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Amplitude death in delay-coupled oscillators on directed graphs
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The present paper investigates amplitude death (AD) in delay-coupled oscillators on directed graphs, in which
the connection delays among oscillators are heterogeneous. We reveal that a linear stability analysis of AD can
be significantly simplified by focusing on directed cycles in the graph. First, it is proven that the characteristic
function of a steady state can be factorized into several functions that can be analyzed independently. Second,
we show that the number of connection parameters to be considered for the stability analysis can be reduced,
because the stability depends on the sums of connection delays for directed cycles and is independent of
the connection delays on edges that do not form directed cycles. The theoretical results are verified through
numerical simulations.
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I. INTRODUCTION

Connection delays between oscillators, which are ubiq-
uitous due to the finite velocity of signal propagation [1],
can cause various phenomena in coupled oscillators, such as
synchronization [2], spatiotemporal patterns [3], oscillation
death [4], and clustered chimera states [5]. Amplitude death
(AD), which is one such phenomenon, is the stabilization
of a homogeneous steady state, i.e., the quenching of oscil-
lations [6–9]. Although this phenomenon can occur without
connection delays, it is facilitated by connection delays [10].
From an engineering point of view, AD can be regarded as
the suppression of unwanted oscillations. Thus, recently, there
have been many studies conducted to apply AD to engineer-
ing applications, such as a dc microgrid [11,12], aeroelastic
systems [13], and thermoacoustic oscillators [14–18]. On the
other hand, from an academic point of view, the influence of
various connection delays on AD has received a great deal of
attention and has been extensively investigated [7,8,19,20].

Many previous studies on AD in delay-coupled oscilla-
tors consider the following two assumptions: (i) all of the
connection delays between oscillators are the same (i.e., ho-
mogeneous connection delays) and (ii) the network topologies
are limited to undirected graphs (i.e., oscillators are cou-
pled bidirectionally). These assumptions can help us to easily
analyze the stability of AD theoretically. Specifically, the
characteristic function that governs the stability of AD can be
factorized into small functions. However, assumptions (i) and
(ii) are too idealistic for real engineering systems. Therefore,
the manner in which the stability of AD changes when these
assumptions are relaxed must be investigated.

There are some studies that consider coupled oscillators
without assumption (i), where connection delays between
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oscillators are not the same. For example, delay-coupled os-
cillators on a Cartesian product of two subnetworks in which
each subnetwork has a different connection delay [21], oscil-
lator networks on a tree graph with asymmetric connection
delays [22], and all-to-all oscillators coupled by partial delay
connections, in which some oscillators are received as delayed
signals from all other oscillators, whereas other oscillators
are instantaneously coupled with all other oscillators [23].
These studies [21–23] enable analysis of the stability of AD,
even in the absence of assumption (i) using specific network
typologies (e.g., Cartesian product, tree graph, or all-to-all).
However, the network topologies considered in these previous
studies [21–23] are undirected graphs, i.e., assumption (ii)
holds. Thus, the network topologies are strongly limited.

A previous study [24] considered delay-coupled oscillators
on a one-way ring topology, which do not satisfy assump-
tion (ii), and considered homogeneous connection delays (i.e.,
assumption (i) is satisfied). In addition, the network topol-
ogy was restricted to a ring graph. Michiels and Nijmeijer
investigated the stability of steady states in delay-coupled
oscillators on a general directed graph [25] (i.e., assumption
(ii) is not satisfied). However, the connection delays were
homogeneous, which means that assumption (i) holds. To
our knowledge, there has been no research that deals with
AD under the situation in which neither assumption (i) nor
assumption (ii) is satisfied.

The present paper investigates AD in delay-coupled os-
cillators on a general directed graph with heterogeneous
connection delays. Neither assumption (i) nor assumption
(ii) is satisfied. We reveal that the characteristic function of
a steady state can be expressed as the product of several
functions by focusing on edges that do not form directed
cycles in the directed graph. These functions can be analyzed
independently. Furthermore, we show that the stability of AD
is independent of connection delays on edges that do not form
directed cycles, but is affected by sums of connection delays in
directed cycles. These results significantly simplify the
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FIG. 1. Delay-coupled oscillators on a directed graph with het-
erogeneous connection delays (N = 8): black edges form directed
cycles, and green edges do not form directed cycles.

stability analysis of AD, even under the situation where
neither assumption (i) nor assumption (ii) is satisfied.1 We
confirm the theoretical results through numerical simulations.

Throughout the present paper, we use the following nota-
tions: 0m,n is the m × n zero matrix, and Im is the identity
matrix of size m.

II. MATHEMATICAL MODEL

A. Delay-coupled oscillators on a directed graph

We consider N coupled oscillators,

ẋi(t ) = F[xi(t )] + bui(t ),

yi(t ) = cxi(t ),
(1)

where xi(t ) ∈ Rm×1 and yi(t ) ∈ R (i ∈ {1, . . . , N}) are, re-
spectively, the state variable and the output signal of oscillator
i. F : Rm×1 → Rm×1 is a nonlinear function that has at least
one equilibrium point x∗ satisfying F(x∗) = 0. Furthermore,
b ∈ Rm×1 and c ∈ R1×m are the input and output vectors,
respectively. Oscillator i receives the input signal,

ui(t ) = k

{[
1

di

N∑
j=1

pi jy j (t − τi j )

]
− yi(t )

}
, (2)

where y j (t − τi j ) is the delayed output signal of oscillator j,
τi j is the connection delay required to propagate the signal
from oscillator j to oscillator i (see Fig. 1), and k ∈ R is the
coupling strength. The adjacency matrix {P}i j := pi j ∈ {0, 1}
governs the network topology as follows: if there is an edge
from oscillator j to oscillator i, pi j = 1, otherwise pi j = 0.
Furthermore, self-feedback is forbidden (i.e., pii = 0). More-
over, di := ∑N

j=1 pi j is the indegree of oscillator i. Assume

1In Sec. VI we will discuss in detail the differences between our
results and those of the componentwise time-shift transformation,
which is a useful method for analysis of steady states in delay-
coupled oscillators.

that each oscillator receives a signal from at least one other
oscillator (i.e., di > 0, ∀i).2 Note that delay-coupled oscilla-
tors (1) and (2) can be considered as a generalized model of
those considered in a previous study [22], in which oscillators
on a undirected tree graph with asymmetric connection delays
were investigated.

