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Quantum reflection of dark solitons scattered by reflectionless potential barrier
and position-dependent dispersion
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We investigate theoretically and numerically quantum reflection of dark solitons propagating through an
external reflectionless potential barrier or in the presence of a position-dependent dispersion. We confirm that
quantum reflection occurs in both cases with a sharp transition between complete reflection and complete
transmission at a critical initial soliton speed. The critical speed is calculated numerically and analytically in
terms of the soliton and potential parameters. Analytical expressions for the critical speed were derived using
the exact trapped mode, time-independent, and time-dependent variational calculations. It is then shown that
resonant scattering occurs at a critical speed, where the energy of the incoming soliton is resonant with that of a
trapped mode. Reasonable agreement between analytical and numerical values for the critical speed is obtained
as long as a periodic multisoliton ejection regime is avoided.
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I. INTRODUCTION

One of the fascinating phenomena observed for bright
solitons in nonautonomous nonlinear systems is quantum re-
flection. In such a phenomenon, a soliton that approaches a
potential can be reflected even in the absence of a classical
turning point [1,2]. It portrays the wave nature of the soli-
ton. Furthermore, such nonclassical interactions are known to
exist only for the solitons approaching with lower velocities.
However, if the incident soliton velocity is above a certain
critical value, a sharp transition from complete reflection to
complete transmission takes place. Subsequent investigations
have revealed that such a feature results from the forma-
tion of a localized trapped-mode soliton at the center of the
potential. Further, Ref. [3] obtained an accurate estimate of
the critical speed by equating the energies of the incident
soliton to that of the trapped mode. The same work also
investigated the stability of the trapped modes against pertur-
bations, for single-node as well as multinode trapped modes.
The sharpness in the transition from complete reflection to
complete transmission turns out to arise from the instability
in the equilibrium position of the trapped-mode. Remarkably,
investigations of such systems demonstrated the possibility
of high-speed soliton ejection, even for stationary solitons
positioned at a distance sufficiently far from the center of the
potential. These higher ejection speeds are accompanied with
multinode trapped modes that hold larger binding energy [4].
Quantum reflection of solitons is observed in diverse external
potentials, for instance barriers [5–8], wells [1,2,9,10], steps
[11,12], and surfaces [13–15]. Such studies allowed for an un-
derstanding of the energy exchange mechanism of the soliton
during the scattering process with the potential to implement
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soliton-based diodes, all-optical logic gates, switches, and
filters using appropriate setups [16–21].

In general, quantum reflection of bright solitons through
diverse potentials has been extensively analyzed. For instance,
in optics, solitons are generated through compensating the
group-velocity dispersion (GVD) with the Kerr nonlinearity
during its evolution through an optical fiber. In view of nonlin-
ear evolution with the negative GVD (anomalous dispersion),
the fiber supports the pulse propagation in the form of a
sech pulse profile, and such stable nonlinear pulses are univer-
sally acknowledged as a bright soliton [22–24]. For positive
GVD (normal dispersion), the soliton manifests itself as a
localized dip in the intensity with a uniform continuous-wave
background. These dark solitons also possess the same shape-
and velocity-preserving propagation as that of their bright
counterparts [25–27]. Since the theoretical prediction in opti-
cal fibers by Hasegawa and Tappert [25] and the experimental
realization by Emplit et al. [28], considerable research efforts
have been made to understand the dynamics of dark solitons
in various situations under diverse nonlinear regimes. In addi-
tion, they are observed to be generated without the threshold
in the input pulse power [29]. Although dark solitons are
primarily studied in autonomous systems, their dynamics in
nonautonomous systems in particular has enabled us to un-
derstand the diverse real physical situations in which complex
forces appear [27].

Considering quantum reflection in dark solitons, Cheng
et al. demonstrated the quantum reflection in Bose-Einstein
condensates with a potential barrier. This study discussed how
the quantum reflection phenomenon is influenced by diverse
factors such as the barrier height and width, the orientation
angle of the dark soliton, and the initial displacement of the
condensate cloud. The reflection probability is found to be
sensitive to the initial orientation, and it also influences the
excitation process during the condensate and barrier interac-
tion [30]. A potential in the form of a boxlike trap was also
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considered for the investigation of dark-soliton dynamics in
a BEC at zero temperature. In such a setup, the soliton is
found to propagate through the trap without any dissipation.
However, dissipation was observed during the reflection from
a wall with the emission of sound waves, resulting in a slight
increase in the speed of the solitons. For the multiple oscil-
lations and reflections inside the trap, the energy loss and the
speed are found to increase significantly [31]. From studies
of dark soliton scattering by a two-defect potential, one can
infer that dark solitons cannot be trapped by two identical
potential barriers. Moreover, interactions of dark solitons in
such a setup are found to increase the speed of the soliton
while traversing through the first barrier, which always en-
ables us to overcome the second one. This suggested that
the only possibility to realize the optical diode based on dark
soliton scattering is through time-dependent potential barriers
[32]. The temporal reflection of an optical pulse illustrated the
possibility to control the properties of dark solitons through
another weak probe pulse [33].

