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Swarmalators on a ring with distributed couplings
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We study a simple model of identical “swarmalators,” generalizations of phase oscillators that swarm through
space. We confine the movements to a one-dimensional (1D) ring and consider distributed (nonidentical)
couplings; the combination of these two effects captures an aspect of the more realistic two-dimensional
swarmalator model. We discover several collective states which we describe analytically. These states imitate
the behavior of vinegar eels, catalytic microswimmers, and other swarmalators which move on quasi-1D rings.

DOI: 10.1103/PhysRevE.105.064208

I. INTRODUCTION

An interplay between sync [1–3] (self-organization in
time) and swarming [4,5] (self-organization in space) crops up
everywhere in nature, from biological microswimmers [6–11]
and chemical nanomotors [12–19] to magnetic domains walls
[20,21] and robotic swarms [22–24]. Yet little is known about
this dual form of self-organization from a theoretical per-
spective. Tanaka gave the first mathematical treatment of it
by deriving a model of chemotactic oscillators, oscillators
which are pushed around by chemical gradients which in
turn influence the oscillators’ phases. [25–28]. Later O’Keeffe
et al. introduced a phenomenological model of “swarmlators”
[29], short for swarming oscillators, which mimics various
real-world systems [14,22,23]. Several researchers are now
further exploring swarmalators [30–41].

The physics of the swarmalator model [29] is not yet
understood. Varying one parameter produces five collective
states (Fig. 1); the three static states [Figs. 1(a)–1(c)] have
been analyzed [29], but the two dynamical states [Figs. 1(d)
and 1(e)] remain murky—What is the nature of the flow in
the vortex-like active phase wave [Fig. 1(e)]? Does it imitate
the flow in vortices of Janus crystals and sperm [7,42]? What
determines the number of minivortices in the splintered phase
wave [Fig. 1(d)]? Do they mimic the rotating flocks seen in
active fluids [14]? The stabilities and bifurcations of all states
are also a mystery. Figure 2 illustrates the bifurcation structure
by plotting the order parameters S±ei�± := N−1 ∑

j ei(φ j−θ j )

(where φ, θ are the angular position and phase; see the Ap-
pendix) vs the phase coupling K . At an unknown K1, S+ jumps
from 0 as the async state transitions to the active phase wave.
At a later K2, S+ begins to decline as the splintered phase wave
is born. Like the old puzzles about the Kuramoto model [2,43–
46], the bifurcations of the swarmalator model “cry out for
explanation” [43,47].

This work is a single step in a longer journey to provide
such an explanation [47,48]. Our dream is to repurpose the

*Corresponding author: hhong@jbnu.ac.kr

tools from the sync world (Kuramoto’s self-consistency analy-
sis [2] or perhaps even OA theory [49])1 to derive expressions
for K1, K2, and hopefully some results on the stability of the
static async state too.

But it’s not clear how this can be done. Take finding K1, the
point at which async destabilizes. For the Kuramoto model,
this is derived by exploiting the fact that in the sync state, the
(nonidentical) oscillators split into two groups, one locked at
fixed points θ∗

i (ωi ) with density ρlocked(θ ), the other drifting
|θ̇i| > 0 with ρdrift (θ ). Skipping over details [2], the key to
the analysis is ρdrift (θ ) cancels out and that ρlocked(θ ) has
a simple form since it represents oscillators sitting at fixed
points. For the swarmalator model, however, swarmalators are
identical and, posttransition, nonstationary. This implies that
they have a common ρ(x, θ ) (since they are identical) and
that the form of ρ(x, θ ) cannot be easily guessed (since they
are nonstationary). So Kuramoto’s trick cannot be straightfor-
wardly adapted.

Blocked by these mathematical walls, we took the natural
back path of divide and conquer: we split the swarmalator
model into its radial and angular components; if the original
model in Cartesian coordinates has the form (ẋi, ẏi, θ̇i ), the
phase being θi, then the radial component of the model is
(ṙi, φ̇i ), and the angular (φ̇i, θ̇i ), where (r, φ) are polar coor-
dinates. The essence of the angular piece is especially simple
(see the Appendix):

φ̇i = ω(ri) + 1

N

N∑
j

J (ri, r j ) sin(φ j − φi ) cos(θ j − θi ), (1)

θ̇i = ν(ri ) + 1

N

N∑
j

K (ri, r j ) sin(θ j − θi ) cos(φ j − φi ). (2)