Coupled oscillators (1) and (2) have the following homo-
geneous steady state:[

xT
1 (t ) · · · xT

N (t )
]T = [x∗T · · · x∗T ]T . (3)

AD can occur when steady state (3) is stable. Linearization of
Eqs. (1) and (2) at steady state (3) yields

�ẋi(t ) = A�xi(t ) + b�ui(t ),

�yi(t ) = c�xi(t ),
(4)

where �xi(t ) := xi(t ) − x∗ is a small perturbation, A :=
{dF(x)/dx}x=x∗ is a Jacobian matrix, and

�ui(t ) = k

[(
1

di

N∑
j=1

pi j�y j (t − τi j )

)
− �yi(t )

]
. (5)

The local stability of steady state (3) is equivalent to the
stability of linear system (4) with (5).

B. Frequency domain analysis

The characteristic function of linear system (4) with (5) is
given by

g(s) = det[sINm − IN ⊗ Ā − kE(s) ⊗ bc], (6)

where Ā := A − kbc, D := diag(d1, . . . , dN ), and

E(s) := D−1T (s). (7)

Here {T (s)}i j comprises the connection delay from oscilla-
tors j to i as follows: {T (s)}i j = e−sτi j if pi j = 1, otherwise
{T (s)}i j = 0. In other words, T (s) is obtained by replacing
the nonzero (i, j) element of P with e−sτi j , which includes the
connection delay τi j in the edge corresponding to pi j . Thus,
matrix T (s) can be considered as the adjacency matrix P with
added delay information. Note that E(s) contains information
about the network topology and the connection delays. AD
can occur [i.e., steady state (3) is locally stable] if and only
if all the roots of g(s) = 0 have a negative real part. Since the
characteristic function (6) can be rewritten as

g(s) = det

[
sINm − IN ⊗ Ā kE(s) ⊗ b

IN ⊗ c IN

]

= det[IN ⊗ (sIm − Ā)]

× det{IN − k(IN ⊗ c)[IN ⊗ (sIm − Ā)]−1(E(s) ⊗ b)},
this function can be simplified as

g(s) = [H (s) + kL(s)]N ĝ(s), (8)

2The coupling strength k is normalized by di in Eq. (2) as in many
previous studies on AD [26–28].
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where H (s) := det[sIm − A], L(s) := c adj(sIm − A)b,

ĝ(s) := det[IN − kG(s)E(s)], (9)

G(s) := L(s)

H (s) + kL(s)
. (10)

Note that L(s)/H (s) denotes the transfer function for linear
system (4) from �ui(t ) to �yi(t ), and G(s) is the transfer
function for linear system (4) with a nondelayed self-feedback
�ui(t ) = k�yi(t ).

The first factor on the right-hand side in Eq. (8), {H (s) +
kL(s)}N , denotes the characteristic function for linear system
(4) with nondelayed self-feedback [see the denominator of
G(s) in Eq. (10)]. The second factor in Eq. (8), ĝ(s), contains
information about the network topology and connection de-
lays, E(s). For steady state (3) to be stable, both factors must
be stable [i.e., all the roots of H (s) + kL(s) = 0 and ĝ(s) = 0
must have a negative real part]. The stability analysis of ĝ(s)
is more difficult, because ĝ(s) is a transcendental function due
to the connection delays.

Before analyzing ĝ(s) with a general directed graph, we
present a specific example of ĝ(s) with the simple network
shown in Fig. 1. This network has eight oscillators and 12
different connection delays. The characteristic function ĝ(s)
for this network is simply given by

ĝ(s) =
[

1 − k2

2
G(s)2e−s(τ12+τ21 )

]

×
[

1 − k3

2
G(s)3e−s(τ54+τ43+τ35 ) −k2

2
G(s)2e−s(τ34+τ43 )

]
.

(11)

Equation (11) has the following features: (I) the equation is
factorized into two simple functions; (II) the sums of the
connection delays for all directed cycles (i.e., delays on black
edges in Fig. 1) are included, i.e., the cycle {2, 1, 2} (i.e.,
τ12 + τ21), the cycle {4, 5, 3, 4} (i.e., τ54 + τ43 + τ35), and the
cycle {4, 3, 4} (i.e., τ34 + τ43); and (III) connection delays on
edges that do not form directed cycles (i.e., delays on green
edges in Fig. 1) are not included. As a result, for the network
topology shown in Fig. 1, ĝ(s) is given by the product of the
simple functions, and its stability depends only on the sums
of connection delays in certain edges. In other words, the
above features indicate that the stability analysis of ĝ(s) can be
simplified for the following reasons: the factorized functions
(i.e., the first and second factors in Eq. (11)) can be analyzed
independently; and the number of connection parameters to
be analyzed is significantly reduced, i.e., only four in Eq. (11)
(i.e., k, τ12 + τ21, τ54 + τ43 + τ35, and τ34 + τ43), even though
the network in Fig. 1 has 12 different connection delays.

In Secs. III and IV, we show that features (I), (II), and (III)
above can be confirmed, even for a general directed graph.