The scattering of composite dark-bright solitons through a
fixed localized δ impurity has also been considered [34]. It
was shown that such interaction excited different modes that
result in the emergence of a dark-bright soliton with a dis-
tinct velocity. In addition, the study investigated the scattering
regimes of reflection and transmission, as well as inelastic
scattering behavior with complex internal mode excitations.
Recently, Hansen et al. described the propagation properties
of matter-wave solitons through localized scattering poten-
tials. They identified the regimes over which solitons can
behave as a wave or as a particle as a consequence of the
interplay between dispersion and the attractive atomic inter-
actions [35]. Although numerous investigations were reported
for dark solitons scattering in BECs, there is no significant
study involving quantum reflection of dark solitonic pulses
through scattering by potential barriers. In most situations,
dark solitons are dealt with and treated in the presence of a
bright-soliton background [34,35].

In the present study, we consider the scattering dynamics
of dark solitons propagated very far from the center of an
external potential or a region of modulated dispersion in order
to investigate the existence and characteristics of quantum
reflection. The study has three main objectives: (i) to con-
firm the existence of quantum reflection and to identify the
type of potentials (well or barrier) needed for it to occur;
(ii) to investigate the characteristics of the quantum reflection
phenomenon in terms of the main parameters of the system,
including the potential strength and initial soliton size; and
(iii) to calculate both analytically and numerically the crit-
ical soliton speed for quantum reflection. Furthermore, our
numerical investigations will show that for certain parameter
regimes, a stimulated periodic multi-dark-soliton ejection will
be triggered upon the scattering. We begin with a deriva-
tion, which considers the exact solutions for both bright and
dark solitons, that gives the necessary conditions required for
quantum reflection of dark solitons. Our study shows that the
occurrence of quantum reflection in dark solitons requires a
potential in the form of a barrier, which is in contrast with
the situation for bright solitons, where it should be a potential
well. We analyze the scattering dynamics of dark solitons with
two kinds of potential barrier settings: (i) an external potential

barrier, and (ii) a position-dependent dispersion profile in
the form of Dirac δ, square well, sech, and sech2 potential
barriers. Here, the position-dependent dispersion serves as an
effective potential for scattering.

We organize the rest of the paper as follows. In Sec. II,
we describe the scattering system. Then, we derive the exact
energy functionals of both bright and dark solitons using,
in Sec. II A, the exact solution of the nonlinear Schrödinger
equation (NLSE) and, in Sec. II B, a variational calculation. In
Sec. III, we calculate the effective potentials in the presence
of an external potential and an x-dependent dispersion. A
discussion of the necessary conditions for quantum reflection
and numerical investigations of the scattering dynamics are
performed as well in this section. In Sec. IV, we use a time-
dependent variational calculation to derive the equations of
motion. Finally, we summarize and discuss our main findings
in Sec. V.

II. ENERGY FUNCTIONAL OF THE
FUNDAMENTAL SOLITONS

In this section, we calculate the energy functional for bright
and dark solitons using the exact solutions of the NLSE. We
use also a variational calculation with an appropriate trial
function that leads to the exact energy functionals. The aim
here is to establish the notation and the theoretical framework.
One of the issues to settle at the outset is the divergence in the
energy and norm of the dark soliton due to its finite back-
ground. This divergence is removed by shifting the intensity
profile by its asymptotic value at infinity.

We recall the fundamental bright and dark soliton solutions
supported by the well-known fundamental NLSE, given by
[22–24]

i
∂

∂t
ψ (x, t ) = −g1

∂2

∂x2
ψ (x, t ) − g2|ψ (x, t )|2ψ (x, t ), (1)

where ψ (x, t ) is a complex function, and g1, g2 are arbitrary
real constants representing the strength of dispersion and
nonlinear terms, respectively. In nonlinear optics, the NLSE
describes the propagation of pulses in nonlinear media. In
such a context, the dispersion term corresponds to the group
velocity dispersion, which, depending on the sign of g1, com-
presses or spreads out the pulse, while the nonlinear term
corresponds to the Kerr effect, which describes the modula-
tion of the refractive index of the medium as a response to the
propagating light pulse intensity.

A. Exact energy calculations of the fundamental
bright and dark solitons

In attractive nonlinear media (g2 > 0) with normal disper-
sion (g1 > 0), or, alternatively, in repulsive nonlinear media
(g2 < 0) with anomalous dispersion (g1 < 0), such that for
both cases g2/g1 > 0, the NLSE, Eq. (1), supports a movable
bright soliton solution denoted by ψB(x, t ) and written as

ψB(x, t ) = n
√

g2

8g1
sech

[
g2n(x − x0 − vt )

4g1

]

× e
i

16g1
[(g2

2n2−4v2 )t+8v(x−x0 )], (2)
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with a finite intensity normalized to n,

NB =
∫ ∞

−∞
|ψB(x, t )|2dx = n,

where x0 and v are the initial position and speed of the soliton
center. The energy of the bright soliton is given by the energy
functional

EB =
∫ ∞

−∞

[
g1

∣∣∣∣ ∂

∂x
ψB(x, t )

∣∣∣∣
2

− 1

2
g2|ψB(x, t )|4

]
dx

= − g2
2n3

48g1
+ nv2

4g1
. (3)

In the contrary case in which g2/g1 < 0, a movable dark soli-
ton solution denoted by ψD(x, t ) exists and takes the following
form:

ψD(x, t ) = n
√

− g2

8g1
tanh

[
−g2n(x − x0 − vt )

4g1

]