It is a pair of Kuramoto models where now the natural fre-
quencies and couplings depend on the ri, r j , and the familiar

1OA theory is the theory based on the breakthrough work by
Edward Ot and Tom Antonson [49], who discovered an invariant
manifold in density space for the Kuramoto model.
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FIG. 1. Collective states of the 2D swarmalator model (defined in the Appendix) where swarmalators are represented as colored dots
where the color refers to the swarmalators’ phases. In all panels an Euler method was used with time step dt = 0.1 for T = 1000 units for N =
1000 swarmalators. (a) Static sync (J, K, σ ) = (1, 1, 10), (b) static async (J, K, σ ) = (1, 1, 10), (c) static phase wave (J, K, σ ) = (1, 1, 10),
(d) splintered phase wave (J, K, σ ) = (1, 1, 10), and (e) active phase wave. In the three static states (a–c) swarmalators do not move in space or
phase. In the splintered phase wave, each colored chunk is a vortex: the swarmalators librate in both space and phase. In the active phase wave,
the librations are excited into rotations; the swarmalators split into counterrotating groups as indicated by the black arrows. Figure adapted
from [47].

sine terms are modified by cosines. The effect of the cosines
is to make the sync position-dependent and the swarming
phase-dependent—a lovely symmetry which captures the raw
essence of swarmalators.

This emergence of this “ring model”2 from the two-
dimensional (2D) model got us excited. It hinted that the
tools from sync studies might indeed be adapted for these
new puzzles about swarmalators. The Kuramoto model with
couplings distributed as Ki, Kj, Ki j , for example, has been
solved exactly [50–54]—could we adapt these works to the
ring model (since it has a similar form)?

This paper is the third in a series of papers which explore
this tantalizing prospect. The strategy is to study the ring
model piece by piece. First, we set the natural frequencies

2We call this a “ring” model because when the radial dynamics are
frozen, swarmalators’ spatial motion is purely rotational; they move
in rings. Of course, the radius of these rings will be different for each
swarmalator, i.e., ri �= r j , so we could call it the “annular model.”
However, the “ring” seems clearer to us and is consistent with the
model Eq. (3) and Eq. (4) we study here in which the swarmalators
do indeed run on a single ring.

FIG. 2. Order parameters of the 2D swaramalator model (see the
Appendix) S±ei�± := (N )−1

∑
j ei(φ j±θ j ), where φ, θ are the spatial

angle and phase of swarmalators. The static sync state exists for
K > 0, and the static phase wave for K = 0 (these two states are
not labeled in the figure to avoid overcrowding).

and couplings at constants (ω, ν, J, K ) [47]. Then we turned
on quenched disorder in (ωi, νi ), keeping (J, K ) constant [48].
Here we isolate Kj-distributed couplings (defined in the model
below) and keep the frequencies frozen at constants (ω, ν).
We discover several collective states, as well as generaliza-
tions of previously reported states, some of which we are able
to analyze.

Last, we mention that the ring model with distributed Kj

is worth studying in its own right, and not just as a warm up
for the 2D swarmlator model. It is a toy model for the many
natural swarmalators which move in quasi-one-dimensional
(1D) rings such a vinegar eels and sperm [55–59]. Asymmet-
ric couplings, as encoded by Kj , are common in such systems
[60], yet are rarely studied.

II. MODEL

The ring swarmalator model we study is

ẋi = ω + 1

N

N∑
j

J j sin(x j − xi ) cos(θ j − θi ), (3)

θ̇i = ν + 1

N

N∑
j

Kj sin(θ j − θi ) cos(x j − xi ), (4)

where (xi, θi ) ∈ (S1, S1) are the position and phase of the ith
swarmalator for i = 1, . . . , N and (ω, ν) and (Jj, Kj ) are the
associated natural frequencies and couplings. Notice we have
switched φi → xi to make it clear that xi denotes an angle in
space, as opposed to an internal phase like θ . We set (ω, ν) =
(0, 0) via a change of frame without loss of generality (wlog).
As for the Jj, Kj , we derive most of our results for arbitrary
distributions g(J ), h(K ), but we use a simpler “double delta”
distribution

g(J ) = δ(J − 1), (5)

h(K ) = pδ(K − Kp) + (1 − p)δ(K − Kn), (6)

where Kp > 0 and Kn < 0 and 0 � p � 1, as a working ex-
ample throughout.
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FIG. 3. Order parameters S± and V vs p for Q = 2 with Q =
−Kn/Kp. The pc and ps are given by Eq. (17) and Eq. (49),
respectively. Simulation parameters: RK4 with (dt, T, N ) =
(0.01, 1000, 1600). Data points are averaged over 20 samples. For
ps � p � pc, the buckled phase wave is realized for finite N for
which S− > 0. As N → ∞, the buckle disappears, and the static
phase wave is realized in which S− = 0. We assume S+ > S− wlog.
For p < ps and finite N , the active async state occurs with V > 0. As
N → ∞, V → 0 and the static async state is born.

