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Quenching and amplification of thermoacoustic oscillations in two nonidentical Rijke tubes
interacting via time-delay and dissipative coupling
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We numerically explore the quenching and amplification of self-excited thermoacoustic oscillations in two
nonidentical Rijke tubes interacting via time-delay and dissipative coupling. On applying either type of coupling
separately, we find that the presence of nonidentical heater powers can shrink the regions of amplitude death in
both oscillators, while producing new regions of amplitude amplification in the weaker oscillator. We find that
the magnitude of amplitude amplification grows with the heater power mismatch and with the total power input.
These effects are also present when both types of coupling are applied simultaneously. This study highlights
the critical role that nonidentical thermal loads can play in determining the amplitude response of coupled
thermoacoustic systems, facilitating the design of control strategies for coupled oscillatorlike devices such as
gas turbines.
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I. INTRODUCTION

When two or more self-excited oscillators interact via
coupling, they can develop a variety of collective multiscale
behaviors, as manifested through adjustments in their phase
and amplitude dynamics [1]. If the coupling is weak, mu-
tual synchronization can occur, leading to frequency or phase
locking between identical or nonidentical oscillators [2,3]. By
contrast, if the coupling is strong, oscillation quenching can
occur, leading to amplitude death–a state in which all the
oscillators of the system stop, with their phase trajectories
converging to the same stable fixed point [4–6].

The collective behavior of a coupled oscillator system
depends not only on the coupling strength, but also on the
coupling type. Previous studies have shown that amplitude
death can be induced by various types of coupling, such as
dissipative coupling, time-delay coupling, conjugate coupling,
and nonlinear coupling [7]. Unsurprisingly, this has led to
amplitude death being detected in various systems, such as
electronic circuits [8], thermokinetic systems [9], and chemi-
cal reactions [10].

Besides the coupling parameters, the individual oscilla-
tor parameters may also influence the emergent behavior
[3], but their effect remains a topic of active research,
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particularly in the field of thermoacoustics [11]. In ther-
moacoustic systems, heat-release-rate (HRR) and pressure
fluctuations can interact in positive feedback to generate self-
excited flow oscillations via the Rayleigh mechanism [4].
At high amplitudes, such thermoacoustic oscillations can ex-
acerbate thermal and mechanical stresses [12], and induce
flame blowout and flashback [13], reducing the efficiency,
operability, and reliability of devices such as gas turbines,
domestic boilers, and rocket engines [14,15]. It is therefore
important to determine the system and coupling parameters
for which thermoacoustic oscillations become quenched or
amplified [16–19].

Previous work on passive and active control of ther-
moacoustic oscillations has focused mostly on systems
with isolated acoustic chambers (e.g., single combustors)
[14,16,20–27]. This is because such systems exhibit relatively
simple geometries and well-defined boundary conditions, fa-
cilitating simulation, experimentation, and analysis [28]. By
contrast, the thermoacoustics of coupled oscillator systems
has been studied less extensively, despite their relevance to
practical devices such as can-annular gas turbines [29–33].
Crucially, it is widely acknowledged that the collective be-
havior of a coupled thermoacoustic system cannot simply be
inferred from the individual behavior of its constitute oscilla-
tors in isolation [18,19]. This is because acoustic interactions
can occur between oscillators, producing complex collective
dynamics that can be difficult to predict within a single oscil-
lator framework based on reductionism [11,34].
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By adopting a coupled oscillator framework, several re-
searchers have been able to identify states of oscillation
quenching suitable for suppressing thermoacoustic instability
[18,19,35]. Prime among these is amplitude death, which,
as noted earlier, occurs when all the oscillators of a cou-
pled system become quenched to a common steady state [5].
Amplitude death has proved to be an effective mechanism
for disrupting the feedback loop between sound waves and
unsteady heat release. Thermoacoustic experiments within
the past decade have shown that amplitude death can be
found in both laminar systems (e.g., those powered by Bun-
sen flames [36], electrically heated meshes [37], and porous
stacks [38,39]) and turbulent systems (e.g., those powered by
lean-premixed flames [35,40,41]). Besides amplitude death,
other nonlinear phenomena have also been reported, such as
partial amplitude death, in-phase and antiphase synchroniza-
tion, and phase-flip bifurcations [37]; the latter refer to an
abrupt transition between in-phase and antiphase synchro-
nization when a coupling parameter is varied [42]. Despite
various contributions from experiments, remarkable insight
can still be gained by analyzing low-order models of cou-
pled oscillator systems. For example, modeling studies have
shown that achieving amplitude death in a purely dissipa-
tively coupled system requires the natural frequencies of
the oscillators to be sufficiently different, i.e., the detuning
must be sufficiently large [43,44]. However, achieving am-
plitude death in a purely time-delay coupled system requires
no detuning, provided that the coupling strength and delay
time are appropriate [44,45]. Importantly, if dissipative and
time-delay coupling are applied simultaneously, then the pa-
rameter region corresponding to amplitude death grows in
size [38,44].