× e− i
8g1

[(g2
2n2+2v2 )t−4v(x−x0 )], (4)

with a negative finite intensity normalized to −n,

ND =
∫ ∞

−∞
[|ψD(x, t )|2 − ρ∞]dx = −n,

where ρ∞ = limx→±∞ |ψD(x, t )|2 = −g2n2/(8g1) is the
background intensity. The shift was necessary to avoid the
divergence in the integral. The negative sign of the dark
soliton norm is interpreted as a negative “mass” of a holelike
excitation. The negative value results from measuring the
norm with respect to the finite background ρ∞. To calculate
the energy functional of a dark soliton, a similar shift in
intensity is needed in order to remove divergences. This can
be performed by expressing ψD(x, t ) in terms of intensity and
phase as

ψD(x, t ) =
√

ρ(x, t ) eiφ(x,t ). (5)

Shifting the intensity as ρ(x, t ) → ρ(x, t ) − ρ∞, the energy
of the dark soliton then reads

ED = g1

∫ ∞

−∞

[
(ρ(x, t ) − ρ∞)

(
∂

∂x
φ(x, t )

)2

+
(

∂
√

(ρ(x, t ) − ρ∞)

∂x

)2
]

dx

− 1

2
g2

∫ ∞

−∞
[ρ(x, t ) − ρ∞]2dx. (6)

Substituting for the ρ(x, t ) and φ(x, t ) that correspond to
solution Eq. (4), the energy functional takes the explicit form

ED = g2
2n3

48g1
− nv2

4g1
, (7)

which is equal to −EB.

B. Time-independent variational calculation
for fundamental bright and dark solitons

Here, we establish a variational calculation that reproduces
the exact energy of bright and dark solitons. We perform

a time-independent variational calculation using the trial
functions

ψBvar =
√

nα

2
sech[α(x − x0)] eiv(x−x0 ), (8)

ψDvar =
√

nα

2
tanh[α(x − x0)] eiv(x−x0 ). (9)

Using these trial functions, the energy expressions of both
bright and dark solitons take the form

EBvar = ng1v
2 − 1

6 n2g2α + 1
3 ng1α

2, (10)

EDvar = −ng1v
2 − 1

6 n2g2α − 1
3 ng1α

2. (11)

The above-mentioned intensity shift is applied here as well
in order to obtain the dark soliton energy. The equilibrium
value of the variational parameter is obtained by the condition
∂EBvar/Dvar/∂α = 0, which gives α = ng2/(4g1) for the bright
soliton and α = −ng2/(4g1) for the dark soliton. Substituting
back into Eqs. (10) and (11) gives the energy expressions
attained from the exact solutions Eqs. (3) and (7) with the
replacement: v → (8v)/(16g1). An important difference be-
tween the bright soliton and dark soliton energy expressions
should be noted. While the energy of the bright soliton has
a minimum at the equilibrium value of α, the dark soliton
energy has a maximum. This indicates the stability of the
bright soliton and the instability of the dark soliton against
shrinking or broadening of the soliton width.

III. NLSE WITH EXTERNAL POTENTIAL
AND POSITION-DEPENDENT DISPERSION

In the presence of an external potential, V (x), or x-
dependent dispersion, f (x), the scattering dynamics of
solitons is governed by the following NLSE:

i
∂

∂t
ψ (x, t ) = −g1 f (x)

∂2

∂x2
ψ (x, t )

− g2|ψ (x, t )|2ψ (x, t ) + V (x)ψ (x, t ), (12)

where ψ (x, t ) is the field describing the intensity of the soli-
ton. For matter-wave solitons in Bose-Einstein condensates,
it corresponds to the wave function of the condensate. For
localized dispersion modulations, the x-dependent dispersion
satisfies the boundary condition limx→±∞ f (x) = 1, which is
guaranteed with the following form:

f (x) = 1 + δ(x), (13)

where δ(x) is a localized function over a zero background.
Formally, a moving localized solution is written as

ψ (x, t ) =
√

ρ(x − x0 − vt ) eiv(x−x0 ). (14)

The energy functional corresponding to Eq. (12) reads

E =
∫ ∞

−∞

[
−g1 f (x)ψ∗(x, t )

∂2

∂x2
ψ (x, t )

− 1

2
g2|ψ (x, t )|4 + V (x)|ψ (x, t )|2

]
dx, (15)
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(a) (b)

FIG. 1. External potentials and effective external potentials as given by Eqs. (25) and (26), (a) with a bright soliton, g2 = 1, V0 = −1;
and (b) with a dark soliton, g2 = −1, V0 = 1. Solid blue and dashed red curves correspond to the external potential and effective potential,
respectively. Parameters used are g1 = 1/2, n = 2.

which takes the form

E =
∫ ∞

−∞

[
g1

∣∣∣∣ ∂

∂x
ψ (x, t )

∣∣∣∣
2

− 1

2
g2|ψ (x, t )|4

]
dx

+g1

∫ ∞

−∞

[
δ(x)

∣∣∣∣ ∂

∂x
ψ (x, t )

∣∣∣∣
2

+δ′(x)ψ∗(x, t )
∂

∂x
ψ (x, t )

]
dx

+
∫ ∞

−∞
V (x)|ψ (x, t )|2dx, (16)

where (·)′ denotes a first derivative with respect to x, and (·)∗
indicates complex conjugate. The first line in this equation is
the energy of the fundamental soliton, the second and third
lines correspond to the effective potentials resulting from the
x-dependent dispersion and external potential, respectively.
The energy is thus rewritten as