III. NUMERICS

We use two order parameters to catalog our models macro-
scopic behavior:

W± = S±ei�± ≡ 1

N

N∑
j=1

ei(x j±θi ), (7)

V = 1

N

N∑
j=1

〈√
ẋ j

2 + θ̇ j
2
〉
t
. (8)

The S± “rainbow order parameters”—so-called since they
are maximal in the rainbow-like static phase wave state
[Fig. 1(c)]—measure the global space-phase order. They are

maximal S± = 1 when xi = ±θi + C for some constant C.
They are minimal S± = 0 when xi and θi are uncorrelated.
These order parameters arise naturally in the ring swarmalator
model [29] and can distinguish between most of the model’s
emergent states. They are blind, however, to the swarmalators’
motion. So we use the mean velocity V to detect if a collective
state exists in which swarmalators are moving.

We numerically integrated the governing equations using
an RK4 method and found five collective states (Supplemental
Movie 1 [61]). Figure 3 plots S(p),V (p), which demarcates
the states. Code used for simulations is available at [62]. The
states are the following:

Static sync for p > pc: (xi, θi ) = (x∗, θ∗). A “π state”
where (xi, θi ) = (x∗, θ∗) ∪ (x∗ + π, θ∗ + π ) also exists [47].
We call them both static sync. Here S± = 1 and V = 0
[Figs. 4(a) and 4(e)].

Static phase wave for p0 < p < pc: xi = θi ± C (the ±
refers to a clockwise or counterclockwise phase wave). Here
either (S+, S−) = (1, 0) or (0,1) (depending on the ±) and
V = 0. Realized as N → ∞ [Figs. 4(b) and 4(f)].

Buckled phase wave near pc: A static phase wave with
a “buckle” so S+ ≈ 1, S− = 0,V = 0. Realized for finite N
[Figs. 4(c) and 4(g)].

Noisy phase wave for p < ps: the static phase wave destabi-
lizes into noisy, unsteady phase waves with V > 0. For p near
pc, there is approximate shear flow [Fig. 5(a)] similar to the
active phase wave of the 2D model [Fig. 1(c)]. Here, however,
the space correlation between xi ≈ θi fluctuates as illustrated
by the noisy S± time series [Fig. 5(c)] where S+ > 1, S− ≈ 0.
Realized for finite N .

Async for p ≈ 0: For smaller p, the shear flow degener-
ates into erratic gaslike motion [Fig. 5(b)] with both S+, S−
noisy [Fig. 5(d)], which we call “active async.” Bands of
sync’d swarmalators spontaneously appear and disappear
(best viewed in Supplemental Movie 1 [61]). As p → 0,
S±,V → 0 gradually decline, indicating the system becomes

FIG. 4. Static collective states as scatter plots in (x, θ ) plane (top row) and plotted on a torus (bottom row) with dimensions (x, θ ). (a,
e) Static sync, (p, Kp, Kn) = (0.3, −0.5, 2); (b, f) static phase wave, (p, Kp, Kn) = (0.9, −0.5, 2); (c, g) buckled phase wave, (p, Kp, Kn) =
(0.5, 1, −1.5); (d, h) static async, (p, Kp, Kn) = (0.85, 2, −10). Simulation parameters: RK4 method with (dt, T, N ) = (0.1, 100, 500). In (c),
N = 300. In (a), the point sizes have been enlarged to make things clearer.
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FIG. 5. Unsteady collective states. Top row, scatter plots in (x, θ ) space. Bottom row, time series of order parameters. (a–c) Swarmalators
execute shear flow as indicated by the black arrows, like in the active phase wave on the 2D swarmalators model, but now S± have noisy
oscillations. Here (p, Kp, Kn) = (0.3, 1, −2) (b–d). Swarmalators execute erratic gaslike motion with S± both noisey and similar magnitude.
Bands of ordered swarmalators spontaneously appear and then disappear. Here (p, Kp, Kn) = (0.45, 5, −7) (best viewed in Supplemental
Movie 1 [61]). Simulation parameters: (dt, T, N ) = (0.25, 2000, 500).

fully incoherent. Strangely, for all finite N we probed (up to
104 swarmalators) the async state is “active” with small but
finite mean velocity V > 0. In the continuum limit N → ∞,
however, the state becomes truly static, V = 0 (we prove this
later).

