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Dynamically induced conformation depending on excited normal modes of fast oscillation
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We present dynamical effects on conformation in a simple bead-spring model consisting of three beads
connected by two stiff springs. The conformation defined by the bending angle between the two springs is
determined not only by a given potential energy function depending on the bending angle, but also by fast motion
of the springs which constructs the effective potential. A conformation corresponding with a local minimum of
the effective potential is hence called the dynamically induced conformation. We develop a theory to derive the
effective potential using multiple-scale analysis and the averaging method. A remarkable consequence is that
the effective potential depends on the excited normal modes of the springs and amount of the spring energy.
Efficiency of the obtained effective potential is numerically verified.
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I. INTRODUCTION

Conformation is deeply connected with function. A typical
example is a biomolecule whose conformation is crucial for
binding a ligand [1–5]. Morphological computation [6–8] is
another example, which can be found, for instance, as walking
robots [9,10]. Mechanical metamaterial [11] provides several
examples like the Miura fold, which exhibits negative Pois-
son’s ratio [12].

Realization of conformations is usually associated with the
minimum of a potential energy function. In addition to the
potential function, dynamics sometimes contributes to con-
struct an effective potential. A well-known example is the
Kapitza pendulum [13,14]: An inverted pendulum persists
against the gravity by applying a rapidly oscillating external
force, since the effective potential provides a local minimum
at the inverted position.

We present another dynamical effect on conformation re-
alized in autonomous Hamiltonian systems containing fast
and slow motion. Consider a bead-spring model [15] con-
sisting of three beads connected by two stiff springs. The
conformation of this system can be identified with the bending
angle between the two springs. If the system has a bending
potential which depends only on the bending angle, one may
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imagine that the bending angle goes to a local minimum of
the bending potential. The conformation of this system is,
however, determined by the effective potential which consists
of the bending potential and contribution from the fast spring
motion.

More precise description of the above phenomenon is as
follows. First of all, the dynamical effect is comparable with
the bending potential under the condition that large bending
motion is sufficiently slow than the spring motion. The bend-
ing potential dominates the effective potential when the spring
energy is sufficiently small. However, the dynamical effect
enlarges as the spring energy increases, and a local minimum
of the effective potential does not necessarily coincide with
a local minimum of the bending potential. We call a con-
formation corresponding to a local minimum of the effective
potential a dynamically induced conformation (DIC). Further
interesting fact is that the effective potential depends on the
excited normal modes of the springs in addition to the spring
energy. The three-body bead-spring model has the two normal
modes of the springs, and each mode makes a different valley.

The three-body system is quite simple, and hence it is
theoretically tractable and clearly shows DIC. The aim of this
paper is to present the dynamical contribution to conformation
in the three-body system. It is worth noting that the bead-
spring model mimics several systems: a polymer [15,16],
a microscopic artificial swimmer [17], a soft magnetic
nanowire [18], and a semiflexible macromolecule [19].
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FIG. 1. The three-body bead-spring model. We assume the sym-
metric masses m1 = m3 = m, and the two springs have the identical
potential.

A theoretical analysis reveals that the essence of DIC is
existence of multiple timescales, which is realized in the
bead-spring model by stiff springs and slow bending motion.
Appearance of multiple timescales is generic in nature. For
instance, biomolecules have several forces of diverse strength
as strong covalent bonds, intermediate hydrogen bonds, and
weak van der Waals forces, and each of them has a character-
istic timescale. DIC therefore enriches understanding of the
origin of conformation change and its function.

A celebrated example of the dynamically constructed ef-
fective potential is found in the aforementioned Kapitza
pendulum, and it has been studied in a wide range of
fields [20–36]. The development of the Kapitza pendulum
suggests that DIC will provide a large spectrum of appli-
cations. Nevertheless, we underline three crucial differences
between DIC and the Kapitza pendulum: (1) The bead-spring
model is autonomous and the effective potential is intrinsi-
cally determined, while one in the Kapitza pendulum can be
controlled by the applied external force. (2) The effective
potential depends on the excited normal modes in the bead-
spring model. (3) The local minimum points of the effective
potential may continuously move depending on the spring
energy in the bead-spring model, while the local minimum
created by the external vertical oscillation is fixed at the in-
verted position in the Kapitza pendulum.