E (x0, vt ) = E0 + Udisp(x0, vt ) + Uext(x0, vt ), (17)

which upon using the moving localized solution, Eq. (14),
results in the following expressions:

E0 =
∫ ∞

−∞

[
g1v

2ρ(x − x0 − vt ) + g1

(
∂
√

ρ(x − x0 − vt )

∂x

)2

− 1

2
g2ρ

2(x − x0 − vt )

]
dx, (18)

Udisp(x0 + vt, v) = g1(v2I1 + I2 + ivI3), (19)

Uext(x0 + vt ) =
∫ ∞

−∞
V (x)ρ(x − x0 − vt )dx, (20)

with

I1(x0 + vt ) =
∫ ∞

−∞
δ(x)ρ(x − x0 − vt )dx, (21)

I2(x0+vt ) =
∫ ∞

−∞

∂
√

ρ(x − x0 − vt )

∂x

(
δ(x)

∂
√

ρ(x − x0 − vt )

∂x

+ δ′(x)
√

ρ(x − x0 − vt )
)
dx, (22)

I3(x0 + vt ) =
∫ ∞

−∞
δ′(x)ρ(x − x0 − vt )dx. (23)

An important consequence of the x-dependent dispersion
is the non-Hermiticity of the Hamiltonian indicated by the

appearance of an imaginary part in the energy functional,
ivI3(x0 + vt ). However, the effect of this non-Hermitian con-
tribution is limited to the localized region of δ(x) where the
scattering is taking place. At this region, the speed of the
soliton is typically small, which makes the effect of this term
insignificant. Therefore, it can be neglected during the whole
evolution time. From another perspective, we are interested
in calculating the effective potential for a nonmoving initial
soliton, v = 0. Therefore, neither the first term nor the non-
Hermitian term will contribute to Udisp. The effective potential
will then be a function of only x0, as follows:

Ueff(x0) ≡ E (x0) = E0 + Udisp(x0) + Uext(x0). (24)

Explicit formulas of Ueff will be obtained below by con-
sidering specific forms of V (x) and δ(x) for both bright and
dark solitons, where again the replacement ρ(x − x0 − vt ) →
ρ(x − x0 − vt ) − ρ∞ is required for the latter to avoid diver-
gence. For bright solitons, we employ the solution Eq. (8),
which gives ρ(x, t ) = (nα/2) sech2[α(x − x0)] and φ(x, t ) =
v(x − x0). For the dark soliton, Eq. (9) gives ρ(x, t ) =
(nα/2) tanh2[α(x − x0)] and φ(x, t ) = v(x − x0), where the
shifted intensity is ρ(x, t ) − nα/2 = −(nα/2) sech2[α(x −
x0)].

FIG. 2. Reflection (red circles) and transmission (blue squares)
coefficients vs the initial speed of a dark soliton scattering by a re-
flectionless potential barrier, Eq. (25). Parameters used are V0 = 0.6,
α = √

V0, g1 = 1/2, g2 = −1, x0 = −10, and n = 4.
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FIG. 3. Quantum scattering of the dark soliton [Eq. (4)] by an effective potential [Eq. (26)]. The center of the external potential is indicated
by the vertical dashed line. (a) Quantum reflection with critical speed v = vc = 0.665, (b) transmission with v = 0.67, and (c) multiejection
v = 0.8, V0 = 2. Other parameters used are the same as those in Fig. 2.

A. Effective external potential

For the scattering of dark solitons by an external potential,
we consider the reflectionless Pöschl-Teller potential provided
by

V (x) = V0 sech2(αx), (25)

where V0 and α = √|V0| are the height and inverse width of
the potential. The corresponding effective external potential
can be obtained using Eq. (20) as

Uext(x0) = ±2nV0[αx0 coth(αx0) − 1]csch2(αx0), (26)

where the positive and negative overall signs relate to the
bright and dark solitons, respectively. This ± prefactor leads
to an important conclusion about how the effective potential
Uext(x0) relates to the actual external potential V (x). For a
bright soliton, the effective potential will be a barrier (well)
if the external potential is a barrier (well), but for the dark
soliton the effective potential is a barrier (well) if V (x) is a
well (barrier). In Fig. 1, this is shown clearly where we plot
the effective potential Eq. (26) corresponding to the bright and
dark solitons together with V (x).

Quantum reflection takes place when the soliton is reflected
by a region of effective potential well. Therefore, while quan-

FIG. 4. Existence of a trapped mode at the center of the potential
before the propagation. The dotted blue curve corresponds to the
potential barrier, which behaves as an effective potential well. Param-
eters used are V0 = 0.6, α = √

V0, g1 = 1/2, g2 = −1, n = 4, v =
0.51.

tum reflection of bright solitons takes place with V (x) being
a potential well, the situation is reversed for dark solitons.
Quantum reflection of dark solitons takes place when V (x)
is a potential barrier.

In the following two subsections, we investigate further the
quantum reflection of a potential barrier both numerically and
analytically. Specifically, we will show that, similar to bright
solitons, a sharp transition between full transmission and full
reflection takes place at a critical soliton speed. The physics
of quantum reflection turns out also to be similar to that of the
bright soliton case in which a trapped mode is formed at the
potential. The critical speed for quantum reflection in terms
of the strength of the potential V0 will also be calculated using
the numerical [36] and analytical approaches.

