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Delocalized nonlinear vibrational modes (DNVMs) supported in crystal lattices are exact solutions to the
equations of motion of particles that are determined by the symmetry of the lattices. DNVMs exist for any
vibration amplitudes and for any interparticle potentials. It is important to know how the properties of DNVMs
depend on the parameters of interparticle potentials. In this work, we analyze the effect of the Morse potential
stiffness on the properties of one-component DNVMs in a face-centered cubic (fcc) lattice. In particular, the
frequencies, kinetic and potential energy, mechanical stress, and elastic constants of DNVMs in a large range
of vibration amplitudes are considered. Frequency-amplitude dependency obtained for the Morse crystal is
compared with that obtained earlier for copper by using the potentials of the many-body embedded atom method.
The properties of DNVMs are mainly dictated by their symmetry and are less influenced by the interparticle
potentials. It is revealed that at low and high stiffness of interparticle bonds, different sets of DNVMs have
frequencies above the phonon band. This is important to predict the possible types of discrete breathers supported
by the fcc lattice. The results obtained in the work enrich the understanding of the influence of interparticle
potentials on the properties of the studied family of exact dynamic solutions.

DOI: 10.1103/PhysRevE.105.064204

I. INTRODUCTION

Large-amplitude spatially localized vibrational modes in
defect-free nonlinear lattices, known as discrete breathers
(DBs) or intrinsic localized modes, have attracted much
research attention [1–3] since their discovery [4–6]. The ex-
istence of DBs in magnetic crystals has recently been proven
[7]. However, there are fewer studies on the delocalized non-
linear vibrational modes (DNVMs), which were originally
called bushes of nonlinear normal modes (BNNMs) [8–10].
Such modes are derived using group-theoretical methods that
take into account only the symmetry of the lattice, and there-
fore they exist as exact solutions for any amplitudes and any
laws of interparticle interaction.

BNNMs can be constructed for molecules by using their
point symmetry [11] and for crystals by using space symmetry
[12–15]. In crystals, DNVMs are spatially periodic short-
wavelength modes that do not excite other vibrational modes
even at high amplitudes.

DNVMs with n degrees of freedom are described by
n coupled equations of motion and therefore called the

*Corresponding author; kzhou@ntu.edu.sg

n-component DNVMs or, in the original works, the n-
dimensional BNNMs [8–10].

By now, DNVMs have been studied in various materials,
for example, in nonlinear chains [12,16–19], carbyne [13],
graphene [15,20–23], diamond [14], and face-centered cu-
bic (fcc) and body-centered cubic (bcc) metals [17,24–28].
DNVMs with frequencies outside the phonon band of the
lattice can be used for obtaining new types of DBs by su-
perimposing a localizing function [20,25,29–32]. It has been
revealed that DNVMs affect the elastic constants of nonlinear
lattices [21,33], and the modulational instability of DNVMs
with frequencies outside the phonon band results in the for-
mation of chaotic DBs [29,34–43]. Recently, it has been
demonstrated that DNVMs can be used to assess the accuracy
of interatomic potentials [28].

Undoubtedly, such an interesting dynamic subject as
DNVMs deserves careful study of various lattices. The ex-
istence of DNVMs as exact solutions is guaranteed by the
lattice symmetry and, as mentioned above, does not depend
on interparticle potentials. On the other hand, the DNVM
frequency, energy, and their effect on lattice properties do
depend on the potentials.

In this work, we analyze the effect of the stiffness of
interparticle bonds on the DNVMs in an fcc lattice [28].
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FIG. 1. Morse potential Eq. (1) for α = 4 (the solid red line) and
α = 7 (the dashed blue line). The binding energy D = 1 and the
equilibrium interparticle distance ξ = 1.

The classical Morse potential [44,45] is used, which has one
essential parameter: the bond stiffness.

Simulation details are described in Sec. II, including the
initial conditions used to excite the one-component DNVMs
of the fcc lattice, which were reported in Ref. [28]. Numerical
results are presented in Sec. III. In particular, the frequency as
the function of amplitude for all studied DNVMs is reported in
Sec. III B, the energy of the DNVMs is discussed in Sec. III C,
and stress components induced in the lattice by the DNVMs
are summarized in Sec. III D. Section IV concludes the work
and provides directions for future research.