III. FACTORIZATION OF CHARACTERISTIC FUNCTION

This section considers feature (I) on a general directed
graph. First, in Sec. III A we show that the characteristic
function ĝ(s) on a directed graph can be factorized into two
characteristic functions corresponding to two subgraphs in the
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FIG. 2. Separation of the graph shown in Fig. 1 based on Lemma
1. The red dashed lines denote the edges that separate one graph into
two subgraphs. (a) Original graph; (b) original graph separated into
G(α) and G(β ); and (c) G(β ) separated into G(β,α) and G(β,β ).

directed graph. It is shown that these factorized functions can
be further factorized by similar operations. Second, Sec. III B
focuses on the factorized functions that correspond to acyclic
graphs. Finally, the above results are summarized as a main
theorem in Sec. III C.

A. Partitioning graph

The function ĝ(s) for a general directed graph can be fac-
torized into two functions as follows.

Lemma 1. Consider delay-coupled oscillators (1) and (2)
on a directed graph. Assume that the directed graph can be
partitioned into two subgraphs G(α) with N (α) nodes and G(β )

with N (β ) nodes, in which there exist at least an edge from
G(β ) to G(α) and no edges from G(α) to G(β ). The characteristic
function ĝ(s) can be factorized as

ĝ(s) = g(α)(s)g(β )(s), (12)

where

g(α)(s) := det
[
IN (α) − kG(s)E (α)(s)

]
, (13)

g(β )(s) := det
[
IN (β ) − kG(s)E (β )(s)

]
. (14)

Matrix E (α)(s) ∈ CN (α)×N (α)
[E (β )(s) ∈ CN (β )×N (β )

] is obtained
by removing rows and columns corresponding to the edges to
and from nodes in G(β ) (G(α)) from E(s).

Proof. See Appendix A. �
For instance, the graph shown in Fig. 1 can be partitioned

into a subgraph G(α) with two nodes and another subgraph
G(β ) with six nodes, as shown in Figs. 2(a) and 2(b), and there
exists only one edge from G(β ) to G(α). Furthermore, E(s) for
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the graph in Fig. 1 is given by

E(s) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 e−sτ12 0 0 0 0 0 0
e−sτ21

2 0 e−sτ23

2 0 0 0 0 0
0 0 0 e−sτ34

2
e−sτ35

2 0 0 0
0 0 e−sτ43 0 0 0 0 0
0 0 0 e−sτ54 0 0 0 0
0 0 e−sτ63

2 0 0 0 e−sτ67

2 0
0 0 0 0 e−sτ75 0 0 0
0 0 0 0 0 e−sτ86

2
e−sτ87

2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (15)

The i ∈ {1, . . . , 8}th row (column) of E(s) corresponds to edges to (from) node i. We see that the first and second (third to
eighth) rows and columns correspond to edges to and from nodes in G(α) (G(β )). For example, the (1,2) element of matrix
(15) corresponds to the edge from node 2 to node 1 in G(α). Therefore, Eq. (9) with Eq. (15) can be factorized into Eqs. (13)
and (14) with

E (α)(s) =
(

0 e−sτ12

e−sτ21/2 0

)
, (16)

E (β )(s) =

⎛
⎜⎜⎜⎜⎜⎝

0 e−sτ34/2 e−sτ35/2 0 0 0
e−sτ43 0 0 0 0 0

0 e−sτ54 0 0 0 0
e−sτ63/2 0 0 0 e−sτ67/2 0

0 0 e−sτ75 0 0 0
0 0 0 e−sτ86/2 e−sτ87/2 0

⎞
⎟⎟⎟⎟⎟⎠, (17)

where E (α)(s) in Eq. (16) (E (β )(s) in Eq. (17)) is obtained
by removing the third to eighth (first and second) rows and
columns corresponding to edges to and from nodes in G(β )

(G(α)) from matrix (15). We can confirm that Eq. (13) with
Eq. (16) is the first factor on the right-hand side of Eq. (11).

Let us focus on E (α)(s) in Eq. (16). Since E (α)(s) is ob-
tained by removing rows and columns from E(s) in Eq. (15)
[the general form of which is given by Eq. (7)], E (α)(s) can be
written as

E (α)(s) =
(

1 0
0 2

)−1(
0 e−sτ12

e−sτ21 0

)
, (18)

where the first factor is the inverse matrix of the degree matrix
of nodes belonging to G(α) in the original graph [see nodes 1
and 2 in Figs. 2(a) and 2(b)], and the second factor is obtained
by replacing the nonzero elements of the adjacency matrix
(1 0
0 1) of G(α) with the connection delays.

For a general network topology, let V (α) ={
v

(α)
1 , . . . , v

(α)
N (α)

}
be the set of nodes in G(α), where

v
(α)
j ∈ {1, . . . , N} with j = 1, . . . , N (α) is the jth node in

G(α). Then E (α)(s) in Eq. (13) can be described as

E (α)(s) := D(α)−1
T (α)(s), (19)

where D(α) := diag
(
d

v
(α)
1

, . . . , d
v

(α)
N (α)

)
is the degree matrix of

nodes in V (α) of the original graph, and T (α)(s) ∈ CN (α)×N (α)

comprises the adjacency matrix P(α) ∈ RN (α)×N (α)
of G(α) and

the connection delays in G(α), in which {P(α)}i j = 1 if there is
an edge from node v

(α)
j to node v

(α)
i , and otherwise {P(α)}i j =

0. Specifically, {T (α)(s)}i j contains the connection delay from

node v
(α)
j to node v

(α)
i as follows: {T (α)(s)}i j = e

−sτ
v

(α)
i v

(α)
j if

{P(α)}i j = 1, otherwise {T (α)(s)}i j = 0. Hence, matrix T (α)(s)

can be considered as the adjacency matrix P(α) with added
delay information. The same applies to E (β )(s) in Eq. (14).
Thus, E (α)(s) and E (β )(s) in Eqs. (13) and (14) corresponding
to subgraphs G(α) and G(β ) have a similar form to E(s) of
Eq. (7) in Eq. (9) corresponding to the original graph. There-
fore, if graph G(α) (G(β )) can be further partitioned into two
subgraphs G(α,α) and G(α,β ) (G(β,α) and G(β,β )), and there exist
edges only from G(α,β ) to G(α,α) (G(β,β ) to G(β,α)), then we can
factorize g(α)(s) (g(β )(s)) by Lemma 1.

