deff(εk ), where εk ≈ ε are eigenvalues around the center of
the energy window at ε = −0.5.

Both the dimensionality D and the participation ratio PR are
measures of the number of states in a set required to describe
an arbitrary state, nevertheless they have important differences
as outlined above. All these differences ultimately stem from
the fact that the dimensionality not only probes the dimension
of the state, but also the dimension of the family of coherent
states in the classical energy shell M(ε). This property is
precisely what allows us to extract an effective dimension
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for the classical energy shell out of the dimensionality of
ensembles of random states.

VI. CONCLUSIONS

We have shown that in an unbounded phase space, we can
assign an effective dimension Deff(ε) to the classical energy
shell of coherent states satisfying 〈x|ĤD|x〉/ j = ε. We intro-
duced the dimensionality of an ensemble of random states
with a given energy profile as the inverse of the double average
of their Husimi function, D(ε, ρR) = 〈〈QψR〉ε〉−1

ψR
. The first

average is performed over the classical energy shell, and the
second over the ensemble of random states. The effective
dimension of the classical energy shell was obtained by mini-
mizing the dimensionality with respect to all possible energy
profiles. It was shown that the harmonic mean of the coherent-
state energy standard deviations in the classical energy shell
σ c(ε) introduces a lower bound in the dimensionality of ran-
dom states, and that the minimum of the dimensionality is
attained for random states having an energy profile that is
heavily peaked in a single energy.

An analytical expression for the effective dimension of
classical energy shells was obtained in the Dicke model as
Deff(ε) = √

2πν(ε)σ c(ε), where ν(ε) is the energy density
of states. It is remarkable that the relevant mean is harmonic
and not standard. These two types of means are similar but
do not exactly coincide. It was also shown that the effective
dimension of a classical shell at energy ε is very close to the
reciprocal average of the Husimi function of the eigenstates
over the eigenenergy shells close to ε. Because of the nonzero
coherent-state energy standard deviation, the effective dimen-
sion of a classical energy shell grows as j3/2, where j is the
system size.

Finally, we compared the dimensionality of random states
D with the standard quantum participation ratio PR with re-
spect to the energy eigenbasis, and several differences arose.
They stem from the fact that PR depends only on the state
|ψR〉, while D also depends on the family of coherent states
|x〉 in a classical energy shell. Moreover, the dimensionality
of a random state with a rectangular energy profile remains
unchanged if some of the participating states are removed,
provided that the standard deviation of the energy window
does not change. This indicates that D probes the dimen-
sionality of the whole system inside an energy interval, and
effectively depends only on the energy profile of the random
states. On the other hand, when the standard deviation of the
energy window is large, the dimensionality of random states
becomes equal to the number of states in the energy window
employed to build the random states, and proportional to the
participation ratio in the eigenbasis.

In finite systems, the scaling of the localization of random
states is related to the dimension of the Hilbert space. The
same is true for the Dicke model, with the dimension replaced
by the effective dimension we present here. Our method is
readily generalizable to be employed in other systems where
a Husimi function can be built, such as billiards [21], as the
effective dimension is independent of the particular Hamilto-
nian. We believe that the study of the effective dimensions
we proposed in this work could shed light on phenomena
like quantum scarring and localization in other systems, both

finite and infinite. For example, it has turned out to be partic-
ularly important for the study of Rényi occupations of pure
states [22].
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APPENDIX A: DIMENSIONALITY
OF RANDOM PURE STATES

Consider a random pure state |ψR〉 = ∑
k ck|ϕk〉. Assum-

ing that the phases of ck are uniformly distributed, we may
approximate [42] the average of the Husimi function over a
classical energy shell as

〈QψR〉ε = 〈|〈x|ψR〉|2〉x∈M(ε)

=
〈∣∣∣∣∣

∑
k

Ck (x)ck

∣∣∣∣∣
2〉

x∈M(ε)

≈
〈∑

k

|Ck (x)ck|2
〉

x∈M(ε)

=
∑

k

|ck|2
〈|Ck (x)|2〉x∈M(ε)

=
∑

k

|ck|2〈Qϕk 〉ε, (A1)

where Ck (x) = 〈x|ϕk〉. When the previous result is substituted
in Eq. (17), it leads to the expression for the dimensionality
given by Eq. (23).