This paper is organized as follows. The three-body bead-
spring model is presented in Sec. II with the two important
assumptions to have DIC. Following the assumptions, we
develop in Sec. III a theory to describe slow bending mo-
tion using a multiple-scale analysis [37] and the averaging
method [38–40]. The theory provides the effective potential
depending on the excited normal modes of the springs and
amount of the spring energy. Examples of the effective poten-
tial are exhibited in Sec. IV to reveal the above dependency.
Efficiency of the effective potential is examined through nu-
merical simulations in Sec. V. The final Sec. VI is devoted to
summary and discussions.

II. MODEL

The three-body bead-spring model is sketched in Fig. 1.
We assume that the beads move on a two-dimensional plane.
The mass and the position of the jth bead are, respectively,
denoted by mj and r j ∈ R2. The Lagrangian of the model is
expressed by

L = 1

2

3∑
j=1

mj ||ṙ j ||2 − V (r1, r2, r3), (1)

where ṙ j := dr j/dt and || · || is the Euclidean norm: ||r|| =√
x2 + y2 for r = (x, y) ∈ R2. The jth and the ( j + 1)th beads

are connected by a stiff spring, and we assume that the two
springs have the identical potential. Further, for simplicity,
we focus on the symmetric masses: m1 = m3 = m. The term
V represents the potential energy function, which will be
specified later.

We assume that the system described by Eq. (1) has
the two-dimensional translational symmetry and the ro-
tational symmetry, which induce the conservation of the
two-dimensional total momentum vector and of the total an-
gular momentum, respectively. The total momentum vector
can be set as the zero vector without loss of generality, while
the total angular momentum is assumed to be zero. The three
integrals reduce the system, and the reduced Lagrangian is

L = 1

2

3∑
α,β=1

Cαβ (y)ẏα ẏβ − V (y), (2)

where

y = (y1, y2, y3)T = (l1, l2, φ)T (3)

and the superscript T represents transposition. The variables
l1 and l2 are the lengths of the two springs,

l j = ||r j+1 − r j ||, ( j = 1, 2) (4)

and φ is the bending angle,

cos φ = (r3 − r2) · (r2 − r1)

||r3 − r2||||r2 − r1|| , (5)

where · is the Euclidean inner product. The function Cαβ (y) is
the (α, β ) element of the size-3 symmetric matrix C(y), whose
explicit form is given in Appendix A. The potential energy
function V (y) consists of the two parts as

V (y) = Vspring(l1, l2) + Vbend(φ). (6)

We call Vspring and Vbend the spring potential and the bending
potential, respectively.

We introduce the two assumptions to realize DIC in the
above model. Let ε be a dimensionless small parameter as
|ε| � 1. The two assumptions are the following:

(A1) The amplitudes of the springs are sufficiently small
comparing with the natural length. The ratio is of O(ε).

(A2) Large bending motion is sufficiently slow than the
spring motion. The ratio of the two timescales is of O(ε).

These two assumptions lead the effective potential for the
bending angle φ. A local minimum point of the effective
potential does not necessarily coincide with a local minimum
point of the bending potential Vbend(φ). That is, the bending
angle oscillates around an angle at which the bending potential
Vbend(φ) does not take a local minimum. We develop a theory
to derive the effective potential in Sec. III.

III. THEORY

From now on, we use the Einstein notation for the sum: We
take the sum over an index if it appears twice in a term. We
derive the equation of motion for the slow bending motion,
and construct the effective potential induced by the fast spring
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motion. A review of the Kapitza pendulum is provided in
Appendix B, which might be helpful to understand the theory.