For example, subgraph G(β ) in Fig. 2(b) can be partitioned
into two subgraphs: Subgraph G(β,α) with nodes 6, 7, 8 and
subgraph G(β,β ) with nodes 3, 4, 5, as shown in Fig. 2(c).
Furthermore, we can confirm that there exist edges only from
G(β,β ) to G(β,α) in G(β ). Thus, based on Lemma 1, g(β )(s) with
Eq. (17) can be factorized as

g(β )(s) = g(β,α)(s)g(β,β )(s)

= det
[
I3 − kG(s)E (β,α)(s)

]
det

[
I3 − kG(s)E (β,β )(s)

]
,

(20)

where

E (β,α)(s) :=
⎛
⎝ 0 e−sτ67/2 0

0 0 0
e−sτ86/2 e−sτ87/2 0

⎞
⎠, (21)

E (β,β )(s) :=
⎛
⎝ 0 e−sτ34/2 e−sτ35/2

e−sτ43 0 0
0 e−sτ54 0

⎞
⎠. (22)

Matrix (21) [matrix (22)] is obtained by removing rows and
columns corresponding to edges of nodes 3, 4, 5 (6, 7, 8)
from E (β )(s) in Eq. (17), i.e., by removing the first, second,
and third (fourth, fifth, and sixth) rows and columns from
matrix (17).
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We can confirm that if there are edges only from one sub-
graph to another subgraph, these edges do not form directed
cycles (see green edges in Fig. 1). Thus, based on Lemma 1,
we can continue to factorize the characteristic functions by
a similar operation, as long as their corresponding subgraphs
have edges that do not form directed cycles (i.e., green edges).
Section III B considers the specific factorized functions.

B. Characteristic function for an acyclic graph

Here we consider the case in which the factorized function
g(α)(s) in Eq. (13) has E (α)(s), which corresponds to acyclic
graph G(α). Then g(α)(s) can be calculated as follows.

Lemma 2. If matrix E (α)(s) in Eq. (19) corresponds to an
acyclic graph, then Eq. (13) is reduced to g(α)(s) = 1.

Proof. See Appendix B. �
Note that Lemma 2 can also be applied to Eq. (14), if

E (β )(s) is the adjacency matrix corresponding to an acyclic
graph. For instance, in Fig. 2(c), graph G(β,α) is an acyclic
graph. Thus, we can obtain g(β,α)(s) = 1 in Eq. (20) according
to Lemma 2, which leads to

g(β )(s) = g(β,β )(s). (23)

Equation (23) is equivalent to the second factor of the right-
hand side in Eq. (11).

Consequently, ĝ(s) for the graph shown in Fig. 1 can be
described as the product of two characteristic functions corre-
sponding to subgraphs G(α) and G(β,β ), as shown in Eq. (11).
Lemmas 1 and 2 show that characteristic function ĝ(s) can
be factorized by focusing on edges that do not form directed
cycles.

C. Factorization of characteristic functions

In order to summarize the results in the preceding sub-
sections, assume that a directed graph is divided into M
subgraphs after repeated partitioning by focusing on edges
that do not form directed cycles. In other words, assume that
M subgraphs are obtained by removing all edges that do not
form directed cycles from the original graph (e.g., M = 2
for the graph shown in Fig. 1). Let Vq := {vq,1, . . . , vq,Nq}
be the set of nodes in qth subgraph with Nq nodes, where
vq,i ∈ {1, . . . , N} (i = 1, . . . , Nq) is the ith node in qth sub-
graph. From Lemmas 1 and 2, ĝ(s) can be described by
ĝ(s) = ∏M

q=1 gq(s) with

gq(s) := det
[
INq − kG(s)D−1

q T q(s)
]
, (24)

where Dq := diag
(
dvq,1 , . . . , dvq,Nq

)
is the degree matrix of

nodes in Vq of the original directed graph. Here T q(s) ∈
CNq×Nq composes the adjacency matrix Pq ∈ RNq×Nq of the
qth subgraph and the connection delays in qth subgraph,
in which {Pq}i j = 1 if there is an edge from node vq, j to
node vq,i, otherwise {Pq}i j = 0. Specifically, {T q(s)}i j con-
tains the connection delay from node vq, j to node vq,i:
{T q(s)}i j = e−sτvq,ivq, j if {Pq}i j = 1, otherwise {T q(s)}i j = 0.
In other words, T q(s) is obtained by replacing the nonzero
(i, j) element of Pq by e−sτvq,ivq, j . We see that the characteristic
function gq(s) corresponds to qth subgraph. Then we summa-
rize the results as follows.

τ
Time delay

τ

τ
τ

τ
τ τ

ττ τ

τ τ

ττ

τ
τ

τ
ττ τ

τ τ

ττ

(a) (b) τ
τ1st subgraph:

2nd subgraph:

τ
τ3rd subgraph:

4th subgraph:

5th subgraph:

FIG. 3. Delay-coupled oscillators: (a) N = 21 oscillators, where
all edges that form directed cycles (black edges) have a connection
delay τ ; (b) M = 5 subgraphs obtained by removing all green edges
in (a).