1. Calculation of the critical speed from
the numerical solution of Eq. (12)

We solve numerically Eq. (12) in the presence of the exter-
nal potential Eq. (25), where we set δ(x) = 0 and use ψD(x, 0)
from Eq. (14) as an initial profile. We define the scattering
coefficients as

R = (1/ND)
∫ −l

−∞
[|ψD(x, t f )|2 − ρ∞] dx, (27)

T = (1/ND)
∫ ∞

l
[|ψD(x, t f )|2 − ρ∞] dx, (28)

where ND is defined by Eq. (5), R and T are the scattering
coefficients of reflection and transmission, respectively, l is a
length larger than the width of the potential, and t f is an evolu-
tion time such that the scattered soliton is sufficiently far from
the potential. Figure 2 shows a clear possibility of obtaining
quantum reflection where a sharp transmission of the coeffi-
cients from complete reflectance to complete transmittance is
achieved at v = 0.67. This is confirmed by the spatiotemporal
plots in Figs. 3(a) and 3(b), where the two different scattering
outcomes are obtained for initial soliton speeds just below and
above the critical speed. The excitation of a trapped mode is
also verified in Fig. 4, where a snapshot shows a dark soliton
at the potential center. Higher-energy trapped modes were also
found for larger potential barrier strengths. However, in such
a case, quantum reflections are found to be accompanied by a
considerable amount of radiation, or even completely replaced
by multisoliton ejections, as indicated by Fig. 3(c).
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FIG. 5. Quantum reflection of the dark soliton Eq. (4) at different speeds by the potential Eq. (26) with barrier height V0 = 0.6. The center
of the external potential is indicated by the vertical dashed line. (a) v = 0.4, (b) v = 0.666 58, and (c) v = 0.666 999 99. Other parameters
used are the same as those in Fig. 2.

In Fig. 5, we show the influence of the initial speed over
the duration of the trapped mode. The duration of the trapped
mode is increased with the initial speed of the soliton. It
reaches the maximum length at the critical speed, before the
soliton gets transmitted. Next, we consider the role of the
potential barrier height on the trapped mode formation in
Fig. 6. At a lower height of the potential barrier, we found
a shift in the scattering outcomes, where it switches from the
reflection to the transmission regime, as the required critical
speed is lower for a lower barrier height.

The dependence of the critical speed for quantum reflection
on the strength of the potential is shown by the solid blue
curve in Fig. 7. For V0 > 1.1, the scattering of dark solitons
results in the above-mentioned multisoliton ejection behavior
as illustrated in Fig. 3(c). Hence, we restricted ourselves to the
goal of investigating quantum reflection, while multisoliton
ejection will be considered for study in the near future.

2. Calculation of the critical speed with an exact
trapped mode solution

Based on our understanding of the mechanism of quantum
reflection, a trapped mode plays a crucial role in determin-
ing the sharp transition between full transmission and full
(quantum) reflection. Simply, if the energy of the incoming
soliton is larger (less) than the energy of the trapped mode,
the soliton will be fully transmitted (reflected). If the energy
of the incident soliton is equal to that of the trapped mode, the

soliton will be trapped, though such a trapped state is unstable
against small perturbations in position or width of the soliton.
Consequently, to account for the critical speed theoretically, it
is essential to determine the properties of the trapped mode,
mainly its profile and energy. Fortunately, an analytic exact
solution, which is the nodeless trapped mode, exists for the
NLSE with the reflectionless Pöschl-Teller potential. Here,
we will exploit this solution to present an analytic derivation
of the critical speed in terms of the potential strength, which
will provide an independent account for our earlier numerical
calculation with which we can compare.

In the absence of the x-dependent dispersion and
with the presence of the Pöschl-Teller potential, V (x) =
V0 sech2(

√
V0x), the NLSE Eq. (12) with g1 = 1/2, g2 < 0,

and V0 > 0 admits the exact dark soliton solution

ψtrap(x, t ) =
√

−2V0

g2
tanh(

√
V0x)e−2iV0t , (29)

which, upon substituting in the energy functional
Eq. (17) with Udisp = 0 and taking into account the
corresponding shifted intensity as ρ(x, t ) + 2V0/g2 =
(2V0/g2) sech2(

√
V0x), gives the exact trapped energy that

takes the form

Etrap = 2V 3/2
0

3g2
. (30)

FIG. 6. Scattering of the dark soliton [Eq. (4)] at the critical speed vc = 0.665 by an effective potential [Eq. (26)] with different barrier
heights. The center of the external potential is indicated by the vertical dashed line. (a) V0 = 1, (b) V0 = 0.5, and (c) V0 = 0.2. The rest of the
parameters used are the same as in Fig. 2.
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V

v c

FIG. 7. Critical soliton speed, vc, at which the dark soliton will
be reflected by the effective potential Eq. (26) in terms of its strength,
V0. The solid curve is obtained from the numerical solution of
Eq. (12), as explained in the text. The dashed curve is the analytical
result Eq. (32). The dotted curve is the result of time-dependent vari-
ational calculation Eq. (43). Parameters used are α = √

V0, g1 = 1/2,
g2 = −1, x0 = −10, n = 4.