A. Multiscale analysis and averaging

The Euler-Lagrange equations derived from Eq. (2) are

Cαβ (y)ÿβ +
[
∂Cαβ

∂yγ

(y) − 1

2

∂Cβγ

∂yα

(y)

]
ẏβ ẏγ + ∂V

∂yα

(y) = 0,

(7)
where α, β, γ ∈ {1, 2, 3}. These equations are the starting
point of our theory.

Assumption (A2) induces the two timescales of t0 = t and
t1 = εt . The fast timescale t0 describes the fast spring motion,
and the slow timescale t1 corresponds to the slow bending
motion. The two timescales transform the time derivative into

d

dt
= ∂

∂t0
+ ε

∂

∂t1
. (8)

From assumptions (A1) and (A2) the variables l j and φ are
expanded as

l j (t0, t1) = l (0)
j + εl (1)

j (t0, t1), l (0)
j = l∗ ( j = 1, 2)

φ(t0, t1) = φ(0)(t1) + εφ(1)(t0, t1), (9)

where l∗ is the natural length of the two springs. As we will
observe later, the fast motion of φ(1)(t0, t1) is induced by the
fast motion of the springs and is of the same order O(ε) as
the spring amplitudes. We are interested in φ(0)(t1), which
represents large and slow bending motion. We denote the
above expansions for simplicity as

y(t0, t1) = y(0)(t1) + εy(1)(t0, t1). (10)

We further expand the potential energy function V . The
spring potential Vspring is assumed to be expanded into the
Taylor series around the natural length as

Vspring(l1, l2) = k

2

2∑
j=1

(l j − l∗)2 + O(|l j − l∗|3). (11)

That is, the two springs have the same spring constant

k = ∂2Vspring

∂l2
j

(l∗, l∗) ( j = 1, 2). (12)

The bending potential is assumed to be expanded into the
series of ε as

Vbend(φ) = V (0)
bend(φ) + εV (1)

bend(φ) + ε2V (2)
bend(φ) + · · · . (13)

The two assumptions (A1) and (A2) induce

V (0)
bend(φ), V (1)

bend(φ) ≡ 0 (14)

as shown in Appendix C, and hence the leading term of Vbend

is of O(ε2). This ordering results from the assumption (A2):
The force from the bending potential Vbend should be weaker
than that of the spring potential Vspring.

We construct the equations of motion order by order, by
substituting Eqs. (8), (10), (11), and (13) into Eq. (7). In
O(ε0), we have no terms, because ∂y(0)

β /∂t0 = 0, ẏβ, ÿβ =
O(ε), and ∂V/∂yα = O(ε).

In O(ε) we have

∂2y(1)

∂t2
0

= −X(y(0) )y(1). (15)

The size-3 matrix X is defined by

X(y) = [C(y)]−1K, (16)

where

K =
⎛
⎝k 0 0

0 k 0
0 0 0

⎞
⎠. (17)

See Appendix D for the explicit form of X(y(0) ). The third
column vector of X is the zero vector, and the right-hand side
of Eq. (15) has no contribution from the third element of y(1),
namely, φ(1). The fast motion of φ(1) is hence induced by l (1)

1

and l (1)
2 , as mentioned after Eq. (9).

The slow motion of φ(0)(t1) is described in O(ε2), and the
equation of motion for φ(0)(t1) is

C3β (y(0) )(ÿβ )(2) +
[
∂C3β

∂yγ

(y(0) ) − 1

2

∂Cβγ

∂φ
(y(0) )

]
(ẏβ )(1)(ẏγ )(1)

+ ∂C3β

∂yγ

(y(0) )(ÿβ )(1)y(1)
γ + dV (2)

bend

dφ
(φ(0) ) = 0. (18)

Here (ẏ)(1) is the first order part of ẏ and (ẏ)(1) �= dy(1)/dt .
The explicit forms are