IV. ANALYSIS

A. Static sync

Here swarmalators sit at fixed points: (xi, θi ) = (x∗, θ∗).
The π state, in which swarmalators split into two groups,
one at (x∗, θ∗), the other at (x∗ + π, θ∗ + π ), is dynamically
equivalent to the single-cluster state because the governing
ODEs are invariant under the “π transformation” x, θ → x +
π, x + π [48]. So we analyze the one-cluster state in which
(xi, θi ) = (x∗, θ∗) without loss of generality (wlog).

Now we derive the stability of this state for arbitrary
g(J ), h(K ). Linearizing Eqs. (3) and (4) about this fixed point
yields [

ẋi

θ̇i

]
= M

[
xi

θi

]
, (9)

where the Jacobian M for the static sync at this fixed point has
a block structure:

M = 1

N

[
A 0
0 B

]
, (10)

where

A :=

⎡
⎢⎢⎢⎣

−∑
j �=1 Jj J2 . . . JN

J1 −∑
j �=2 Jj . . . JN

...
...

...

J1 J2 . . . −∑
j �=N Jj

⎤
⎥⎥⎥⎦ (11)

and

B :=

⎡
⎢⎢⎢⎣

−∑
j �=1 Kj K2 . . . KN

K1 −∑
j �=2 Kj . . . KN

...
...

...

K1 K2 . . . −∑
j �=N Kj

⎤
⎥⎥⎥⎦.

(12)
The matrices A and B have been studied before [29]. Their
eigenvalues are λA = 0,−〈J〉 and λB = 0,−〈K〉 with mul-
tiplicities 1, N − 1 (the zero eigenvalues stem from the
rotational symmetry in the model). The eigenvalues of M are
the union of those of A and B λM = λA ∪ λB. This follows
from M’s block structure: det(M ) = det(A)det(B). Putting this
together gives

λ0 = 0 (w.m. 2), (13)

λ1 = −〈J〉 (w.m. N − 1), (14)

λ2 = −〈K〉 (w.m. N − 1), (15)

where w.m. denotes with multiplicity. Thus sync destabilizes
when 〈K〉 = 0 or 〈J〉 = 0, which, we recall, holds for general
g(J ), h(K ). For the double delta distribution working example
[Eq. (6)],

〈K〉 = pKp + (1 − p)Kn

= Kp[p(1 + Q) − Q], (16)

where Q ≡ −Kn/Kp. Setting this to zero gives the critical
fraction of positively coupled swarmlators

pc = Q

1 + Q
, (17)

which echoes a previous result [37].
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FIG. 6. (a) Black line, prediction Eq. (29); red dots, simulation parameters for (p, Kp, Kn) = (0.5, 1, −1.5). Size of dots is proportional to
the number of swarmalators N . Sim pars (dt, T ) = (0.25, 1000) for N = 5, 10, . . . 100. Any simulations for which the buckled phase wave
was not realized were discarded. We asserted S+ > S− in simulations wlog for that U+ > U− → u < 1. (b) Buckle size approaches 0 for
large N .

B. Buckled phase wave

For p < pc and finite N the buckled phase wave is born.
Here we derive the 1D manifold �(x, θ ) = 0 which defines
the state for arbitrary g(J ), h(K ) (the stability of the state is
out of scope). First, we move to (ξ, η) coordinates:

ξi = xi + θi, (18)

ηi = xi − θi. (19)

The governing equations become

ξ̇i = U+
2

sin(�+ − ξi ) + V+
2

sin(�+ − ξi )

+ U−
2

sin(�− − ηi ) − V−
2

sin(�−ηi ), (20)

η̇i = U+
2

sin(�+ − ξi ) − V+
2

sin(�+ − ξi )

+ U−
2

sin(�− − ηi ) + V−
2

sin(�− − ηi ), (21)

where

U±ei�± = 1

N

∑
j

J je
i(x j±θ j ), (22)

V±ei�± = 1

N

∑
j

Kje
i(x j±θ j ) (23)

are “glassy” order parameters [52]. Next, set Eq. (20) and (21)
to zero since swarmalators are at fixed points. Then we add
and subtract the equations to produce