II. SIMULATION METHOD

In this section, the fcc Morse crystal and its macroscopic
characteristics are described, followed by one-component
DNVMs as described in Ref. [28].

A. Morse crystal and its macroscopic parameters

The properties of DNVMs are analyzed with the use of
the molecular dynamics method based on pairwise Morse
interparticle potential [44,45]

φ(r) = D[(1 − e−α(r−ξ ) )2 − 1], (1)

where φ is the potential energy of the interaction between
two particles, r is the distance between the particles, D is
the binding energy, ξ is the equilibrium distance between the
particles, and α determines the bond stiffness. Dimensionless
variables will be used in this study. For the particle mass, we
set m = 1 using the appropriate unit of time. By choosing the
suitable units for energy and distance, one can set D = 1 and
ξ = 1. The effect of the remaining parameter on the prop-
erties of DNVMs will be analyzed further in detail. We will
consider two values α = 4 and α = 7. The potential functions
in Eq. (1) for these values are compared in Fig. 1. It can be
seen that as α increases, the curvature of the potential near the
minimum increases, and the potential becomes a short-range
one. The cut-off radius Rc = 10 is used for both values of α.
The equilibrium lattice parameter a = 1.27478 for α = 4 and

FIG. 2. Structure of the fcc lattice with the lattice parameter a.
Two cubic lattice cells are shown, while the calculations use a block
of 2 × 2 × 2 cubic cells with four particles each, for a total of 32
particles.

a = 1.40208 for α = 7. As α increases, a tends to
√

2, and the
interatomic distance ρ = a/

√
2 approaches 1.

The expansion of the Morse potential Eq. (1) in a Taylor
series at r = ξ reads

φ(r) = D

[
− 1 + α2(r − ξ )2 − α3(r − ξ )3

+ 7

6
α4(r − ξ )4 − · · ·

]
. (2)

This shows that the coefficient in front of the harmonic term
is proportional to α2. The anharmonic part is an alternating
series and its contribution increases with α. We conclude that
an increase in α leads to an increase in the nonlinearity of the
system. The influence of the potential stiffness parameter α on
the properties of the DNVMs considered in this study is, on
the other hand, the influence of the system’s nonlinearity.

The fcc lattice with the lattice parameter a is shown in
Fig. 2. As will become clear later, all DNVMs can be sim-
ulated by using a computational cell consisting of 2 × 2 × 2
cubic translational cells with the fcc lattice, and the total num-
ber of particles is equal to 32. Periodic boundary conditions
are applied.

The Hamiltonian of the fcc lattice is the sum of kinetic (K)
and potential (P) energy

H = Ekin + Epot = m

2

∑
i

(ṙi, ṙi ) +
∑
i> j

φ(|Ri, j |), (3)

where ri = (ri,x, ri,y, ri,z ) is the radius vector of the ith par-
ticle, with the overdot referring to the differentiation of the
radius vector with respect to time, and Ri, j = r j − ri.

The Hamilton’s equations of motion derived from Eq. (3)
are

mr̈i,x = −
∑
i> j

Fi, jRi, j,x,

mr̈i,y = −
∑
i> j

Fi, jRi, j,y,

mr̈i,z = −
∑
i> j

Fi, jRi, j,z, (4)
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where

Fi, j = φ′(|Ri, j |)
|Ri, j | . (5)

A home-made computational code written in the C++ al-
gorithmic language is developed for simulations. The Störmer
symplectic method of the sixth order [46] with a time step of
0.001 is used to integrate the equations of motion in Eq. (4).

Components of the mechanical stress in the lattice can be
calculated as follows:

σxx = − 1

V

∑
i> j

Fi, jR
2
i, j,x,

σyy = − 1

V

∑
i> j

Fi, jR
2
i, j,y,

σzz = − 1

V

∑
i> j

Fi, jR
2
i, j,z,

τxy = − 1

V

∑
i> j

Fi, jRi, j,xRi, j,y,

τxz = − 1

V

∑
i> j

Fi, jRi, j,xRi, j,z,

τyz = − 1

V

∑
i> j

Fi, jRi, j,yRi, j,z, (6)

where V is the computational cell volume.
The stress components are related to the strain components

according to Hooke’s law

⎡
⎢⎢⎢⎢⎢⎣

σxx

σyy

σzz

τxy

τxz

τyz

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

εxx

εyy

εzz

γxy

γxz

γyz

⎤
⎥⎥⎥⎥⎥⎦

,

(7)
where Ci j = Cji are the stiffness constants. Only the diagonal
stiffness constants will be analyzed and are given as