(ẏ)(1) = dy(0)

dt1
+ ∂y(1)

∂t0
, (ÿ)(1) = ∂2y(1)

∂t2
0

,

(ÿ)(2) = d2y(0)

dt2
1

+ 2
∂2y(1)

∂t0∂t1
. (19)

Equation (18) contains the fast oscillation of y(1), and we
eliminate it by taking the average over the fast timescale t0.
The average is defined by

〈ϕ〉(t1) = lim
T →∞

1

T

∫ T

0
ϕ(t0, t1) dt0 (20)

for an arbitrary function ϕ(t0, t1). After taking the average and
recalling y(0) = (l∗, l∗, φ(0) ), Eq. (18) is simplified to

C33(y(0) )
d2φ(0)

dt2
1

+ 1

2

∂C33

∂φ
(y(0) )

(
dφ(0)

dt1

)2

= −dV (2)
bend

dφ
(φ(0) ) + A. (21)

The right-hand side represents the force, and the averaged
term

A = 1

2
Tr

[
∂C
∂φ

(y(0) )

〈
∂y(1)

∂t0

(
∂y(1)

∂t0

)T
〉]

(22)

represents the effective force yielded by the fast spring mo-
tion. Here Tr represents the matrix trace. The right-hand side
of Eq. (22) depends on y(0) and y(1). The y(0) dependence can
be regarded as the φ(0) dependence, since y(0) = (l∗, l∗, φ(0) )
and l∗ is constant. y(1) depends on t0 and t1, and the t0 depen-
dence is averaged out. We have to eliminate the t1 dependence
to obtain the effective potential as a function of φ(0).
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B. Explicit form of the averaged term

We compute the explicit form of the averaged term A by
performing the diagonalization of Eq. (15), and observe the
t1 dependence, which has to be eliminated. Let P diagonalize
X as

X(y(0) )P(y(0) ) = P(y(0) )�(y(0) ). (23)

The diagonal matrix �(y(0) ) consists of the eigenvalues of
X(y(0) ) and is denoted by

�(y(0) ) =
⎛
⎝λ1(y(0) ) 0 0

0 λ2(y(0) ) 0
0 0 0

⎞
⎠, (24)

where

λ1(y(0) ) = k(M2 − M1 cos φ(0) )

M2
2 − M2

1

,

λ2(y(0) ) = k(M2 + M1 cos φ(0) )

M2
2 − M2

1

, (25)

and

M2 = m(m + m2)

2m + m2
, M1 = m2

2m + m2
. (26)

A diagonalizing matrix is

P(y(0) ) = (
pin, panti, pφ

) =

⎛
⎜⎝ 1/

√
2 1/

√
2 0

1/
√

2 −1/
√

2 0
v(y(0) ) 0 1

⎞
⎟⎠
(27)

with

v(y(0) ) =
√

2

l∗

M1 sin φ(0)

M2 − M1 cos φ(0)
. (28)

The three column vectors pin, panti, and pφ are eigenvectors of
X(y(0) ), and we call the three modes as the in-phase mode, the
antiphase mode, and the zero-eigenvalue mode, respectively.

To solve Eq. (15), we perform the change of variables as

y(1) = P(y(0) )η, (29)

and η solves the diagonalized equations

∂2η

∂t2
0

= −�(y(0) )η. (30)

Denoting the amplitudes of the in-phase and the antiphase
modes by w1(t1) and w2(t1), respectively, which evolve in
the slow timescale t1 through the coupling with φ(0)(t1), and
setting the amplitude of the zero-eigenvalue mode as zero, we
introduce the diagonal matrix

W(t1) =
⎛
⎝w1(t1) 0 0

0 w2(t1) 0
0 0 0

⎞
⎠. (31)

Putting this all together and remembering that the average
of the square of a sinusoidal function is 1/2, we have