Theorem 1. Consider delay-coupled oscillators (1) and (2)
on a directed graph. The local stability of steady state (3) is
governed by the characteristic function,

g(s) = {H (s) + kL(s)}N
M∏

q=1

gq(s), (25)

where gq(s) is defined by Eq. (24).
Proof. The proof is obvious from Lemmas 1 and 2 and the

above discussion. The proof is therefore omitted. �
From Theorem 1, the stability of g(s) can be reduced to

that of each element gq(s) that can be analyzed independently.
For example, let us consider the graph with N = 21 oscillators
shown in Fig. 3(a). Edges that form (do not form) directed
cycles are indicated in black (green). For simplicity, assume
that all connection delays in the edges that form directed
cycles are fixed at τ [see black edges in Fig. 3(a)]. The other
edges, the green edges in Fig. 3(a), are assumed to have arbi-
trary connection delays. We can obtain M = 5 subgraphs by
removing all edges that do not form directed cycles (i.e., green
edges), as shown in Fig. 3(b). Thus, according to Theorem
1, the characteristic function for the graph in Fig. 3(a) is
given by

g(s) = [H (s) + kL(s)]21g1(s)g2(s)g3(s)g4(s)g5(s), (26)

where gq(s) (q = 1, . . . , 5) corresponds to the characteristic
function for the qth subgraph shown in Fig. 3(b) and is given
by Eq. (24) with D1 = diag(1, 1), D2,3 = diag(2, 1) D4 =
diag(1, 2, 2), D5 = diag(1, 1, 1, 1),

T 1(s) = T 2,3(s) = e−sτ

(
0 1
1 0

)
,

T 4(s) = e−sτ

⎛
⎝0 0 1

1 0 1
0 1 0

⎞
⎠,

T 5(s) = e−sτ

⎛
⎜⎝

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎠.
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Note that the first [yellow in Fig. 3(b)], second, and third
subgraphs [blue in Fig. 3(b)] are recognized as different sub-
graphs. This is because one of the nodes in the second and
third subgraphs has indegree two in the original graph [blue
in Fig. 3(a)], but all nodes in the first subgraph have indegree
one in the original graph. Therefore, the first diagonal element
of D2,3 is two, whereas that of D1 is one.

IV. REDUCTION OF THE NUMBER
OF CONNECTION PARAMETERS

This section focuses on features (II) and (III), which indi-
cate that the number of connection parameters to be analyzed
for AD can be reduced. Calculating the determinant of Eq. (9)
yields the following result.

Corollary 1. Consider delay-coupled oscillators (1) and
(2) on a directed graph. The local stability of steady state
(3) depends not on each connection delay, but rather on the
sums of the connection delays in directed cycles, which are
subgraphs of the directed graph.

Proof. See Appendix C. �
For example, for the network in Fig. 1, the characteristic

function (11) is dependent on the sums of the connection
delays in the three closed cycles. Corollary 1 can be regarded
as the extended version of Lemma 1 in our previous study [22]
that considers only undirected tree graphs.

Furthermore, from Corollary 1, we can straightforwardly
obtain the following result.

Corollary 2. The connection delays on edges that do not
form directed cycles are independent of the stability of steady
state (3).

Proof. The proof is omitted, since it is obvious from
Corollary 1. �

For instance, both characteristic functions in Eqs. (11) and
(26) do not include the connection delays for green edges in
Figs. 1 and 3(a).

Corollaries 1 and 2 show that the stability of ĝ(s) depends
on the sums of the connection delays in directed cycles. The
stability is independent of the connection delays on edges
that do not form directed cycles. As a result, the number
of connection parameters to be considered can be reduced
significantly. Corollary 2 indicates that, in order to induce
AD, we can freely set the connection delays on edges that
do not form a directed cycle. This result may be useful for
engineering applications in which the connection delays are
limited due to physical constraints.

In Secs. III and IV we showed the following results. The
characteristic function can be factorized by focusing on edges
that do not form directed cycles (i.e., Theorem 1). The stabil-
ity of steady state (3) is affected by the sums of connection
delays on edges of the directed cycles (i.e., Corollary 1) and
is not affected by connection delays on edges that do not
form directed cycles (i.e., Corollary 2). These results simplify
the stability analysis of AD, even with directed graphs and
heterogeneous connection delays.

V. NUMERICAL EXAMPLES

This section numerically confirms the analytical results
provided in the previous sections. We consider Rössler

0.0 0.5 1.0 1.5 2.0 2.5

k

0.0

1.0

2.0

3.0

4.0

5.0

τ 1
2
+
τ 2

1

A1

B1

FIG. 4. Marginal stability curves (black lines) and stability re-
gion (gray area) for g1(s), the first factor on the right-hand side in
Eq. (11), on (k, τ12 + τ21) space.

oscillators [29] described by Eq. (1) with

F(x) =
⎡
⎣ −x(2) − x(3)

x(1) + ax(2)

b + x(3)(x(1) − c)

⎤
⎦, b =

⎡
⎣1

0
0

⎤
⎦, c =

⎡
⎣1

0
0

⎤
⎦

T

,

(27)

where a = 0.2, b = 0.2, and c = 5.7 [29]. There exist two
equilibrium points satisfying F(x∗

±) = 0,

x∗
± := [aX±, −X±, X±]T , (28)

where X± := (c ± √
c2 − 4ab)/(2a). We focus only on the

stability of x∗
−, because x∗

+ satisfies the odd number property,
under which AD never occurs for undirected graphs [30]. The
network topology shown in Fig. 1 is considered throughout
this section.

From Theorem 1, the characteristic function g(s) is factor-
ized into three factors,

g(s) = [H (s) + kL(s)]8g1(s)g2(s), (29)

where g1(s) and g2(s) are equivalent to the first and second
factors on the right-hand side in Eq. (11), respectively. In other
words, g1(s) and g2(s) are the characteristic functions corre-
sponding to graphs G(α) and G(β,β ) in Fig. 2(c). Note that the
number of connection parameters to be considered in Eq. (29)
is only four (i.e., k, τ12 + τ21, τ34 + τ43, and τ54 + τ43 + τ35),
although the network in Fig. 1 has 12 different connection
delays.