C11 = 1

V

∑
i> j

Gi, jR
4
i, j,x,

C22 = 1

V

∑
i> j

Gi, jR
4
i, j,y,

C33 = 1

V

∑
i> j

Gi, jR
4
i, j,z,

C44 = 1

V

∑
i> j

Gi, jR
2
i, j,xR2

i, j,y,

C55 = 1

V

∑
i> j

Gi, jR
2
i, j,xR2

i, j,z,

C66 = 1

V

∑
i> j

Gi, jR
2
i, j,yR2

i, j,z, (8)

where

Gi, j = φ′′
n (|Ri, j |)
|Ri, j |2 − φ′

n(|Ri, j |)
|Ri, j |3 . (9)

Excitation of DNVMs leads to a periodic change of internal
stress components and elastic constants. Therefore for the
analysis, the stress components and stiffness constants aver-
aged over the oscillation period will be considered as

〈σi j〉 = 1

T

∫ T

0
σi j (t )dt, 〈Ci j〉 = 1

T

∫ T

0
Ci j (t )dt . (10)

Similarly, the kinetic energy and potential energy of the
computational cell per particle are averaged over the oscilla-
tion period as

〈Ekin〉 = 1

NT

∫ T

0
Ekin(t )dt, 〈Epot〉 = 1

NT

∫ T

0
Epot (t )dt,

(11)

where N = 32 is the number of particles in the computational
cell.

The initial conditions are set to excite one of the twelve
one-component DNVMs, as explained in Sec. II B.

B. One-component DNVMs in the fcc lattice

DNVMs for the fcc lattice have been obtained in the earlier
work [28] by using the theory of BNNMs [8–10]. Here, we
reproduce them for the sake of completeness and clearness.

DNVMs can be excited by applying the initial displace-
ment patterns presented in Fig. 3 with zero initial velocities.
In the one-component DNVMs considered in this study, all
the initial displacement vectors are either zero or having the
same magnitude of A, which is the amplitude of the DNVMs.
Displacement components 
x and 
y are shown in the x-y
plane by arrows while 
z by dots (positive), crosses (nega-
tive), or empty circles (zero). All nonzero components of the
displacements have the same magnitude. If a particle has only
one nonzero component of the displacement vector, then it is
equal to A (DNVMs 2, 4, 7, and 10). If a particle has two
nonzero components of the displacement vector, then they are
equal to A/

√
2 (DNVMs 5, 8, 9, and 12). For a particle having

three nonzero components of the displacement vector, they are
equal to A/

√
3 (DNVMs 1, 3, 6, and 11).

The computational cell for DNVMs 1, 2, and 3 includes
2 × 2 × 2 cubic translational cells with the fcc lattice. For
all other DNVMs, it has a spatial period equal to one fcc
translational cell.

C. Simulation protocol

By exciting a DNVM and integrating the equations of mo-
tion in Eq. (4), we find the time evolution of the displacement
components 
x(t ), 
y(t ), and 
z(t ). Since all DNVMs are
exactly periodic in time solutions, it is sufficient to integrate
over one oscillation period. Thus the temporal period of the
DNVM, T , and DNVM frequency ω = 2π/T can be defined.
Further, the stress components and elastic constants, as well
as the kinetic and potential energy of the computational cell
per particle, averaged over a period were calculated using
Eqs. (10) and (11).

Note that for not too small oscillation amplitudes, DNVMs
are modulationally unstable [29,34–42]. However, this
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FIG. 3. Initial particle displacements used for excitation of
DNVMs from 1 to 12. All particles have zero initial velocities.
Displacements are shown in the particle planes parallel to the x-y
plane with the z coordinate indicated for each panel. All non-zero
displacement vectors have the same length A. Displacements 
x and

y are shown in the x, y plane by arrows while 
z by dots (positive),
crosses (negative) or empty circles (zero). All nonzero components
of displacements have the same magnitude.

instability does not manifest itself during the several oscilla-
tion periods modeled in this study.