A(φ(0),w1,w2) = 1

4
Tr

[
∂C
∂φ

(y(0) )P�W2PT

]

= −k

4

[
M1 sin φ(0)

M2 − M1 cos φ(0)
w2

1

− M1 sin φ(0)

M2 + M1 cos φ(0)
w2

2

]
. (32)

The averaged term A contains the two evolving amplitudes
w1(t1) and w2(t1). The untrivial evolution of the amplitudes
differs from the Kapitza pendulum, which also contains the
amplitude of the external oscillation but it is explicitly given.
We have to eliminate the two unknown amplitudes from the
averaged term A to obtain a closed equation for φ(0)(t1).

C. Hypothesis and energy conservation

The strategy to eliminate the two unknown amplitudes
w1(t1) and w2(t1) is as follows. First, we introduce a hy-
pothesis, which is inspired by the adiabatic invariant. The
hypothesis reduces the number of unknown variables from
two to one. Second, we eliminate the remaining unknown
variable by using the energy conservation law.

The first step is the introduction of the hypothesis ex-
pressed by

(H ) w1(t1)2 = ν1w(t1)2, w2(t1)2 = ν2w(t1)2, (33)

where ν1 and ν2 are constants satisfying

ν1 + ν2 = 1. (34)

A physical interpretation of the hypothesis (H) is that the
slow bending motion exchanges energy with the fast spring
motion in proportion to its normal mode energy. Validity of
the hypothesis (H) is examined in Appendix E. We note that
the hypothesis should be valid if the modification of φ(0)

is sufficiently small. The unique unknown variable is now
w(t1), while the constants ν1 and ν2 have been included in
the equations of motion.

The second step is the energy conservation. The leading
order of the total energy is of O(ε2), and we expand it as E =
ε2E (2) + O(ε3). The leading term is

E (2) = 1
2 Tr[C(y(0) )(ẏ)(1)(ẏ)(1)T]

+ 1
2 Tr[Ky(1)y(1)T] + V (2)

bend(φ(0) ). (35)

Taking the average over t0, we have

〈E (2)〉 = 1

2
Tr

[
C(y(0) )

dy(0)

dt1

(
dy(0)

dt1

)T
]

+ k

2
TrW2 + V (2)

bend(φ(0) ). (36)

Substituting Eq. (33), the unique unknown variable w is ob-
tained as

kw(t1)2 = 2
[
E (2) − V (2)

bend(φ(0) )
] − C33(y(0) )

(
dφ(0)

dt1

)2

,

(37)
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where we denoted 〈E (2)〉 by E (2) for simplicity. Finally, we
eliminate the unknown amplitudes from the averaged term A
represented in Eq. (32) by substituting Eqs. (33) and (37):

A(φ(0) ) =
[

E (2) − V (2)
bend(φ(0) )

2
− 1

4
C33(y(0) )

(
dφ(0)

dt1

)2
]

Tν,

(38)

where

Tν = −
(

M1 sin φ(0)

M2 − M1 cos φ(0)
ν1 − M1 sin φ(0)

M2 + M1 cos φ(0)
ν2

)
.

(39)

We underline that the averaged term A depends on the con-
stants ν1, ν2, and E (2).

D. Final result

Substituting Eq. (38) into Eq. (21), we have

d2φ(0)

dt2
1

+ Fν (φ(0) )

(
dφ(0)

dt1

)2

+ Gν (φ(0) ) = 0, (40)

where

Fν (φ(0) ) = 1

2C33(y(0) )

∂C33

∂φ
(y(0) ) + 1

4
Tν, (41)

Gν (φ(0) ) = 1

C33(y(0) )

[
dV (2)

bend

dφ
(φ(0) ) − E (2) − V (2)

bend(φ(0) )

2
Tν

]
,

(42)

and

C33(φ(0) ) = l2
∗
2

(M2 − M1 cos φ(0) ). (43)

Equation (40) is the closed equation for the slow bending
motion. It is reproduced as the Euler-Lagrange equation of
the effective Lagrangian

Leff

(
φ(0),

dφ(0)

dt1

)
= 1

2
Meff (φ(0) )

(
dφ(0)

dt1

)2

− Veff (φ(0) ).