Let us consider the three factors in Eq. (29), H (s) + kL(s),
g1(s), and g2(s), separately. The Routh-Hurwitz stability cri-
terion indicates that the first factor H (s) + kL(s) is stable for
0.2 < k < 5.0. Figure 4 shows the stability region (i.e., gray
area) for the second factor g1(s) in Eq. (29) on (k, τ12 + τ21)
parameter space. The black lines denote the marginal stability
curves on which a root for g1(s) = 0 is on the imaginary axis
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0.0 2.0 4.0 6.0 8.0 10.0

τ34 + τ43

0.0

2.0

4.0

6.0

8.0

10.0

τ 5
4

+
τ 4

3
+
τ 3

5

A2

A3

(a) k = 1.5

0.0 2.0 4.0 6.0 8.0 10.0

τ34 + 43

0.0

2.0

4.0

6.0

8.0

10.0

τ 5
4

+
τ 4

3
+
τ 3

5

τ

B2

(b) k = 0.5

FIG. 5. Marginal stability curves (black lines) and stability re-
gion (gray area) for g2(s), the second factor on the right-hand
side in Eq. (11), on (τ34 + τ43, τ54 + τ43 + τ35) space: (a) k = 1.5,
(b) k = 0.5.

[8]. In the stability region, the real part of the dominant root
for g1(s) = 0 is negative. Note that the vertical axis is the sum
of the delays τ12 + τ21, but not each delay. The third factor
g2(s) in Eq. (29) has three connection parameters k, τ34 + τ43,
and τ54 + τ43 + τ35. We fix k and numerically calculate the
stability of g2(s) on (τ34 + τ43, τ54 + τ43 + τ35) parameter
space. Figures 5(a) and 5(b) show the stability regions for
k = 1.5 and 0.5, respectively.

In order to perform numerical simulations, we set
the coupling strength to k = 1.5 and the connection

0 20 40

(a)

(b)

60 80 100

t

-10

-5.0

0.0

5.0

10

x
(1

)
i

(t
)

0 20 40 60 80 100

t

-10

-5.0

0.0

5.0

10

x
(1

)
i

(t
)

FIG. 6. Time series data for Rössler oscillators with the network
topology shown in Fig. 1. The coupling parameters correspond to
point A1 in Fig. 4 and point A2 in Fig. 5(a): (a) connection delays
(31), (b) connection delays (32).

delays to

τ12 + τ21 = 3.0, τ34 + τ43 = 4.6, τ54 + τ43 + τ35 = 1.1,

(30)

which correspond to the connection parameters at point A1
in Fig. 4 and point A2 in Fig. 5(a). Then all three factors
H (s) + kL(s), g1(s), and g2(s) in Eq. (29) are stable, i.e., g(s)
is stable. Figure 6(a) shows the time series data for x(1)(t )
for all oscillators, oscillators i (i = 1, . . . , 8), with these con-
nection parameters. Connection delays used in Fig. 6(a) are
set to

τ12 = 1.3, τ21 = 1.7, τ34 = 3.8, τ43 = 0.8, τ54 = 0.2,

τ35 = 0.1, τ23 = 1.0, τ63 = 0.1, τ67 = 1.0, τ75 = 8.0,

τ86 = 1.0, τ87 = 1.0, (31)

which satisfy Eq. (30). The color of the time series corre-
sponds to that of the oscillators in Fig. 1. The oscillators are
uncoupled (i.e., k = 0) until t = 30 and are then coupled. We
can see that the variables converge to the equilibrium point
(28) (i.e., aX− = 0.0070).

On the other hand, Fig. 6(b) shows the time series data for
the same k = 1.5 and connection delays,

τ12 = 1.0, τ21 = 2.0, τ34 = 4.0, τ43 = 0.6, τ54 = 0.2,

τ35 = 0.3, τ23 = 0.5, τ63 = 2.0, τ67 = 0.2, τ75 = 1.0,

τ86 = 0.7, τ87 = 0.5, (32)

which also satisfy Eq. (30). Although each delay in Eq. (32) is
different from that in Eq. (31), the stability of g(s) for Eq. (32)
is equivalent to that for Eq. (31) according to Corollary 1.
Figure 6(b) shows the time series data with connection delay
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FIG. 7. Time series data for Rössler oscillators with the network
topology shown in Fig. 1. The coupling parameters correspond to
point A1 in Fig. 4 and point A3 in Fig. 5(a).

(32). The independent oscillators are coupled at t = 30. As in
Fig. 6(a), all variables converge to aX− after coupling.

Note that connection delays other than τ12, τ21, τ34,

τ43, τ54, and τ35 are set randomly in Eqs. (31) and (32) be-
cause they do not affect the stability of steady state (3) (see
Corollary 2).

Now we consider the connection parameters corresponding
to point A1 in Fig. 4 and point A3: (τ34 + τ43, τ54 + τ43 +
τ35) = (6.0, 6.0) in Fig. 5(a). For these parameters, g1(s) and
H (s) + kL(s) in Eq. (29) are stable, but g2(s) is unstable.
Figure 7 shows the time series data for these parameters, in
which delays are set as follows: τ34 = 3.0, τ35 = 1.5, τ43 =
3.0, and τ54 = 1.5, and the other connection delays are the
same as those in Eq. (31). The oscillators are uncoupled for
t ∈ [0, 30), and are coupled at t = 30. The variables continue
to oscillate after coupling.

Figure 8 shows the time series data with the coupling
parameters,

(k, τ12 + τ21, τ34 + τ43, τ54 + τ43 + τ35) = (0.5, 1.0, 4.0, 2.0),

which corresponds to point B1 in Fig. 4 and point B2 in
Fig. 5(b), in which g1(s) is unstable, whereas g2(s) and
H (s) + kL(s) are stable. As in Figs. 6 and 7, coupling starts
at t = 30. After coupling, the variables in graph G(β ) in Fig. 2
(i.e., red and gray) converge to the equilibrium point and those
in graph G(α) in Fig. 2 (i.e., blue) oscillate. The above phe-
nomenon can be explained as follows. First, since g2(s), the
characteristic function for graph G(β,β ), is stable, the variables
in G(β,β ) converge to the equilibrium point (red in Fig. 8).
Second, the stabilized variables of G(β,β ) are input to graphs
G(β,α) and G(α) through edges containing delays (τ63, τ75) and

0 50 100 150 200 250

t

-10

-5.0

0.0

5.0

10

x
(1

)
i

(t
)

FIG. 8. Time series data for Rössler oscillators with the network
topology shown in Fig. 1. The coupling parameters correspond to
point B1 in Fig. 4 and point B2 in Fig. 5(b).