III. NUMERICAL RESULTS

In this section, we analyze the dispersion curves obtained
for the fcc lattice with DNVMs, and discuss the effect of
DNVMs on the energy and mechanical responses.

TABLE I. Maximal phonon frequencies at the two points of
the first Brillouin zone and equilibrium interatomic distances ρ for
different values of the potential stiffness parameter α.

α ωmax at ωmax at ρ = a/
√

2
qx = qy = qz = 0 qx = qy = qz = π

4 26.16 26.62 0.9014073
5 25.81 25.75 0.9611802
6 27.68 27.48 0.9824828
7 30.43 30.22 0.9914215

A. Phonon dispersion curves for the fcc lattice

It is important to know the location of the DNVM fre-
quency with respect to the phonon spectrum of the fcc lattice.
In particular, DNVMs with frequencies above the phonon
band are of interest for the study of DBs [20,25,29–32]. In
the current work, the frequency spectrum of low-amplitude
phonon waves is calculated.

Cubic translational cells of the fcc lattice are num-
bered by indices m, n, and k. Each cell contains four
particles. The eigenproblem for finding the normal vibra-
tional modes was formulated by considering the eigen-
vector with 12 components, which are the displacements
of particles in the (m, n, k)-th translational cell: e =
(
x1,
y1,
z1, ...,
x4,
y4,
z4).

Phonon waves are taken in the standard form

wn = Ae exp[i(qxm + qyn + qzk − ωt )], (12)

where A is the amplitude, e is the normalized eigenvector
(|e| = 1), i is the imaginary unit, qx, qy, qz ∈ [−π, π ] are
dimensionless wave numbers, and ω is the frequency. By
substituting Eq. (12) into the linearized equations of motion
Eq. (4), a 12-dimensional eigenvalue problem was obtained,
which is solved by the Jacobi algorithm [47].

By solving the eigenvalue problem for a set of wave num-
bers, one can obtain the dispersion curves shown in Fig. 4. All
dispersion curves are double-folded because the translational
unit cell in our calculations is not a primitive translation cell.
The dispersion curves are presented for the three lines in the
first Brillouin zone: (a) qx ∈ [0, π ], qy = qz = 0; (b) qx =
qy ∈ [0, π ], qz = 0; and (c) qx = qy = qz ∈ [0, π ]. In other
words, we discuss the phonon waves propagating along the
(a) [001], (b) [011], and (c) [111] crystallographic directions.

Note that for the double-folded dispersion curves, shown
in Fig. 4, the point qx = qy = qz = 0 is the  point only
for curves with zero frequency. For curves with nonzero
frequency, the point qx = qy = qz = 0 corresponds to the
boundary of the first Brillouin zone. The point qx = qy = qz =
π is in the middle between the -point and zone boundary.

There are three branches of the dispersion curves for the
longitudinal wave (L) and the two transverse waves (T1, T2)
having different polarization. It can be seen that the dispersion
curves for T1 and T2 in Figs. 4(a) and 4(c) coincide, while they
are different in Fig. 4(b).

The phonons with the maximal frequency can have dif-
ferent wave numbers depending on the stiffness of the
interparticle potential α, as seen in Table I. For α = 4, the
maximum is achieved at qx = qy = qz = 0, while for α � 5,
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FIG. 4. Dispersion curves for the fcc crystal along the crystallo-
graphic directions: (a) [001], (b) [011], and (c) [111]. The potential
stiffness parameter α is 7.

the maximum is reached at qx = qy = qz = π . These two
points are marked by red circles in Fig. 4(c).

B. Frequency-amplitude dependency for DNVMs

Frequency-amplitude dependency for DNVMs in the
Morse lattice is given in Figs. 5(a) and 5(b) for the potential
stiffness parameter α = 4 and 7, respectively. For comparison,
the result for fcc copper obtained in Ref. [28] using the inter-
atomic potential of the many-body embedded atom method
(EAM) by Zhou et al. [48] is presented in Fig. 5(c).