The above review would suggest that a potential way to
suppress thermoacoustic oscillations might be to induce am-
plitude death by carefully adjusting the system parameters
(e.g., detuning) and the coupling parameters (e.g., type and
strength). However, most previous studies on coupled ther-
moacoustic systems have focused on the idealized case of
identical oscillators, i.e., oscillators with identical limit-cycle
frequencies and amplitudes before coupling is applied. Al-
though some studies—most notably that by Thomas et al.
[44]—have considered the effect of nonidentical oscillators,
the full extent of the parameter space has yet to be systemati-
cally explored. This is important because, in practical devices,
even oscillators built with identical dimensions and identical
materials will rarely exhibit identical limit-cycle oscillations.
Besides amplitude death, another situation worth examining
is when the limit-cycle amplitude of an uncoupled oscillator
becomes amplified due to coupling—a state we refer to here
as amplitude amplification. This state is just as important as
amplitude death itself because in some devices (e.g., pulse
combustors [46] and solid-state lasers [47]), it is not sufficient
to just avoid amplitude death, but also necessary to main-
tain or even amplify the self-excited oscillations. Thus, it is
important to understand how the presence of mismatches in
the initial (uncoupled) limit-cycle features of a coupled os-
cillator system can influence its quenching and amplification
behavior.

In this numerical study, we explore the effect of noniden-
tical heater powers on the quenching and amplification of

two self-excited thermoacoustic oscillators, each modeled as a
prototypical Rijke tube. We couple the two oscillators together
via dissipative coupling only, then via time-delay coupling
only, and finally via both dissipative and time-delay coupling.
We show that irrespective of the coupling type, increasing
the heater power mismatch can shrink the regions of ampli-
tude death in both oscillators, while creating new regions of
amplitude amplification in the weaker oscillator. This study
highlights the important role that nonidentical thermal loads
can play in determining the parameter space over which am-
plitude death and amplitude amplification occur in coupled
thermoacoustic systems.

This paper is organized as follows. We present the low-
order modeling framework in Sec. II and discuss the results
in Sec. III, beginning with the dissipatively coupled system
(Sec. III A), then the time-delay coupled system (Sec. III B),
and finally the dissipatively and time-delay coupled system
(Sec. III C). In Sec. IV, we conclude with the key findings of
this study and general implications for the design of coupled
oscillator systems.

II. LOW-ORDER THERMOACOUSTIC MODEL

We consider a prototypical thermoacoustic system consist-
ing of two Rijke tube oscillators interacting via time-delay and
dissipative coupling. Each Rijke tube oscillator is modeled
as a horizontal acoustic duct containing a compact cylindri-
cal heater [44,48]. This thermoacoustic model is chosen for
two reasons [49]: (i) its low dimensionality and well-defined
boundary conditions mean that its solutions can be computed
readily with standard numerical schemes, and (ii) it contains
the essential flow physics required to capture the complex
nonlinear dynamics of coupled thermoacoustic systems. For
these reasons, several previous studies have also adopted a
similar Rijke tube model [44,48,50].

Following Balasubramanian and Sujith [48], and Thomas
et al. [44], we start with the linearized forms of the momentum
and energy equations for an acoustic field with a negligible
mean temperature gradient,

ρ∗ ∂u′∗

∂t∗ + ∂ p′∗

∂x∗ = 0, (1)

∂ p′∗

∂t∗ + γ p∗ ∂u′∗

∂x∗ = (γ − 1)Q̇′∗δ(x∗ − x∗
h ), (2)

where the superscript ∗ denotes dimensional quantities. Here,
t∗, x∗, and x∗

h denote time, the position along the duct, and
the position of the heater, respectively. Moreover, p′∗, u′∗, γ ,
and ρ∗ denote the acoustic pressure, the acoustic velocity, the
specific-heat ratio, and the mean fluid density, respectively.
The heater is modeled as a set of wires producing HRR fluctu-
ations per unit area Q̇′∗ that are localized in space by the Dirac
delta function δ. The heater is positioned at x∗

h = l∗/4 (l∗ ≡
the duct length), which is ideal for producing self-excited
thermoacoustic oscillations in a Rijke tube.