τ23 (see Fig. 1). Then the variables in graph G(β,α) (gray
in Fig. 8) converge to the equilibrium point. However, the
variables in graph G(α) (blue in Fig. 8) still oscillate because
g1(s), the characteristic function for graph G(α) in Fig. 2, is
unstable. The main reason for the above phenomenon is that
graph G(β,β ) is not affected by other oscillators because of the
directional coupling. Thus, this kind of phenomenon may be
ubiquitous for directed graphs in which some oscillators are
not affected by others.3

One may wonder why all the variables oscillate in Fig. 7
despite g1(s) being stable. This is because the oscillators in
graph G(α) receive the oscillating variable from oscillator 3
in graph G(β,β ), the characteristic function, g2(s), of which is
unstable in Fig. 7.

VI. DISCUSSION

In previous studies [32–36], the componentwise time-shift
transformation, which can change connection delays in delay-
coupled oscillators without causing qualitative changes in the
dynamics, has been proposed to make the analysis easier
for the case of heterogeneous connection delays. It has been
shown that connection delays in semicycles, which are closed
paths in the undirected graph obtained by removing the direc-
tion from all the edges in the original graph [33,34], play an
important role in the stability analysis. Specifically, as long as
the sum of the connection delays in semicycles is preserved,
the stability of the steady states does not change regardless of
variations in the connection delays. In other words, the stabil-
ity of the steady states depends on the sum of the connection
delays in semicycles. This implies that the number of connec-
tion delays to be considered can be reduced while preserving
stability by setting the connection delays at certain edges to
zero. In particular, for any network topology, the number of
connection delays can be reduced by up to L − N + 1 without
changing the stability, where L is the number of edges [34].

Although the above results based on the componentwise
time-shift transformation seem similar to those obtained in
the present study in terms of reducing the number of delays
for the stability analysis, they differ significantly in the fol-
lowing aspects. In the present study, the stability of the steady
states depends on the connection delays in directed cycles
in the original graph, which are different from semicycles.
For example, in Fig. 1, by focusing on semicycles, we can
reduce the number of connection delays to be considered to
five on the basis of componentwise time-shift transformation.
On the other hand, the present study shows that the number
can be reduced to three by focusing on directed cycles as
expressed by Eq. (11). Furthermore, the present study shows
that decomposition of the characteristic function by removing
edges that do not form directed cycles greatly simplifies the
analysis. Therefore, our results have the potential to simplify
the stability analysis of AD compared to the componentwise
time-shift transformation. However, it should be noted that the
results reported here apply only to diffusive connections as

3This is not partial AD [31], since partial AD is the stabilization
of equilibrium points for some oscillators despite the fact that the
oscillators are mutually (bidirectionally) coupled to each other.
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expressed by Eq. (2), whereas the componentwise time-shift
transformation is applicable to a more general class of delayed
systems.

VII. CONCLUSION

The present study investigated AD in delay-coupled os-
cillators on a general directed graph with heterogeneous
connection delays. We revealed that the characteristic function
for a steady state can be factorized into several functions.
These functions correspond to subgraphs in the original graph,
which can be obtained by removing all edges that do not
form directed cycles in the original graph. Furthermore, we
proved that the stability of the characteristic function depends
on the sums of the connection delays in the directed cycles
in the original graph. It was also shown that the stability is
unaffected by connection delays on edges that do not form
directed cycles. The above results can significantly simplify
the stability analysis of AD, even for a directed graph with
heterogeneous connection delays. The theoretical results were
validated by numerical simulations using chaotic oscillators.
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APPENDIX A: PROOF OF LEMMA 1

We consider two cases as follows: (1) a simple situa-
tion in which nodes 1 to N (α) belong to subgraph G(α), and
nodes N (α) + 1 to N (α) + N (β ) belong to subgraph G(β ) and
(2) a more general situation in which node v

(α)
j ∈ {1, . . . , N}

with j = 1, . . . , N (α) is the jth node in G(α) and node v
(β )
i ∈

{1, . . . , N} with i = 1, . . . , N (β ) is the ith node in G(β ).
First, we consider case 1. Assume that there exists at least

an edge from G(β ) to G(α), and no edges exist from G(α) to
G(β ). Then matrix E(s) in Eq. (7) is given by

E(s) =
(

E (α)(s) E12(s)
0N (β )×N (α) E (β )(s)

)
, (A1)

where E12(s) ∈ CN (α)×N (β )
. Thus, ĝ(s) in Eq. (9) is described

as

ĝ(s) = det

[
IN (α) − kG(s)E (α)(s) −kG(s)E12(s)

0N (β )×N (α) IN (β ) − kG(s)E (β )(s)

]
.

(A2)

Since the lower-left block matrix in Eq. (A2) is a zero matrix,
we can factorize Eq. (A2) into two functions as shown in
Eq. (12) [see Eq. (2.7.1) in [37]].