0 = U+ sin ξi + U− sin ηi, (24)

0 = V+ sin(�+ − ξi) − V− sin(�− − ηi ), (25)

where we set �± = 0 wlog. Equations (24) and (25) are
nullclines, curves in (ξ, η) space, �1(ξ, η) = 0, �2(ξ, η) = 0.
Observe that the nullclines must (1) be identical and (2) de-
scribe the buckled phase wave �1 = �2 = �. Point 1 implies

U−
U+

= V−
V+

, (26)

�+ − �− = π, (27)

which we have confirmed numerically. Point 2 implies

�(ξ, η) = sin ξ + u sin η = 0, (28)

where u := U−/U+ and we have abused notation by using �

for the curve in (ξ, η) space: �(ξ, η) ⇐⇒ �(x, t ).
This is the desired parametrization of the buckled phase

wave in terms of the glassy order parameters, U±. We tested
Eq. (28) as follows. Let the buckle be in the ξ direction
wlog and define its size L := max(ξi ) − min(ξi ). The buckle
is symmetric about ξ = 0 (really about �+ = 〈ξ 〉, which we
set to 0), so (ξ, η) = (max(ξi) = L/2, π/2) lies on �. Then
Eq. (28) implies

L = 2 arcsin u. (29)

We confirmed this prediction by simulating the system for var-
ious N and numerically computing u as depicted in Fig. 6(a).

We can compute u analytically as N → ∞ using Ku-
ramoto’s self-consistency trick [2]. Figure 6(b), however,
shows the buckle disappears as N → ∞ (the static phase wave
is approached), which implies (U+,U−) = (1, 0) ⇒ u = 0;
so the calculation is in a sense moot. Nevertheless, we include
it to show how the self-consistency calculation works for a
density ρ(ξ, η) that is defined on compactly supported, non-
trivial manifold �(ξ, η) = 0 [as opposed to being defined on
a fully supported space, like the density of oscillators ρ(θ ) of
the Kuramoto model which lives on S1].

As N → ∞, the expressions for the glassy order parame-
ters become

U+ =
∫

�(ξ,η)
J cos ξρ(ξ, η, J, K )

× g(J )h(K ) dξ dη dJ dK, (30)

U− =
∫

�(ξ,η)
J cos ηρ(ξ, η, J, K )

× g(J )h(K ) dξ dη dJ dK, (31)

�(ξ, η, u) := sin ξ + u sin η = 0, (32)

where we have set �± = 0 wlog (which means the integrands
eiξ , eiη → cos ξ, cos η) and ρ(ξ, η, J, K ) is the density of
swarmalators in the Eulerian sense. Equation (32) repeats the
definition of �(ξ, η, u) for convenience and explicitly denotes
its dependence on u.

Notice in contrast to the self-consistency equations for
the regular Kuramoto order parameter [2] that the inte-
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grals above are contour integrals over �(x, θ, u). And,
crucially, �(ξ, η, u) depends on u. So Eqs. (30)–(32) are
a set of self-consistency equations for four quantities:
U+,U−, ρ(ξ, η, J, K ), �(ξ, η, u)—quite a challenge! Let’s
break them down. Recall that the contour integral of a function
f (x, y) over a curve δ(s) is

I =
∫

δ

f (x, y) ds, (33)

I =
∫ s2

s1

g(s)
√

1 + δ′(s)2 ds, (34)

where g(s) := f (x(s), y(s)) is the function evaluated along
the contour δ(s) which has extremal points (s1, s2). Now
we apply this definition to Eqs. (30) and (31). First, we
need an expression for the contour: �(ξ, η, u) ⇐⇒ γ (s) :=
arcsin u sin(s) where we have chosen s := η as the active
parameter which runs from [−π, π ]. The line measure is√

1 + γ ′(s)2 =
√

1 + u2 cos2(s)
1−u2 sin2(s)

. Then Eqs. (30) and (31) be-
come

U+ =
∫ π

−π

J cos ξ (s)

√
1 + u2 cos2(s)

1 − u2 sin2(s)
ρ̂(s, J, K ) ds dĴ dK̂,

(35)

U− =
∫ π

−π

J cos η(s)

√
1 + u2 cos2(s)

1 − u2 sin2(s)
ρ̂(s, J, K ) ds dĴ dK̂,

(36)

where cos ξ (s) = √
1 − u2 sin s2 is found from the definition

of the contour sin ξ + u sin η, ρ̂(s) := ρ(ξ (s), η(s)) is the
(unknown) density along the contour γ (s), and we have de-
fined (dĴ, dK̂ ) := (g(J )dJ, h(K )dK ) for clarity. Recall u :=
U−/U+, so Eqs. (35) and (36) are a pair of self-consistency
equations for (U−,U+, ρ̂ ). Recall also that these are valid for
arbitrary g(J ), h(K ).