The acoustic duct is open at both ends, implying that p′∗ =
0 at the system boundaries (x∗ = 0 and l∗), with the instan-
taneous pressure p∗ there being equal to the time-averaged
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pressure p∗. To parametrize the governing equations [Eqs. (1)
and (2)], we define the following dimensionless variables
(without the superscript ∗):

x ≡ x∗

l∗ , t ≡ t∗

l∗/c∗
0

, u′ ≡ u′∗

u∗
0

,

p′ ≡ p′∗

p∗ , Q̇′ ≡ Q̇′∗

p∗c∗
0

, M ≡ u∗
0

c∗
0

, (3)

where M, u0, and c0 denote the mean-flow Mach number,
the steady-state velocity, and the speed of sound, respectively.
Substituting the variables from Eq. (3) into Eqs. (1) and (2),
we obtain the following dimensionless momentum and energy
equations:

γ M
∂u′

∂t
+ ∂ p′

∂t
= 0, (4)

∂ p′

∂t
+ γ M

∂u′

∂x
+ ζ p′ = (γ − 1)Q̇′δ(x − xh), (5)

where ζ is a damping coefficient whose value will be set
later. We use a modified version of King’s law to model the
quasisteady heat transfer from the heater to the surrounding
fluid [51,52],

Q̇′(t ) = 2Lh(Th − T )

S
√

3c0 p

√
πλCvu0ρRh

×
[√∣∣∣∣1

3
+ u′

h(t − τh)

∣∣∣∣ −
√

1

3

]
, (6)

where Th, Rh, and Lh denote the temperature, radius, and
length of the heater, respectively. Furthermore, Cv , λ, and
T denote, respectively, the constant-volume specific heat,
the thermal conductivity, and the mean fluid temperature in
the acoustic duct of cross-sectional area S. When an acous-
tic perturbation arrives at the heater, a finite time passes
before a resultant heat-transfer perturbation occurs. Follow-
ing Subramanian et al. [50] and Heckl [52], we model this
thermal-inertial effect with the time lag parameter τh acting
on the acoustic velocity at the heater, u′

h(t − τh).
By inserting the HRR model [Eq. (6)] into the energy

equation [Eq. (5)], we get [44,50]

∂ p′

∂t
+ γ M

∂u′

∂x
+ ζ p′

= (γ − 1)
2Lh(Th − T )

S
√

3c0 p

√
πλCvu0ρRh

×
[√∣∣∣∣1

3
+ u′

h(t − τh)

∣∣∣∣ −
√

1

3

]
δ(x − xh). (7)

Next we use the Galerkin technique to simplify the
system of partial differential equations [PDEs, Eqs. (4)
and (7)] into a system of ordinary differential equa-
tions (ODEs). To do this, we expand the acoustic velocity
and pressure in terms of basis functions (Galerkin modes)

representing the natural acoustic duct modes with no heat
input [44,50],

u′ =
N∑

j=1

η j cos ( jπx), (8)

p′ = −
N∑

j=1

η̇ j
γ M

jπ
sin ( jπx), (9)

where η j and η̇ j denote, respectively, the time-varying expan-
sion coefficients for the acoustic velocity (u′) and the acoustic
pressure (p′). Together, Eqs. (8) and (9) constitute a complete
basis, subject to the boundary condition p′ = 0 at both ends
of the duct. In our analysis, we use the first 10 Galerkin
modes (N = 10) because it has been shown previously that
the solution does not improve significantly with the inclusion
of further modes [50].