In Figs. 5(a) and 5(b), the dotted horizontal lines show the
maximal phonon frequencies. It may seem that DNVMs 1
to 6 have the same frequency as the maximum phonon fre-
quency at small amplitudes, while it is not true. The first three
DNVMs in the limit of small amplitudes become the phonon
with the wave numbers qx = qy = qz = π , while DNVMs 4 to
6 become the phonon with the wave numbers qx = qy = qz =
0. Thus, according to Table I, DNVMs 1 to 3 for α = 4 diverge
from the upper edge of the phonon band at small amplitudes,
but DNVMs 4 to 6 lie within the phonon band, although they
are close to the upper edge. For α = 7, the situation is the
opposite (see Table I) that at low amplitudes, DNVMs 4 to 6
have higher frequencies than DNVMs 1 to 3.

FIG. 5. Frequency-amplitude dependency for 12 DNVMs in the
Morse lattice for (a) α=4 and (b) α=7. The horizontal dotted lines
indicate the corresponding maximum frequency of the phonon spec-
trum. (c) Frequency-amplitude dependency for 12 DNVMs in fcc
copper obtained in Ref. [28] using the EAM interatomic potentials
developed by Zhou et al. [48]. The DNVM amplitude is normalized
to the interparticle distance ρ and the DNVM frequency is normal-
ized to the maximal phonon frequency ωmax.
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Note that the frequencies for DNVMs 7 to 12 start at the
same point well below the upper edge of the phonon band. In
the limit of small amplitudes, these modes become phonons
with the wave numbers qx = qy = qz = 0, as indicated in
Figs. 4(a)–4(c) by the green triangles.

As the amplitude increases, some DNVMs exhibit a hard-
type anharmonicity, that is, an increase in the frequency with
the amplitude, while other modes exhibit a soft-type anhar-
monicity where the frequency decreases with the amplitude.
Some modes show an increase in the frequency with the
amplitude at moderate amplitudes and demonstrate a decrease
in the frequency only at higher amplitudes, e.g., DNVM 7 for
α = 4 in Fig. 5(a).

By comparing Figs. 5(a) and 5(b), it can be concluded that
for a larger α value, the frequency increases with the ampli-
tude more quickly or decreases more slowly. In particular, the
frequency of DNVM 4 in Fig. 5(a) decreases but in Fig. 5(b)
increases with the amplitude A.

The frequency-amplitude dependency for copper, as shown
in Fig. 5(c), are closer to those obtained for the Morse lattice
with α = 4, rather than α = 7. Indeed, the frequencies of
DNVM 1 and DNVM 4 in Fig. 5(a) show a tendency to soften
at a large amplitude, similar to what is observed for copper.
In addition, in copper, DNVMs 1 to 3 have higher frequencies
at low amplitudes than DNVMs 4 to 6, as in the case of the
Morse lattice with α = 4.

In general, the behavior of the frequency-amplitude depen-
dency is mainly determined by the symmetry of the DNVMs,
and not by the interatomic potentials, since the results for the
pairwise Morse potential with significantly different parame-
ter α, and even for the many-body EAM potential, have much
in common [cf. Figs. 5(a) and 5(c)].

C. Energy of DNVMs

In linear lattices, the time-averaged kinetic energy and
potential energy are equal. The deviation of these two types
of energy from each other characterizes the anharmonicity of
nonlinear oscillations.

In Fig. 6, the kinetic and potential energy of the compu-
tational cell per atom averaged over a period of oscillation,
according to Eq. (11), is presented as functions of the ampli-
tude for the 12 considered DNVMs. The angle brackets are
omitted for brevity. The results for α = 4 (α = 7) are plotted
by the solid (dash-dotted) lines. The kinetic (potential) energy
is shown by the black (red) curves.

Most DNVMs have higher kinetic energy than poten-
tial energy, with the exception of DNVMs 8 and 11. This
result correlates with the frequency-amplitude dependency
for DNVMs. As seen in Fig. 5, DNVMs 8 and 11 exhibit
soft anharmonicity. Moreover, DNVMs with rapidly growing
frequency-amplitude curves show a much faster increase in
energy with the amplitude, as seen in the panels for DNVMs
3, 5, 6, and 9 in Fig. 6. The DNVMs with soft anharmonicity
have lower energy, e.g., DNVMs 8, 10, 11, and 12.