In principle, the next step is to derive an expression for ρ̂

in terms of U± by solving the continuity equation. This is a
daunting task, beyond the scope of the current paper (it’s hard
to do for the regular PDEs encountered in fluid mechanics,
never mind the integro-PDE we are dealing with; we have an
integro-PDE piece because the mean-field coupling imposes
nonlocality in the velocity v). In practice, we guess an ansatz
for ρ̂.

Numerics indicate that such an ansatz is a uniform density
ρ̂(s, J, K ) = C−1 where C is a normalization constant.3 Let’s
find U−. Observe that the line measure u2 cos2(s)

1−u2 sin2(s)
in the in-

tegrand is symmetric and positive definite about 0, so when
integrated against cos(s), as in Eq. (36), we get U− = 0. This
then trivializes the calculation for U+. If U− = 0, then u → 0
(assuming U+ > 0 so denominator is not zero) and Eq. (35)

3Note that the dependence on (J, K ) drops out. There are two ways
to interpret this. First, is to assume that at every s there is a full
distribution of swarmalators with g(J ), h(K ). In other words, the
mass of ρ is spread out evenly over its arguments (s, J, K ) supported
on [−�, �] × R × R. Second, we can interpret ρ̂(s, J, K ) as the
average over many distributions of (J, K ).

reduces to U+ = 1. Thus,

U+ = 1, (37)

U− = 0. (38)

To recap, we have proved that if the density along the con-
tour �(ξ, η) is uniform ρ̂ = C, then (U−,U+) = (0, 1), which
means the contour is a straight line �(ξ, η) = ξ − �+ = 0
where we have reinserted �+ for clarity [remember that we
set �+ = 0 wlog just under Eq. (25)].4 In other words, we are
in the static phase wave, as we anticipated at the start of the
calculation.

C. Static phase

Numerics suggest that this state is unstable for all finite N .
We were, however, unable to prove this. For the finite case,
disordered Kj made finding the eigenvalues of the associated
Jacobian too difficult (for constant couplings, the eigenvalues
were findable for all finite N! [47]). For the infinite case, the
density of the state is a delta function ρ(ξ, η) = (2π )−1δ(ξ −
C) or (2π )−1δ(η − C), which is difficult to perturb around.
So, instead, we numerically computed the eigenvalues for
various N , which confirmed the state was unstable. We hope
future researchers will provide a rigorous proof.

We do, however, have a trivial result for the glassy order
parameters. Assuming the clockwise phase wave (S+, S−) =
(1, 0) and the double delta coupling distribution, we get

V+ = 〈Keiξ 〉 = 〈K〉, (39)

V+ = p(K1 − K2) + K2, (40)

which agrees with simulation. The other order parameters are
trivial: V− = U− = 0 and U+ = 1.

D. Static async

In the N → ∞ limit this state is given by ρ(ξ, η, K, J, t ) =
(4π2)−1. The density obeys the continuity equation

ρ̇ + ∇ · (vρ) = 0, (41)

where the velocity v is given by Eqs. (20) and (21) and is
interpreted in the Eulerian sense. Consider the perturbation

ρ = ρ0 + ερ1 = (4π2)−1 + ερ1(ξ, η, J, K, t ). (42)

We substitute this perturbation into the continuity equation,
expand ρ1 in a Fourier series,

ρ1(ξ, η, J+, J−, t ) = c+(J+, J−, t )e−iξ + c−(J+, J−, t )e−iη

+ c.c. + ρ
†
1 (ξ, η, J+, J−, t ), (43)

where J± = (J ± K )/2 and ρ
†
1 contains all the higher harmon-

ics, and collect the ODEs for each mode. The result is

ċ± = 1

2

∫
Ĵ+c±(Ĵ+, Ĵ−, t )h(Ĵ+)h(Ĵ−) dĴ+ dĴ−. (44)

Seeking the discrete spectrum c = eλt b(Ĵ+, Ĵ−) we eventually
find

λ = 〈J+〉
2

. (45)

4�+ is determined by the initial condition and can be 0 wlog
because of the rotational symmetry of the model.
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FIG. 7. Bifurcation diagram in (〈J〉, 〈K〉) space in the N → ∞
limit valid for arbitrary coupling distributions g(J ), h(K ).