Second, we consider case 2. Here E(s) for case 2 is not
described by Eq. (A1). However, by interchanging the rows
and columns on the right-hand side of Eq. (9), we can rewrite
ĝ(s) for case 2 as that for case 1 [i.e., Eq. (A2)]. Thus, as in
case 1, ĝ(s) can be factorized into two functions, as shown in
Eq. (12). �

APPENDIX B: PROOF OF LEMMA 2

Without loss of generality, assume that acyclic graph G(α)

consists of nodes 1, . . . , N (α) and the indegree of node 1 is 0
[38]. Then the first row of T (α)(s) has all 0 elements, because
the first row of the adjacency matrix P(α) for graph G(α) has
all 0 elements. Thus, E (α)(s) in Eq. (19) is given by

E (α)(s) =
(

0 01,N (α)−1

E (α)
21 (s) E (α,β )(s)

)
, (B1)

where E (α)
21 (s) ∈ C(N (α)−1)×1. Here E (α,β )(s) ∈

C(N (α)−1)×(N (α)−1) contains information about the network
topology and the connection delays in graph G(α,β ), which is
obtained by removing node 1 from G(α). Therefore, g(α)(s) in
Eq. (13) is described as

g(α)(s) = det

[
1 01,N (α)−1

−kG(s)E (α)
21 (s) IN (α)−1 − kG(s)E (α,β )(s)

]
.

(B2)

Expanding the first row in Eq. (B2) yields

g(α)(s) = g(α,β )(s) := det[IN (α)−1 − kG(s)E (α,β )(s)].

We can see that g(α)(s) corresponding to graph G(α) is equiv-
alent to g(α,β )(s) in the remaining graph G(α,β ). Graph G(α,β )

is also an acyclic graph [38] and has a node with indegree 0.
Thus, by repeatedly expanding the determinant in a similar
way to that described above, we obtain g(α)(s) = 1. �

APPENDIX C: PROOF OF COROLLARY 1

In this proof, we show that each term obtained by ex-
panding Eq. (9) contains the sum of the connection delays in
directed cycles and does not contain each connection delay. In
order to calculate Eq. (9), let us define ĝ := IN − kG(s)E(s).
According to the definition of the determinant, Eq. (9) can be
described as [see, e.g., Eq. (2.7.1) in [37]]

det(ĝ) =
∑
σ∈Sσ

(−1)Nσ

N∏
i=1

ĝσ (i),i, (C1)

where ĝσ (i),i is the (σ (i), i) element of matrix ĝ. The function
σ that reorders the set {1, . . . , N} is a permutation of this set
(i.e., bijection from {1, . . . , N} onto itself). The value in the
ith position after reordering by σ is denoted by σ (i). Here
Nσ is the minimal number of pairwise transpositions needed
to transform σ (1), . . . , σ (N ) to 1, . . . , N , and Sσ denotes the
set of all permutations. The following shows that the sums of
the connection delays in directed cycles appear in the term∏N

i=1 ĝσ (i),i in Eq. (C1).
According to the property of permutation σ , in order to cal-

culate the term
∏N

i=1 ĝσ (i),i = ĝσ (1),1 · · · ĝσ (N ),N , N elements
are selected from ĝ so that the column and row numbers do not
overlap. Note that the diagonal elements of ĝ are ĝσ (i),i = 1 for
i = σ (i) ∈ {1, . . . , N}, whereas the nondiagonal elements are
given by ĝσ (i),i = −kpσ (i)i

dσ (i)
G(s)e−sτσ (i)i for i �= σ (i) [see Eq. (9)].

The nondiagonal elements comprise information about the
edge from node i to node σ (i) (i.e., pσ (i)i and τσ (i)i). There
are N! permutations of σ in Sσ , i.e., there are N! terms
of

∏N
i=1 ĝσ (i),i in Eq. (C1). In the following, we divide N!
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permutations σ into two cases: (1) n = 0 and (2) n �= 0, where
n is the number of integers i ∈ {1, . . . , N} that satisfy i = σ (i)
in a permutation σ .

1. For σ satisfying n = 0 (i.e., i �= σ(i),∀i)

In this case,
∏N

i=1 ĝσ (i),i is calculated by selecting N elements
from the nondiagonal elements of ĝ. Since the nondiagonal el-
ements ĝσ (i),i include information about the edge from node i
to node σ (i), selecting N elements from nondiagonal elements
of ĝ corresponds to selecting N edges in the graph. Further-
more, these N elements are selected such that the column and
row numbers do not overlap. This corresponds to N edges
being selected in the graph such that each edge has a different
head node and a different tail node. Therefore, N selected
edges can only make up directed cycles, in which the indegree
and outdegree for all nodes are 1. The term

∏N
i=1 ĝσ (i),i can be

calculated as

N∏
i=1

ĝσ (i),i = {−kG(s)}N

d1 · · · dN
e−s(τσ (1)1+···+τσ (N )N ). (C2)

Thus, the sums of connection delays in the directed cycles,
which are formed by N selected edges, appear in the exponent
of Eq. (C2). Note that N selected edges may create multiple
independent directed graphs. For this case, the sums of con-
nection delays in the multiple directed cycles appear in the
exponent of Eq. (C2).

2. For σ satisfying n �= 0

In this case, there are n integers i that hold i = σ (i). Without
loss of generality, assume i = σ (i) for i ∈ {1, . . . , n} (i.e.,
σ (1) = 1, . . . , σ (n) = n) Since the diagonal elements of ĝ are
1, we obtain

N∏
i=1

ĝσ (i),i = ĝ1,1 · · · ĝn,n

N∏
i=n+1

ĝσ (i),i

=
N∏

i=n+1

ĝσ (i),i. (C3)

In order to calculate
∏N

i=n+1 ĝσ (i),i, we select N − n elements
from nondiagonal elements of the matrix that is obtained by
removing the first n rows and columns from ĝ. This corre-
sponds to selecting N − n edges from a graph that is obtained
by removing nodes 1 to n from the original graph. As in
case 1, these selected N − n edges form directed cycles in the
remaining graph. The right-hand side of Eq. (C3) is calculated
as follows:

N∏
i=n+1

ĝσ (i),i = {−kG(s)}N−n

dn+1 · · · dN
e−s(τσ (n+1)n+1+···+τσ (N )N ), (C4)

where the exponent includes the sums of the connection de-
lays in the directed cycles in the remaining graph.

From cases 1 and 2, we can confirm that all N! terms of
Eq. (C1) include the sums of connection delays in the directed
cycles. �
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