By substituting the Galerkin expansion [Eqs. (8) and (9)]
into the PDE system [Eqs. (4) and (7)], we obtain the follow-
ing ODE system [44,48]:

dη j

dt
= η̇ j, (10)

d η̇ j

dt
+ 2ζ jω j η̇ j + ω2

jη j

= − jπK

[√∣∣∣∣1

3
+ u′

h(t − τh)

∣∣∣∣ −
√

1

3

]
sin ( jπxh), (11)

where the jth duct mode (Galerkin mode) has angular
frequency ω j = jπ . We account for frequency-dependent dis-
sipation via the damping coefficient [53,54],

ζ j = 1

2π

[
c1

ω j

ω1
+ c2

√
ω1

ω j

]
, (12)

where the parameter values (c1 = 0.1, c2 = 0.06) are chosen
based on the analysis by Thomas et al. [44]. The dimension-
less heater power is defined as

K ≡ 4(γ − 1)
Lh(Th − T )

Mγ S
√

3c0 p

√
πλCvu0ρRh, (13)

where all the parameter values are chosen based on the analy-
sis by Balasubramanian and Sujith [48].

To establish a reference condition, we first consider a single
(uncoupled) Rijke tube oscillator. We examine its temporal
evolution by numerically solving the ODE system described
above [Eqs. (10) to (13)]. Figure 1 shows the bifurcation dia-
gram, with K as the bifurcation parameter. Along the forward
path (increasing K), the root-mean-square pressure fluctuation
p′

rms increases abruptly from around zero to a high value at
a critical heater power (K = 0.62). The high-amplitude state
is self-excited and periodic in time (see the insets of Fig. 1),
indicating that the system has transitioned from a fixed point
to a limit cycle via a Hopf bifurcation, with K = 0.62 being
the Hopf point. Along the backward path (decreasing K), the
system does not immediately revert to its initial fixed-point
state, but instead remains on the limit-cycle branch until the
heater power drops below the saddle-node point (K = 0.52).
These Hopf and saddle-node points match those reported
by Thomas et al. [44], demonstrating the accuracy of our
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FIG. 1. Pressure amplitude (p′
rms) and limit-cycle frequency (ω)

as functions of the heater power (K). The presence of a hysteretic
bistable regime (gray shading) between the Hopf point (K = 0.62)
and the saddle-node point (K = 0.52) indicates that the Hopf bifur-
cation is subcritical

numerical solution. The difference between the forward and
backward paths leads to a hysteretic bistable regime (gray
shading in Fig. 1), which indicates that the Hopf bifurcation
is subcritical. In the limit-cycle regime, the system oscillates
self-excitedly at a natural frequency of around ω = 2π f ≈
3.25. As K increases, this limit-cycle frequency changes only
slightly, but the limit-cycle amplitude increases markedly,
with the pressure wave form becoming less sinusoidal owing
to the emergence of harmonics (see the insets of Fig. 1).

Next we couple two Rijke tube oscillators together, using
superscripts A and B to refer to tubes A and B, respectively.
For tube A, the modified system of ODEs from Eqs. (10) and
(11) becomes [44]

dηA
j

dt
= η̇A

j , (14)

d η̇A
j

dt
+ 2ζ jω j η̇

A
j + ω2

jη
A
j

= − jπKA

[√∣∣∣∣1

3
+ u′A

h (t − τh)

∣∣∣∣ −
√

1

3

]
sin ( jπxh)

+ κτ

[
η̇B

j (t − τ ) − η̇A
j (t )

]︸ ︷︷ ︸
Time-delay coupling

+ κd
(
η̇B

j − η̇A
j

)︸ ︷︷ ︸
Dissipative coupling

, (15)

where switching the superscripts A and B gives the governing
equations for tube B. Both the time-delay and dissipative
coupling terms—whose strengths are denoted by κτ and κd ,
respectively—act on the acoustic pressure modes (η̇ j), im-
plying that their effect is not localized to a particular duct
position [44]. The coupling delay time τ is a measure of the
time required for information to propagate from one tube to
the other. Both tubes have identical values of κτ , κd , and τ , so
the time-delay and dissipative coupling terms are symmetric.

To investigate the effect of nonidentical oscillators, we
adjust the heater powers of the two tubes (KA and KB) in-
dependently in a parameter space defined by α ≡ KA + KB =
{2, 3, 4} and β ≡ KB/KA = {1, 1.5, 2.2, 3}. Thus, α quanti-
fies the total power in the two tubes, while β quantifies the

mismatch in their heater powers. To introduce detuning, we
fix ωA at 3.25, but vary ωB such that 0.75 � ωB/ωA � 1.34.
To quantify the changes in the steady-state amplitude due
to coupling, we use the normalized oscillator amplitude, de-
fined as the ratio of the root-mean-square pressure fluctuation
with coupling to the same quantity without coupling, εA ≡
〈p′A

rms〉/p′A
rms and εB ≡ 〈p′B

rms〉/p′B
rms, where the angle brackets

〈 〉 denote the presence of coupling.