D. Mechanical response of the lattice to DNVM excitation

Since the lattice is constrained by periodic boundary con-
ditions, excitation of a DNVM leads to the appearance of
internal mechanical stress. Excitation of a DNVM affects also
the stiffness of the lattice. The stress and stiffness constants

fluctuate over time with a period equal to half the period of
the DNVM, and we analyze the values averaged over period
by Eq. (10).

The dependency of the time-averaged stress components
and stiffness constants on the DNVM amplitude are shown in
Figs. 7 and 8, respectively, by the solid (dash-dotted) lines for
α = 4 (α = 7). The angle brackets indicating average values
are omitted for brevity.

All curves in Figs. 7 and 8 start growing with a zero deriva-
tive, which means that the appearance of stress and change of
the stiffness constants due to DNVMs are nonlinear effects
that are not observed at low amplitudes.

The symmetry of DNVMs determines the number of
unequal stress components and the relationship between dif-
ferent stiffness constants.

Comparison of Fig. 7 with Fig. 8 reveals a correlation
between the stress components and stiffness constants. For
example, for high-symmetry DNVMs 1, 2, 3, 6, 11, and 12,
the normal and shear stresses are equal, i.e., σxx = σyy =
σzz and τxy = τxz = τyz; and for the stiffness constants, the
equalities C11 = C22 = C33 and C44 = C55 = C66 are satisfied.
Note that Cii characterizes the stiffness in relation to tension-
compression for i = 1, 2, and 3 and in relation to shear for
i = 4, 5 and 6.

For other modes with lower symmetry, there remains the
correlation between the normal stress components σxx, σyy,
σzz and elastic constants C11, C22, and C33. In particular, for
DNVM 4, σxx = σyy �= σzz and C11 = C22 �= C33. For DNVM
5, σxx �= σyy = σzz and C11 �= C22 = C33. For DNVM 7, σxx �=
σyy �= σzz and C11 �= C22 �= C33. For DNVM 8, σxx = σyy �=
σzz and C11 = C22 �= C33. For DNVM 9, σxx �= σyy = σzz and
C11 �= C22 = C33. For DNVM 10, σxx = σzz �= σyy and C11 =
C33 �= C22.

On the other hand, for low-symmetry DNVMs, the rela-
tionship between the shear stress components does not always
correlate with the stiffness constants, because in some cases,
the stiffness constants may be different, while the shear stress
components are all zero. In fact, for DNVMs 4, 5, 9, and 10,
τxy = τxz = τyz = 0, but among C44, C55, and C66, only two of
the stiffness constants are equal. For DNVMs 7, τxy = τxz =
τyz = 0, but C44, C55 and C66 are all different.

For DNVM 8, C44 �= C55 = C66 and τxy �= τxz = τyz. The
correlation between shear stress components and elastic con-
stants is observed only in this case.

Most of the DNVMs produce positive (compressive) nor-
mal stress. The exceptions are low-symmetry DNVMs 7 and 9
with a small negative σxx component. A fast growth of normal
stress and elastic constants with the DNVM amplitude is ob-
served for DNVMs 3, 5, 6, and 9. All these modes demonstrate
strong hard-type anharmonicity, i.e., a rapid increase in the
frequency with the amplitude, as seen in Fig. 5. DNVMs 8,
10, 11, and 12 demonstrating soft-type anharmonicity or a
slow rise in the frequency with the amplitude also exhibit a
slow increase in normal stress and elastic constants with the
amplitude.

IV. CONCLUSIONS AND FUTURE RESEARCH
DIRECTIONS

In the current work, the effects of the potential stiffness
parameter α on the various properties of 12 one-component
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FIG. 6. Kinetic and potential energy of the computational cell per atom averaged over a period of oscillation as functions of amplitude for
the 12 DNVMs (angle brackets are omitted for brevity). The results for α = 4 (α = 7) are plotted by the solid (dash-dotted) lines. The kinetic
(potential) energy is shown by the black (red) curves.