To further simplify the dimensionality D(ε, ρR), we con-
sider averages over the ensemble of random states |ψR〉 with
energy profile ρR(ε). Inserting Eq. (A1) into Eq. (17) gives

D(ε, ρR) ≡ 〈〈QψR〉ε〉−1
ψR

=
(∑

k

〈|ck|2〉ψR〈Qϕk 〉ε
)−1

. (A2)

The ensemble average of the components can be calculated
as follows. From Eq. (16) we obtain

〈|ck|2〉ψR =
〈

rk

M

〉
ψR

ρR(εk )

ν(εk )
, (A3)

where M is a normalization constant given by M =∑
l rl ρR(εl ) / ν(εl ). Therefore, the ensemble average of the

ratio rk/M is 〈
rk

M

〉
ψR

≈ 〈rk〉ψR∑
l〈rl〉ψRρR(εl )/ν(εl )

≈ 1∑
l ρR(εl )/ν(εl )

, (A4)

where the average 〈rl〉ψR is actually independent of the index l
and cancels the average in the numerator. Now, approximating
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the sum by an integral
∑

l · · · → ∫
dε′ ν(ε′) · · · yields〈

rk

M

〉
ψR

≈ 1, (A5)

where we used the normalization
∫

dε ρR(ε) = 1. By substi-
tuting this result in (A3) and then in (A2), we obtain Eq. (24).

APPENDIX B: AVERAGE OF THE HUSIMI FUNCTION OF
EIGENSTATES OVER CLASSICAL ENERGY SHELLS

To compute the average 〈|Ck (x)|2〉x∈M(ε) = 〈Qϕk 〉ε , we use
the fact that most coherent states of the Dicke model have a
randomlike structure [24,41]

|Ck (x)|2 = rk (x)Gx(εk )

ν(εk )M(x)
,

where εk = Ek/ j, ν(ε) is the density of states, rk (x) is a ran-
dom number sampled from a positive distribution, and Gx(ε)
is the normalized continuous energy profile of the coherent
states. For the high-energy regime studied here, Gx are Gaus-
sian functions centered at hcl(x) = ε with energy standard
deviation σx (see Appendix C), that is [24],

Gx(εk ) =
exp

(−(εk−ε)2

2σ 2
x

)
√

2πσx
.

The number M(x) = ∑
l rl (x)Gx(εl )/ν(εl ) ensures normal-

ization. Thus,

〈Qϕk 〉ε = 〈|Ck (x)|2〉x∈M(ε)

=
〈

rk (x)Gx(εk )

ν(εk )M(x)

〉
x∈M(ε)

≈ 〈rk (x)Gx(εk )〉x∈M(ε)

ν(εk )〈M(x)〉x∈M(ε)

= 〈rk〉ε〈Gx(εk )〉x∈M(ε)

ν(εk )
∑

l 〈rl〉ε〈Gx(εl )〉x∈M(ε)/ν(εl )
.

The average 〈rl〉ε actually does not depend on l , so it cancels
〈rk〉ε . Furthermore, we may approximate the sum

∑
l · · · by

the integral
∫

dε′ ν(ε′) · · · , so due to normalization,

∑
l

〈Gx(εl )〉x∈M(ε)

ν(εl )
=

∫
dε′〈Gx(ε′)〉x∈M(ε)

=
〈∫

dε′ Gx(ε′)
〉

x∈M(ε)

= 〈1〉x∈M(ε)

= 1.

Thus, the average

〈Qϕk 〉ε = 〈|Ck (x)|2〉x∈M(ε) ≈ 〈Gx(εk )〉x∈M(ε)

ν(εk )

is independent of the distribution of rk . Finally, using the fact
that Gx is a Gaussian, we obtain Eq. (25).