The initial profile of the soliton is taken as the exact dark
soliton of the fundamental NLSE, namely Eq. (4), thus the
energy of the initial soliton takes the form of Eq. (7). Equating
the two energies in Eq. (7) and (30), ED = Etrap, yields the
exact critical speed for quantum reflection,

vc =
√

g2
2n2

12
− 4V 3/2

0

3ng2
. (31)

In addition to equating their energies, the norms of the initial
and trapped solitons should be equal. As given by Eq. (5),
the norm of the initial soliton is −n. The norm of the trapped
mode Eq. (29) is calculated to be n = 4

√
V0 /g2. Equating the

two norms and then substituting for n in Eq. (31), we get

vc = √
V0. (32)

This theoretical result agrees favorably with the numerical
calculation, as shown by the dashed blue curve in Fig. 7,
especially for smaller values of V0. As noted above, for larger
values of V0, radiation increases. Keeping in mind that the the-
oretical calculation of vc does not take into account radiated

FIG. 8. Numerical experiment portraying the trapped mode soli-
ton formed at the center of the potential barrier for a stationary dark
soliton positioned at x0 = −80. The center of the external potential is
indicated by the vertical dashed line. Parameters used are u0 = 0.45,
g1 = 1/2, g2 = −1, V0 = 0.1, α = √

V0.

energy, this explains the increased deviation of the theoretical
result from the numerical one.

Furthermore, it is observed that radiation is emitted during
the population of the trapped mode even for a stationary
dark soliton and irrespective of its initial position from the
potential. One such trapped mode soliton appears at the center
of the potential barrier, for an initial stationary dark soliton
positioned at x0 = −80, as displayed in Fig. 8. This trapped
mode soliton is obtained for the initial dark soliton with
an amplitude u0 =

√
−2V0

g2
= 0.45 using the parameter setting

V0 = 0.1, g1 = 0.5, and g2 = −1. Although the exact trapped
mode soliton does not account for the radiation, we note that
in real situations such interactions are featured with back-
ground radiation that appears on either side of the potential
barrier. The emergence of such radiations is due to the contin-
uous interaction between the background of the dark soliton
with the potential barrier.

B. Effective position-dependent dispersion

As an alternative method of achieving quantum reflection
with dark solitons, we consider a different approach that can
induce the same effect of an external potential. This involves
the scattering of a dark soliton by an x-dependent dispersion.
Such x-dependent dispersion can be assumed as any of the
following forms of δ(x):

δ(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

U0 δDirac(x/w),

U0 ×
{

1, |x| � w/2,

0, |x| > w/2,

U0 sech(αx),
U0 sech2(αx),

(33a)

(33b)

(33c)

(33d)

where U0 and w are the strength and width of the localized
dispersion, respectively, and α = √|U0|. The effective poten-
tials corresponding to these dispersion functions for the bright
and dark solitons are calculated using Eq. (19) as

Udisp(x0, 0)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

g1nU0wα3 sech4(αx0 )
4 [3 − cosh(2αx0)],

g1nU0α
2

6

{
tanh3

[
α
2 (w−2x0)

]+tanh3
[

α
2 (w+2x0)

]}
,

± g1nπU0α
2

8 sech4
(

αx0
2

)
,

g1nU0α
2x0 csch5(αx0 )

6

[
27 sinh(αx0) + 7 sinh(3αx0)

−45 αcosh(αx0) − 3α cosh(3αx0)
]
,

(34a)

(34b)

(34c)

(34d)

where in the third line, the + sign relates to the effective
potential for the bright soliton, and the − sign corresponds to
the dark soliton. For the other results, the effective potential is
the same for both bright and dark solitons. In Fig. 9, we plot
the effective dispersion potentials obtained above for both the
bright and dark solitons. Since the profile of the effective
dispersion corresponding to δ(x) = U0 sech(αx) has mono-
tonically decaying tails without the appearance of secondary
peaks besides the main peak, we choose to focus on this
function through our investigations below. Additionally, pulse
profiles featured with secondary peaks, other than the central
peak, result in complex scattering dynamics and eventually
lead to some further radiation during the numerical simula-
tions. A similar analogy to the case with external potential
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(a) (b)

FIG. 9. Effective dispersion potentials for different x-dependent dispersion functions δ(x), as given by Eq. (33a). Dotted dashed red line:
Eq. (34a); dotted black line: Eq. (34b); solid blue line: Eq. (34c); dashed green line: Eq. (34d). (a) With bright soliton, g2 = 1, and (b) with
dark soliton, g2 = −1. Parameters used are U0 = 1, g1 = 1/2, n = 2, w = 1.

applies here; for dark solitons, quantum scattering requires the
effective potential to be a well. Thus, quantum scattering can
be achieved with the parameter set g1 > 0, g2 < 0, U0 > 0,
while the parameter set g1 > 0, g2 < 0, U0 < 0 leads to the
classical scattering regime.