III. RESULTS AND DISCUSSION

We consider three coupling schemes, in order of increasing
complexity: dissipative coupling only (Sec. III A), time-delay
coupling only (Sec. III B), and simultaneous time-delay and
dissipative coupling (Sec. III C).

A. Dissipative coupling only

First we examine how α and β affect εA and εB when
the two tubes interact via dissipative coupling only (κd > 0,
κτ = 0). Figure 2 shows εA and εB in a parameter space
defined by κd and ωB/ωA. Before discussing the results, we
note that when uncoupled, tube A at α = 2 and β = 3 is at
a fixed point (Fig. 1: KA = 0.5) rather than a limit cycle,
implying that εA is undefined; this specific case is therefore
omitted from all the figures. In Fig. 2, four distinct types of
amplitude responses can be identified: amplitude death, εA or
εB � 0.01 (cyan); amplitude reduction, 0.01 < εA or εB < 1
(blue); neutral response, εA or εB = 1 (white); and amplitude
amplification, εA or εB > 1 (red).

For β = 1 (Fig. 2, identical oscillators), both tubes exhibit
amplitude-death regions on either side of ωB/ωA = 1. Increas-
ing β from 1 causes these regions to shrink, with this effect
being more pronounced for ωB/ωA > 1 than for ωB/ωA < 1.
Figure 3 shows time traces of the pressure fluctuation for
a sample case where amplitude death occurs in both tubes
as a result of dissipative coupling. Before the coupling is
applied (t < 200), both tubes exhibit period-1 self-excited
pressure oscillations of different limit-cycle amplitudes (β =
1.5). However, after the coupling is applied at t = 200, the
oscillations in both tubes rapidly quench to a negligible ampli-
tude, which is evidence of amplitude death. After the coupling
is removed at t = 400, tube B takes a relatively long time
to return to its initial period-1 state, while tube A remains
quenched, indicating hysteresis. In summary, we find that
introducing a mismatch in the initial limit-cycle oscillations,
by introducing a mismatch in the heater powers, can hinder
the emergence of amplitude death. Indeed, when both the
heater power ratio and the total heater power are high (β = 3,
α = 4), neither tube exhibits amplitude death for the present
test conditions.

Intriguingly, Fig. 2 also shows that when β > 1, amplitude
amplification occurs, but only in the weaker oscillator (tube
A). When β increases for a fixed α, the magnitude of ampli-
tude amplification in tube A grows, without much affecting
the magnitude of amplitude reduction in tube B, apart from a
shrinkage in the regions of amplitude death. The shape of the
amplitude-amplification region resembles that of the classic
1:1 Arnold tongue found in unidirectionally coupled systems
undergoing forced synchronization [3]. Here the strength of
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FIG. 2. Dissipative coupling only (κτ = 0): the normalized oscillator amplitude (εA ≡ 〈p′A
rms〉/p′A

rms, ε
B ≡ 〈p′B

rms〉/p′B
rms) shown in a parameter

space defined by the dissipative coupling strength (κd ) and the frequency ratio (ωB/ωA). Focus is placed on the effect of the heater power ratio
(β ≡ KB/KA) and the total heater power (α ≡ KA + KB).

the dissipative coupling (κd ) acts as an effective forcing ampli-
tude, causing the region of amplitude amplification to widen
on both sides of ωB/ωA = 1. When α increases for a fixed
β > 1, the magnitude of amplitude amplification grows in
tube A, while the regions of amplitude death shrink in both
tubes, vanishing entirely at α = 4 and β = 3 for the present
range of frequency ratios.

Our report of amplitude amplification in a system of cou-
pled thermoacoustic oscillators is important because practical
combustion devices sometimes operate with spatially nonuni-
form thermal loads or damping. Knowing the system and

FIG. 3. Time traces of the pressure fluctuation for a sample case
where amplitude death occurs in both tubes as a result of dissipative
coupling only. The system and coupling parameters are α = 2, β =
1.5, κd = 0.5, κτ = 0, and ωB/ωA = 1.2.

coupling parameters at which such oscillator mismatches can
promote thermoacoustic instability would help to avoid poten-
tially dangerous operating conditions.