APPENDIX C: ENERGY STANDARD DEVIATION
OF COHERENT STATES

The variance of the quantum Hamiltonian ĤD [see Eq. (1)]
under the tensor product of Glauber-Bloch coherent states
|x〉 = |q, p〉 ⊗ |Q, P〉 [see Eq. (4)] is given by [41]

σ 2
x = 1

j2

[〈x|Ĥ2
D|x〉 − 〈x|ĤD|x〉2

]
= 1

j2
[�1(x) + �2(x)]. (C1)

The terms �1(x) and �2(x) are given explicitly by

�1(x) = j

{
ω2

2
(q2 + p2) + ω2

0

2
(Q2 + P2)A2(Q, P)

+ 2γ 2

[
q2

γ 2
�2(x) + Q2A2(Q, P)

]

+ 2γ qQ

[
ω + ω0

(
1 − Q2 + P2

2

)]
A(Q, P)

}
,

�2(x) = γ 2

[
P2A2(Q, P) +

(
1 − Q2 + P2

2

)2]
, (C2)

with A(Q, P) =
√

1 − Q2+P2

4 .

APPENDIX D: DIMENSIONALITIES FOR ENSEMBLES
WITH RECTANGULAR AND GAUSSIAN PROFILES

1. Dimensionality for a rectangular energy profile

From Eqs. (24) and (25) for 〈Qϕk 〉ε , and considering the
rectangular energy profile ρr

R(ε) of Eq. (31), we obtain

D
(
ε, ρr

R

) =
〈∑

k∈K

exp
(−(εk−ε)2

2σ 2
x

)
2
√

3ν2(εk )σr

√
2πσx

〉−1

x∈M(ε)

=
〈

1

|K|
∑
k∈K

exp
(−(εk−ε)2

2σ 2
x

)
ν(εk )

√
2πσx

〉−1

x∈M(ε)

, (D1)

where in the second line we used |K| ≈ 2
√

3ν(ε)σr . Evaluat-
ing the density of states at the center of the rectangular profile
ν(ε), we obtain Eq. (39). On the other hand, if we approximate
the sum

∑
k∈K · · · by the integral

∫ ε f

εi
dε′ν(ε′) · · · , we obtain

the following simplified expression for the dimensionality:

D
(
ε, ρr

R

) =
〈∫ ε+√

3σr

ε−√
3σr

dε′ exp
(−(ε′−ε)2

2σ 2
x

)
2
√

6πν(ε′)σrσx

〉−1

x∈M(ε)

, (D2)

which gives Eq. (32) when the density of states is evaluated in
the center of the rectangular profile ν(ε).

It is straightforward to analyze the limiting behaviors of
Eq. (32). For σr � σ c, the error function is erf(x) ≈ 1 and
the average over the classical energy shell is also 1. In the
opposite limit, if σr  σ c, the error function is approximated
by erf(x) ≈ 2x/

√
π . These two limits lead to Eq. (33).
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2. Dimensionality for a Gaussian energy profile

A similar procedure can be applied to the Gaussian energy
profile ρ

g
R(ε) given by Eq. (34). From Eqs. (24) and (25), we

obtain

D
(
ε, ρ

g
R

) =
〈∫ +∞

−∞ dε′ exp
[

−(ε′−ε)2

2

(
σ−2

g +σ−2
x

)]
2πν(ε′ )σgσx

〉−1

x∈M(ε)

.

(D3)

By evaluating the density of states at the center of the Gaus-
sian profile ν(ε) and performing the Gaussian integral, we
obtain Eq. (35). Moreover, the limiting behaviors of Eq. (35)
can be obtained in a similar way to the rectangular case.
For σg � σ c we use the approximation (1 + x2)−1/2 ≈ 1, and
for σg  σ c we use (1 + x2)−1/2 ≈ x−1. These two limiting
behaviors lead to Eq. (36).
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