(44)
Here the effective (dimensionless) mass Meff (φ(0) ) is

Meff (φ(0) ) = exp

[
2

∫ φ(0)

0
Fν (z) dz

]

=
(

M2 − M1 cos φ(0)

M2 − M1

)1−ν1/2

×
(

M2 + M1

M2 + M1 cos φ(0)

)ν2/2

, (45)

and the effective potential Veff (φ(0) ) is

Veff (φ(0) ) =
∫ φ(0)

0
Meff (z)Gν (z) dz. (46)

Note that the physical dimension of Veff differs from V (2)
bend due

to the factor 1/C33.
The effective potential Veff of Eq. (46) is the main product

of the theory. A remarkable observation is that Veff depends on
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φ

FIG. 2. The effective potential Veff (φ). Vbent ≡ 0. The numbers in
the panels represent the values of ν1, while ν2 = 1 − ν1. The total
energy E (2) is an overall factor of Veff and is set as E (2) = 1. Graphs
are shifted in the vertical direction for a graphical reason.

energy E (2) and the normal mode energy distribution (ν1, ν2)
through Meff [Eq. (45)] and Gν [Eq. (42)]. Examples of the
effective potential are given in Sec. IV.

IV. EFFECTIVE POTENTIAL

We exhibit examples of the effective potential with varying
the parameters E (2) and ν1 (remember that ν2 = 1 − ν1). The
equal mass condition m2 = m is assumed unless there other-
wise stated. Note that the in-phase (antiphase) mode is mode
1 (mode 2) as defined in Sec. III B.

A. Examples without bending potential

First of all, we observe the effective potential Veff without
bending potential, Vbend ≡ 0, to observe the simplest case. We
exhibit effective potentials for some values of ν1 (ν2 = 1 − ν1)
in Fig. 2. The dynamical contribution is completely opposite
between the in-phase mode and the antiphase mode. The
in-phase mode makes a valley at φ = 0, while the antiphase
mode makes a valley at φ = π . A precise analysis reveals that
there are the two local minima at φ = 0 and π in the interval
of ν1 ∈ (1/4, 3/4). The coexistence interval is generalized to

ν1 ∈
(M2 − M1

2M2
,

M2 + M1

2M2

)
(47)

for any value of m2. See Appendix F for details.

B. Examples with a bending potential

Next, we introduce an example of the bending potential as

V (2)
bend(φ) = cos 2φ + 1. (48)

This potential has the two minima at φ = ±π/2. We set the
equal mass condition, m2 = m. Since Veff depends on the
normal mode energy distribution (ν1, ν2) and the total energy
E (2), we show graphs of the effective potential for (ν1, ν2) =
(1, 0) (in-phase), (1/2, 1/2) (mixed), and (0,1) (antiphase)
with varying the value of E (2) in Fig. 3. The effective potential
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FIG. 3. The bending potential V (2)
bend(φ) = 2 cos φ + 1 (a) and the

effective potential Veff (φ) (b–d). (b) (ν1, ν2) = (1, 0) (the in-phase
mode). (c) (ν1, ν2) = (0.5, 0.5) (a mixed mode). (d) (ν1, ν2) = (0, 1)
(the antiphase mode). The numbers in panels (b)–(d) represent values
of E (2). Graphs are shifted in the vertical direction for a graphical
reason. The black vertical straight lines mark the minimum points of
V (2)

bend(φ).

Veff is similar to the bending potential V (2)
bend when the total

energy E (2) is small. As the total energy increases, the local
minimum points move from φ = ±π/2 towards φ = 0 and/or

TABLE I. The seven types of local minimum point sets of the
effective potential Veff . The symbol φ� represents a conformation
which is neither φ = 0 nor φ = π . For each type the conformation
φ with the symbol M (O) is a local minimum point (not a local
minimum point).