B. Time-delay coupling only

Next we examine how α and β affect εA and εB when the
two tubes interact via time-delay coupling only (κd = 0, κτ >

0) with ωA = ωB. Figure 4 shows εA and εB in a parameter
space defined by κτ and τ .

For β = 1 (Fig. 4, identical oscillators), both tubes exhibit
a central region of amplitude death, with no evidence of
amplitude amplification. As α increases, the amplitude-death
region shrinks, but remains centered at τ ≈ T/2 ≈ 1 (T is
the oscillation period), which is consistent with the numerical
simulations of Thomas et al. [44] and the laboratory experi-
ments of Hyodo et al. [36].

For β > 1 (Fig. 4, nonidentical oscillators), the central
region of amplitude death seen in both tubes at β = 1 splits
into separate islands at τ ≈ T/4 ≈ 0.5 and τ ≈ 3T/4 ≈ 1.5.
As α increases, these islands remain centered at the same
values of τ , but shrink until disappearing altogether at α = 4.
As is the case with dissipative coupling (Sec. III A), we find
that amplitude amplification occurs only in the presence of
a power mismatch (β > 1) and only in the weaker oscil-
lator (tube A). Increasing β or α is found to increase the
magnitude of amplitude amplification without much affecting
the coupling delay times at which it occurs, τ ≈ T/2 ≈ 1
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FIG. 4. Time-delay coupling only (κd = 0): the normalized oscillator amplitude (εA ≡ 〈p′A
rms〉/p′A

rms, ε
B ≡ 〈p′B

rms〉/p′B
rms) shown in a parameter

space defined by the time-delay coupling strength (κτ ) and the coupling delay time (τ ) with ωA = ωB. The period of the fundamental oscillation
is T = 1.93. Focus is placed on the effect of the heater power ratio (β ≡ KB/KA) and the total heater power (α ≡ KA + KB).

and τ ≈ T ≈ 2. Figure 5 shows time traces of the pressure
fluctuation for a sample case where amplitude amplification
occurs in tube A, while amplitude reduction occurs in tube
B. Before the application of time-delay coupling (t < 200),
both tubes exhibit self-excited pressure oscillations of differ-
ent limit-cycle amplitudes (β = 2.2). Compared with the case
of Fig. 3, here the values of KA and KB are higher, which
causes the pressure wave forms in both tubes to undergo

FIG. 5. Time traces of the pressure fluctuation for a sample case
where amplitude amplification occurs in tube A, while amplitude
reduction occurs in tube B, both as a result of time-delay coupling.
The system and coupling parameters are α = 4, β = 2.2, κd = 0,
κτ = 0.3, ωA = ωB, and τ = 1.

period doubling. This results in period-2 oscillations, similar
to those observed numerically by Thomas et al. [44] and ex-
perimentally by Gopalakrishnan and Sujith [55] at high heater
powers. Following the application of coupling at t = 200, the
oscillations in tube A become amplified, while those in tube B
become attenuated. After the removal of coupling at t = 400,
both tubes return to their initial limit-cycle states, with no sign
of hysteresis.

Crucially, we note that a coupling delay time (τ ≈ 1)
that induces amplitude death in identical oscillators (β = 1)
could induce amplitude amplification in nonidentical oscil-
lators (β > 1). Thus, if time-delay coupling is used alone
to quench thermoacoustic oscillations via amplitude death,
then it is essential to account for oscillator differences. Oth-
erwise, a state of amplitude death could turn into a state
of amplitude amplification if a mismatch in the heater pow-
ers were to emerge, either via unintentional processes or by
design.

C. Simultaneous time-delay and dissipative coupling

We now examine the effect of applying both time-delay and
dissipative coupling simultaneously. Figure 6 shows εA and εB

in a three-dimensional parameter space defined by κd , κτ , and
τ . The detuning is nonzero, with frequency ratio ωB/ωA =
0.95. To aid visualization, we show two-dimensional slices at
κd = 0, 0.3, and 0.6.
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FIG. 6. Simultaneous time-delay and dissipative coupling: the normalized oscillator amplitude (εA ≡ 〈p′A
rms〉/p′A

rms, ε
B ≡ 〈p′B

rms〉/p′B
rms) shown

in a three-dimensional parameter space defined by the dissipative coupling strength (κd ), the time-delay coupling strength (κτ ), and the coupling
delay time (τ ). The frequency ratio is ωB/ωA = 0.95. Focus is placed on the effect of the heater power ratio (β ≡ KB/KA) and the total heater
power (α ≡ KA + KB)