Setting λ = 0 then yields

〈J+〉 = 0, (46)

〈J〉 + 〈K〉 = 0, (47)

〈K〉c = −〈J〉, (48)

which generalizes the finding in [47]. This is for general dis-
tributions f (J ), h(K ). For the double delta working example
this becomes

ps = 1 + Kn

Kn − Kp
. (49)

This completes our analysis. Figure 7 reports the bifurcation
diagram in (〈J〉, 〈K〉) space, which is valid as N → ∞ and
for arbitrary coupling distributions g(K ), h(K ). It is a clean
generalization of the identical coupling limit in [47] where the
couplings are replaced by their mean values J, K → 〈J〉, 〈K〉.

V. OTHER COUPLING DISTRIBUTIONS

We ran simulations for three other coupling distributions:
(1) Single Gaussian: h(K ) = N (μ, σ |K )
(2) Mixed Gaussian: h(K ) = pN (K1, σ |K ) + (1 −

p)N (K2, σ |K )
(3) Triple delta: h(K ) = p1δ(K − K1) + p2δ(K − K2) +

p3δ(K − K3)
where N (μ, σ |x) is the normal distribution for random

variable x.We found the same states in each case. Figure 8
summarizes this by plotting the order parameters, which have
the same structure as the double delta model.

VI. DISCUSSION

The ring model is intended as a stepping stone to the 2D
swarmalator model. Previous work showed constant couplings
produced 1D analogs of the static sync, static phase wave, and
static async states [47], while distributed (νi, ωi ) produced a
1D active phase wave [48]. We were hoping Kj couplings
might produce a 1D splintered phase wave (specifically, a
statistically stationary, and thus analyzable, 1D analog).

FIG. 8. Order parameters for different coupling distributions.
The same structure is observed for (a) Gaussian with σ = 1,
(b) mixture of Gaussians with (Kp, Kn, σ = 0.1) = (−2, 1, 0.35),
and (c) triple delta with (p1, p2, p3) = (p, (1 − p)/2, (1 − p)/2)
and (K1, K2, K3) = (1, 0.25, −4). Simulation parameters are
(dt, T, N ) = (0.5, 500, 300).

This wasn’t the case. For infinite N , we found the same
physics as the constant coupling model: the self-same static
states cropped up. Moreover, the critical couplings were sim-
ply promoted to averages; the sync boundary became (J >

0, K > 0) → (〈J〉 > 0, 〈K〉 > 0), the static async J+ < 0 →
〈J+〉 < 0 [recall, though, that these results hold for arbitrary
g(J ), h(K )]. Still, this negative result is useful. It tells us
that Kj is not the mechanism behind the nonstationarity in
the splintered phase wave. Our next work will investigate if
Ki-type couplings [where the Ki sits outside the sum in Eq. (3)
and (4)] will produce a 1D splintered phase wave.

Recall that for finite N , however, the Kj couplings did
produce alternative physics: a noisy phase wave and an active
async state. The shear flow in the noisy phase wave imitates
the flow in real-world swarmalators such as sperm [58] and
vinegar eels [8,9] which spontaneously form counterrotating
phases waves when confined to quasi-1D rings. The inter-
esting part (to us at least) is that the noisy behavior occurs
for identical swarmlators; the fluctuations arise from neither
heterogeneous natural frequencies nor external sources, as one
might expect. Rather, they are generated from the interactions
between the internal and external degrees of freedom (phases
θi and positions xi respectively). As for the active async state,
the transient cluster formation was not seen in the constant
coupling model and is reminiscent of the cluster dynamics in
recent experiments of synthetic microswimmers [57] (these
cluster dynamics are best viewed in Supplemental Movie 1
[61]).