In the following, we discuss the results obtained for quan-
tum scattering parameters. We solve numerically Eq. (12)
using the function Eq. (33c). We set V (x) = 0 and launch
ψD(x, 0) using Eq. (12) as an initial soliton. We defined the
reflection and transmission coefficients by Eqs. (27) and (28),
where in this situation l indicates the length larger than the
width of the x-dependent dispersion. In Fig. 10, we plot the
scattering coefficients versus the incident soliton speed. The
figure clearly shows the possibility of obtaining quantum re-
flection, where a sharp transmission of the coefficients from
full reflectance to full transmittance is achieved. This is con-
firmed by the spatiotemporal plots in Fig. 11. The critical
speed for quantum reflection, vc, is calculated numerically by
running the initial soliton speed such that it gets trapped at the
potential. In Fig. 12, we plot the critical speed versus U0. The
dependence of vc on U0 is found to be similar to that of the
dependence of vc on V0 for the external potential barrier case.
Moreover, in Fig. 11(c), we show a multiejection behavior

FIG. 10. Reflection (red circles) and transmission (blue squares)
coefficients vs initial speed of a dark soliton scattering by an x-
dependent dispersion Eq. (33c). Parameters used are U0 = 0.4, g1 =
1/2, g2 = −1, α = √

g1U0, x0 = −10, n = −4.

for the larger values of U0, such as the one observed for the
external potential barrier.

IV. SCATTERING DYNAMICS OF DARK SOLITONS USING
TIME-DEPENDENT VARIATIONAL CALCULATIONS

In this section, we use a time-dependent variational cal-
culation to obtain an analytical account of the dynamical
evolution of the scattering soliton. The appearance of quantum
reflection above a critical speed will then be confirmed. This
will also provide analytical expressions of the critical speed
for cases of both external potential and position-dependent
dispersion.

We employ the trial function of the dark soliton in Eq.
(9) with varying the soliton center and velocity in t and the
use of the shifted intensity, namely v → v(t ), x0 → x0(t ), and
ρ(x, t ) = −(nα/2) sech2[α(x − x0(t ))].

The Lagrangian function corresponding to the NLSE,
Eq. (12), then takes the form

L =
∫ ∞

−∞
iψ∗(x, t )ψt (x, t )dx −

∫ ∞

−∞

[
g1|ψx(x, t )|2

− 1

2
g2|ψ (x, t )|4 + V (x)|ψ (x, t )|2

]
dx

=
∫ ∞

−∞
iψ∗(x, t )ψt (x, t )dx

− [E0 + Udisp(x0, v) + Uext(x0, v)], (35)

where we have hidden the t-dependence for convenience.

A. Effective external potential well

In the presence of an external potential barrier and with the
absence of the x-dependent dispersion, V (x) = V0 sech2(αx),
δ(x) = 0, the calculated Lagrangian in Eq. (35) with the trial
function of the dark soliton, Eq. (9), takes the form

L = −nvẋ0 −
{

− 1

3
g1n(α2 + 3v2) − 1

6
g2n2α

− 2nV0csch2(αx0)[αx0coth(αx0) − 1]

}
. (36)
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FIG. 11. Quantum scattering of the dark soliton Eq. (4) by an x-dependent dispersion Eq. (33c). The center of the x-dependent dispersion
is indicated be the vertical dashed line. (a) Quantum reflection with critical speed v = vc = 0.615, (b) transmission with v = 0.62, and
(c) multiejection v = 0.8, U0 = 2. Parameters used are the same as those in Fig. 10.

The corresponding Euler-Lagrange equations yield the fol-
lowing two equations of motion for the soliton center and
velocity:

ẋ0 − 2g1v = 0, (37)

− nv̇ − 6nV0αcoth(αx0)csch2(αx0)

+ 2V0α
2x0(t )csch4(αx0) [2 + cosh(2αx0)] = 0. (38)

Integrating the above equation with respect to x0 results in

−2nV0csch2(x0)[αcoth(αx0)x0 − 1] − 1
2 nv2 − c = 0, (39)

where c is the constant of integration.
For an initial position, x0(0), that is sufficiently far from

the influence of the potential V (x), the constant of integration
can be calculated as

c = −nv2
c

2
, (40)

where vc = v(0).

U

v c

FIG. 12. Critical soliton speed, vc, at which the dark soliton will
be reflected by the x-dependent dispersion Eq. (33c) in terms of its
height, U0. The solid curve is obtained from the numerical solution
of Eq. (12), as explained in the text. The dashed curve is the result of
time-dependent variational calculation Eq. (47). Parameters used are
g1 = 1/2, g2 = −1, α = √

g1U0, x0 = −10, n = 4.

Substituting the obtained constant of integration in Eq. (39)
leads to

−2nV0 csch2(x0)[α x0 coth(αx0) − 1] + 1
2 n

(
v2 − v2

c

) = 0.

(41)
At the turning point that takes place at t = tc, the velocity
of the dark soliton vanishes, v(tc) = 0, and thus vc can be
calculated from the preceding equation as

vc = −2
√

V0(
√

{x0(0) α coth[x0(0) α] − 1} csch[x0(0) α]).
(42)

The turning point position, x0(0), can be calculated from
Eq. (38) by setting the effective force to zero, namely nv̇ = 0,
which gives the solution x0(0) = 0. Direct substitution of
x0(0) = 0 in the preceding equation leads to an undefined
quantity. However, expanding it in powers of x0(0) and then
taking the limit x0(0) → 0 shows that all terms except the
zeroth-order one vanish, and the result becomes

vc = 2

√
V0

3
. (43)

This result is plotted by the dotted blue curve in Fig. 7.
While good agreement is obtained with the numerical values
for smaller barrier heights, V0, the deviation increases for
larger barrier heights. The discrepancy is primarily due to
not accounting for radiation and multiejection in the present
variational approach.