As is the case with dissipative (Sec. III A) and time-delay
(Sec. III B) coupling, we find that in most cases, only in the
weaker oscillator (tube A) under nonidentical power condi-
tions (β > 1) can amplitude amplification occur. Increasing
κτ for a fixed κd is found to shrink the regions of amplitude
amplification, while enlarging the regions of amplitude death.
Increasing α or β is found to increase the magnitude of am-
plitude amplification in the weaker oscillator (tube A), while
shrinking the regions of amplitude death in both oscillators.
Amplitude amplification tends to occur when κd is large and
when either τ is large or κτ is small. By contrast, amplitude
death tends to occur when κτ is large.

Comparing Figs. 4 and 6, we find that introducing finite
detuning in a purely time-delay coupled system at β = 1 (see
Fig. 6, bottom two-dimensional slice at κd = 0) has an effect
similar to that of introducing a power mismatch (β > 1): a
central region of amplitude death at τ ≈ T/2 ≈ 1 (Fig. 4)
splits into multiple branches (Fig. 6), but these eventually
merge back when dissipative coupling is applied as well (κd >

0).
Figure 7 is analogous to Fig. 6, but for a lower

frequency ratio, ωB/ωA = 0.90. Comparing the two fig-
ures, we find no significant changes in the amplitude-
death regions, but marked reductions in the magnitude

FIG. 7. The same as for Fig. 6, but at a lower frequency ratio, ωB/ωA = 0.90.
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and size of the amplitude-amplification regions. Taken
together, these observations show that when both time-
delay and dissipative coupling are applied simultaneously,
even small mismatches in the initial limit-cycle frequen-
cies or amplitudes can lead to large changes in amplitude
amplification.

IV. CONCLUSIONS

In this numerical study, we have investigated the effect
of nonidentical heater powers on the quenching and ampli-
fication of two self-excited thermoacoustic oscillators, each
modeled as a prototypical Rijke tube. We coupled the two
oscillators together via dissipative coupling only, then via
time-delay coupling only, and finally via both dissipative and
time-delay coupling. By parametrizing the system in terms of
the heater power ratio (β) and the total heater power (α), we
were able to identify several key findings.

When only dissipative coupling is applied, introducing
nonidentical heater powers (β > 1) is found to produce a
central region of amplitude amplification in the weaker oscil-
lator (tube A), resembling the shape of the classic 1:1 Arnold
tongue found in unidirectionally coupled systems undergoing
forced synchronization. As β or α increases, the magnitude
of amplitude amplification grows in the weaker oscillator
(tube A), while the regions of amplitude death shrink in both
oscillators.

When only time-delay coupling is applied, increasing β

or α is found to shrink the amplitude-death regions in both
oscillators. Switching from identical oscillators (β = 1) to
nonidentical oscillators (β > 1) causes a central amplitude-
death region to split into multiple islands at τ = T/4 and
3T/4. Meanwhile, amplitude-amplification regions emerge at
τ = T/2 and T and grow in magnitude as β increases. How-
ever, the range of τ over which amplitude amplification occurs
remains largely constant as β and α are varied for nonidentical
oscillators.

When both time-delay and dissipative coupling are ap-
plied simultaneously, increasing β or α is found to shrink
the amplitude-death regions in both oscillators, while increas-
ing the magnitude of amplitude amplification in the weaker
oscillator (tube A). Detuning is found to have only a minor in-
fluence on the amplitude-death regions, but a major influence
on both the size and magnitude of the amplitude-amplification
regions.

Collectively, these findings show that the presence of non-
identical thermal loads in a coupled thermoacoustic system
can have profound and unexpected effects on the overall am-
plitude response. In particular, we have shown that although
increasing β can generally shrink the regions of amplitude
death, it can also induce amplitude amplification, particularly
at high α. In some coupled thermoacoustic systems optimized
for nominally stable operation (e.g., can-annular gas turbines),
the occurrence of amplitude amplification may lead to flow
oscillations strong enough to accelerate cyclic fatigue and
degrade system efficiency and reliability. Knowing the sys-
tem and coupling parameters at which amplitude death and
amplitude amplification occur can aid in the design of these
and other coupled oscillator systems.
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