Opportunities for future work include adding delayed
interactions, external forcing, or heterogeneous natural fre-
quencies. A proof for the stability of the static phase wave
(see Sec. IV C) would also be interesting.
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APPENDIX: CONNECTION OF RING MODEL TO 2D SWARMALATOR MODEL

Here we show how the ring model is contained within the 2D swarmalator model, which is given by

ẋi = vi + 1

N

N∑
j=1

[Iatt (x j − xi )F (θ j − θi ) − Irep(x j − xi )], (A1)

θ̇i = ωi + K

N

N∑
j=1

Hatt (θ j − θi )Gσ (x j − xi ). (A2)

In [29], the choices Iatt = x/|x|, Irep = x/|x|2, F (θ ) = 1 + J cos(θ ), G(x) = 1/|x|, Hatt (θ ) = sin(θ ) were made. However, choos-
ing linear spatial attraction Iatt (x) = x, inverse square spatial repulsion Irep(x) = x/|x|2, and truncated parabolic space-phase
coupling G(x) = (1 − |x|2/σ 2)Hheaviside(σ − |x|):

ẋi = 1

N

N∑
j �=i

{
x j − xi[1 + J cos(θ j − θi )] − x j − xi

|x j − xi|2
}

, (A3)

θ̇i = K

N

N∑
j �=i

sin(θ j − θi )
(

1 − |x j − xi|2
σ 2

)
Hheaviside(σ − |x j − xi|) (A4)

gives the same qualitative behavior but is nicer to work with analytically (see the Appendix in [47])
The “linear parabolic” model, so called because Iatt = x and G(x) is a parabolic, is cleaner analytically. In polar coordinates

it takes the form

ṙi = Hr (ri, φi ) − JriR0 cos(�0 − θi ) + J

2
{S̃+ cos[�+ − (φi + θi )] + S̃− cos[�− − (φi − θi )]},

φ̇i = Hφ (ri, φi ) + J

2ri
{S̃+ sin[�+ − (φi + θi )] + S̃− sin[�− − (φi − θi )]},

θ̇i = K (1 − r2
i

σ 2
)R0 sin(�0 − θi ) − K

σ 2
R1 sin(�1 − θi ) + Kri

σ 2
{S̃+ sin[�+ − (φi + θi )] − S̃− sin[�− − (φi − θi )]},

where

Hr (ri, φi ) = 1

N

∑
j

[r j cos(φ j − φi ) − ri]
(
1 − d−2

i j

)
,

(A5)

Hφ (ri, φi ) = 1

N

∑
j

r j

ri
sin(φ j − φi )

(
1 − d−2

i j

)
, (A6)

Z0 = R0ei�0 = 1

N

∑
j

eiθ j , (A7)

Ẑ0 = R̂0ei�̂0 = 1

N

∑
j∈Ni

eiθ j , (A8)

Z2 = R2ei�2 = 1

N

∑
j

r2
j e

iθ j , (A9)

Ẑ2 = R̂2ei�̂2 = 1

N

∑
j∈Ni

r2
j e

iθ j , (A10)

W̃± = S̃±ei�± = 1

N

∑
j

r je
i(φ j±θ j ), (A11)

Ŵ± = Ŝ±ei�̂± = 1

N

∑
j∈Ni

r je
i(φ j±θ j ), (A12)

where the Ẑ0, . . . order parameters are summed over all the
neighbors Ni of the ith swarmalator: those within a distance
σ . Notice that rainbow order parameters W̃ here are weighted
by the radial distance r j . Assuming σ > max(di j ), we can
set Ẑ0 = Z0, Ẑ1 = Z1,Ŵ± = W±. Then S± sin[�± − (φ ± θ )]
and other parts of the ring model start to emerge. If we assume
there is no global synchrony Z0 = Z2 = 0, which happens
generically in the frustrated parameter regime K < 0, J > 0,
and transform to ξi = φi + θi and ηi = φi − θi coordinates the
ring model is revealed:

ṙi = ν̃(ri, φi ) + J

2
[S̃+ cos(�+ − ξi )

+ S̃− cos(�− − ηi )], (A13)

ξ̇i = ω̃(ri, φi ) + [J+(ri)S̃+ sin(�+ − ξi )

+ J−(ri)S̃− sin(�− − ηi )], (A14)

η̇i = ω̃(ri, φi ) + [J−(ri)S̃+ sin(�+ − ξi )

− J+(ri)S̃− sin(�− − ηi )], (A15)

where

ν̃(ri, φi ) = Hr (ri, φi ), (A16)

ω̃(ri, φi ) = Hφ (ri, φi ), (A17)

J±(ri) = J

2ri
± Kri

σ 2
. (A18)
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In the spirit of minimalism, we suppress the φi dependence
in the ν, ω in our definition of the ring model in the main text.

Hence the reported ring model is the “essence” of the angular
piece of the 2D model, as described.
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