In Fig. 13, we display the time-varying position and
speed obtained from the solutions of the equations of motion
Eqs. (37) and (38), which clearly show a sharp transition from
full reflection to full transmission.

B. Effective well with position-dependent dispersion

In the presence of position-dependent dispersion given by
δ(x) = U0 sech(αx) and with V (x) = 0, the calculated La-
grangian in Eq. (35) with the trial function of the dark soliton,
Eq. (9), is reduced to

L = −nvẋ0 − g1

[
− 1

3
nα2 − π

4
nU0v

2sech2

(
1

2
αx0

)

− π

8
nU0α

2sech4

(
1

2
αx0

)
− nv2 − 1

6g1
g2n2α

]
, (44)
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FIG. 13. Dynamics of the variational parameters, speed v(t )
vs position x0(t ), corresponding to NLSE with external potential,
Eqs. (37) and (38). Sharp reflection (dashed red) occurs at the critical
speed v = vc = 1.15 and transmission (blue) occurs at v = 1.156.
Parameters used are V0 = 1, g1 = 1/2, g2 = −1, n = 4.

where, based on our earlier discussion, we have neglected the
non-Hermitian term. The Euler-Lagrange equations yield the
following two equations of motion for the soliton center and
velocity:

nẋ0 − 2g1nv − π

2
g1nvU0sech2

(
1

2
αx0

)
= 0, (45)

−nv̇ + π

4
g1n α U0sech2

(
1

2
αx0

)
tanh

(
1

2
αx0

)

×
[
v2 + α2sech2

(
1

2
αx0

)]
= 0. (46)

Following the derivation of the vc expression Eq. (43) in the
previous section, we obtain the critical speed for the present
case,

vc = 1
2α

√
πg1U0. (47)

The comparative results for vc obtained through the La-
grangian approach and those through numerical simulations
are shown in Fig. 12. Similar to the previous case, deviation
of the variational values from the numerical ones increases
with increasing U0, which, as we explained above, is due to
not accounting for radiation. The trajectory in this case turns
out to be very similar to that in Fig. 13, confirming the critical
scattering behavior.

V. CONCLUSIONS AND OUTLOOK

We have considered quantum reflection of dark solitons in
two setups: (i) in the presence of external potentials, and (ii)
in the presence of an x-dependent dispersion. At the outset,
we revisited the energy calculations and normalization of both
bright and dark solitons in order to determine the energy
functional and the condition that is necessary for quantum
reflection to occur with dark solitons. Both analytical and vari-
ational calculations have shown that for quantum reflection
of dark solitons to occur in the aforementioned setups, the
actual external potential or dispersion modulation needs to be
a barrierlike function that leads to an effective potential well
in both cases.

To investigate the scattering dynamics, we derived the
effective external potential corresponding to an external po-
tential and an x-dependent dispersion using a suitable trial
function for the dark soliton pulse. In the presence of an ex-
ternal potential, we considered the reflectionless Pöschl-Teller
potential, and for the x-dependent dispersion we used the
“sech” function, due to its corresponding effective potential
without secondary peaks. This is followed by the numerical
and analytical study of the soliton scattering.

Through our numerical investigations, we have observed
quantum reflection for dark solitons for both settings con-
sidered. The critical speed required for such a phenomenon
tends to increase with the height of the barrier. Moreover,
our study revealed a transition regime from clear quantum
reflection to a multiejection behavior for larger barrier heights.
Analytical calculation of the critical speed in the case of an
external potential was also possible using the exact trapped
mode profile of the dark soliton scattered by a reflectionless
potential barrier.

We have derived the dependence of the critical speed on
the strength of the potential or dispersion modulation using
variational calculations. The variational study has success-
fully shown the sharp transition behavior from full reflection
to full transmission at the critical speed. The critical speed was
calculated using three independent methods. The first method
uses the exact trapped mode, the second employs a variational
calculation, and the third is a numerical calculation. All three
methods show that the critical speed increases with potential
strengths. While the inclusion of radiation complicates the
calculations, we believe it is worth investigating in a future
work, as this will result in an accurate analytical formula that
predicts the threshold of quantum reflection.

The critical speed of the dark soliton in real units can
be estimated by transforming the Gross-Pitaevskii equa-
tion with the harmonic potential V (x) = 1/2 m ω2x2 into the
dimensionless NLSE with a quadratic external potential. This
transformation takes place with rescaling the position, x, and
the time, t , as x → x/a and t → t ω, where a = h̄/(m ω) is the
harmonic trap width and ω is the trap frequency in the longi-
tudinal direction. The speed is then given in terms of v = a ω.
For the case of repulsive 87Rb condensate [37], a = 109 a0

and ω = 674.20 s−1, where a0 = 0.529 × 10−10 m is the Bohr
radius. Therefore, the speed v will be determined in terms of
a ω = 3.887 × 10−6 m/s.

The above study is fully oriented to the quantum reflection,
but in general such soliton scattering may lead to many other
interesting phenomena, such as multiejection, snake trapping,
and tree-ejection, which can be achieved by controlling the
system parameters. In particular, we have noticed a region in
the parameters space where periodic ejection of dark solitons
is stimulated by the scattering. Further investigation of this
behavior will be considered in the near future.
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