DNVMs in the fcc Morse lattice (see Fig. 3) reported earlier in
[28] are analyzed. More specifically, the frequency-amplitude
dependency of DNVMs (Fig. 5) related to the phonon dis-
persion curves (Fig. 4), time-averaged kinetic and potential
energy of the computational cell per atom (Fig. 6), and time-
averaged stress components (Fig. 7) and stiffness constants

(Fig. 8) induced by the DNVMs are systematically stud-
ied. DNVMs with large amplitudes affect the macroscopic
characteristics of the lattice due to the anharmonicity and
asymmetry of the Morse potential.

It is found that only three DNVMs have frequencies above
the phonon band for any DNVM amplitude, and the other
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FIG. 7. Stress components averaged over a period of oscillation as functions of amplitude for the 12 DNVMs (angle brackets are omitted
for brevity). The results for α = 4 (α = 7) are plotted by the solid (dash-dotted) lines.

modes have different results for different values of the poten-
tial stiffness parameter α. In particular, for α = 4, DNVMs
1 to 3 have frequencies above the phonon band, while for
α � 5, this is true for DNVMs 4 to 6. However, the difference
between frequencies of these modes at small amplitudes is
very small, as shown in Table I.

This finding demonstrates that for different interparticle
stiffness parameter values, different DNVMs have frequencies

above the phonon band, which is of great importance to the
analysis of possible types of DBs in fcc crystals. Note that
different types of DBs can be obtained by superimposing lo-
calization functions on DNVMs that have frequencies outside
the phonon band [27,32,49]. The obtained results indicate that
in crystals with relatively soft interatomic bonds, DBs can be
obtained using DNVMs 1 to 3, while for crystals with hard
bonds, DBs can be obtained using DNVMs 4 to 6. Since
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FIG. 8. Stiffness constants averaged over a period of oscillation as functions of amplitude for the 12 DNVMs (angle brackets are omitted
for brevity). The results for α = 4 (α = 7) are plotted by the solid (dash-dotted) lines.

the difference between the frequencies of DNVMs 1 to 3
and DNVMs 4 to 6 at low amplitudes is very small, it is
expected that all six DNVMs can create DBs with not too
small amplitudes. This assumption will be analyzed in future
study.

Analysis of the time-averaged kinetic and potential energy
of DNVMs, as seen in Fig. 6, has revealed that the kinetic
energy is greater than the potential energy, except for DNVMs
8 and 11. This can be explained by the soft anharmonicity of

DNVMs 8 and 11, as seen in Fig. 5. DNVMs 3, 5, 6, and
9 with rapidly growing frequency-amplitude curves show a
fast increase in the energy with the amplitude, as exhibited in
Fig. 6, while DNVMs 8, 10, 11, and 12 with soft anharmonic-
ity have lower energy.

The mechanical response of the lattice also correlates with
the frequency-amplitude dependency of DNVMs. Most of
the DNVMs produce positive (compressive) normal stress.
The exceptions are low-symmetry DNVMs 7 and 9 with
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a small negative σxx component. A fast growth of normal
stress and elastic constants with the DNVM amplitude is ob-
served for DNVMs 3, 5, 6, and 9, which demonstrates strong
hard anharmonicity, as seen in Fig. 5. DNVMs exhibiting
soft anharmonicity or a slow rise in the frequency with the
amplitude also exhibit a slow increase in normal stress and
elastic constants with the amplitude, e.g., DNVMs 8, 10, 11,
and 12.

Chaotic DBs appear in the lattices as a result of the mod-
ulational instability of DNVMs with frequencies outside the
phonon band [34–43]. The current study shows that DNVMs
1 to 6 are good candidates for creating chaotic DBs, and this
should be verified in future work.

DNVMs exist as exact solutions for any type of interatomic
interactions and for any amplitude. We believe that the DNVM
frequency response obtained from ab initio calculations for
various fcc metals can be very useful to fit interatomic po-
tentials for molecular dynamics simulations. The DNVM
dynamics can be modeled by using a small computational
cell, and only a few oscillation periods are required to find
the oscillation frequency, which is important for replacing the
computationally demanding ab initio calculations.

Here, only one-component DNVMs are analyzed. In the
next work, two-component DNVMs will be considered.
Linear systems are also of interest because they can ex-
hibit nontrivial dynamics and describe physically meaningful
systems [50–52].

This work contributes to a deeper understanding of the
nonlinear dynamics of the fcc lattice and opens a way for the
study of related DBs.
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