Conformation φ I II0 IIπ III0 IIIπ IV V

φ�( �= 0, π ) M O O M M O M
0 O M O M O M M
π O O M O M M M

φ = π . The local minimum points of Veff are the dynamically
induced conformations (DICs).

The effective potential is determined at each point on the
(E (2), ν1) plane and yields the set of the local minimum points.
We categorize the local minimum points into three classes:
φ = 0, π , and φ�( �= 0, π ). The three classes induce the seven
types of sets as arranged in Table I. By using the seven types,
the (E (2), ν1) plane is divided into regions each of which is
assigned by a type of the set as reported in Fig. 4. We stress
that the seven types are realized by changing the total energy
E (2) and the mode energy distribution ν1.

Finally, we present a phase diagram by varying the center
mass m2 with fixing E (2) = 4 in Fig. 5. We make two remarks.
First, the seven types are also realized by changing the center
mass m2. The regions assigned by the types III0, IIIπ , IV, and
V are enhanced compared with Fig. 4. This fact suggests that
the mass distribution is useful to control the conformation.
Second, the dynamical contribution dominates the effective
potential when m2 is small. This domination can be explained
from Eq. (39), which is a part of the averaged term A, and
Eq. (26), which is the definition of M2 and M1. We have M2 →
M1 as m2 → 0 from Eq. (26). Thus, the denominators of the

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40

I

II0

IIπ

III0

IIIπ

IV
IV

V

ν 1

E(2)

FIG. 4. The phase diagram on the (E (2), ν1) plane with the equal
mass condition m2 = m. m = 1. ν2 = 1 − ν1. The effective potential
takes a local minimum at φ = 0 over the red dotted line, and at
φ = π under the blue dashed line, where the two lines are obtained
from Eqs. (F17) and (F18), respectively. φ = φ� ( �= 0, π ) is a local
minimum point between the two solid black lines. See Table I for the
types from I to V.
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FIG. 5. The phase diagram on the plane (m2/m, ν1) with E (2) =
4. The meanings of the lines are the same as Fig. 4. See Table I for
the types from I to V.

function Tν can be close to 0 near φ(0) = 0, π , and hence the
contribution from the averaged term becomes large.

V. NUMERICAL TESTS

We verify the efficiency of the effective potential through
numerical simulations of the model.

A. Setting

Numerical simulations are performed using the fourth-
order symplectic integrator [41] for the Hamiltonian

H = 1

2

3∑
j=1

||p j ||2
mj

+ V (r1, r2, r3), p j = mj ṙ j, (49)

which is the Legendre transform of Eq. (1). The time step is
set as 
t = 10−3. The relative energy error is suppressed in
the reported simulations as |(Enum − E0)/E0| < 10−10, where
E0 and Enum are, respectively, the initial energy and the nu-
merically obtained energy.

The two springs are assumed to be linear and Vspring is

Vspring(l1, l2) = k

2
[(l1 − l∗)2 + (l2 − l∗)2], (50)

because the theory includes only the linear part of the springs.
The bending potential is Vbend = ε2V (2)

bend, and we use Eq. (48)
as V (2)

bend. The small parameter ε is fixed as ε = 0.1. The masses
are equal, and m1 = m2 = m3 = m = 1. The spring constant
is k = 10, and the natural length is l∗ = 1.

B. Initial condition

We set the initial condition as follows. All the beads have
zero initial velocities in the x and y directions. The beads
are once placed at the natural lengths of the springs with the
bending angle φ∗. Then, under the hypothesis (H), we give
small displacements of l1, l2, and φ so as to excite the normal
modes of the springs for a given pair of (ν1, ν2). The initial

condition, denoted by the subscript 0, is summarized as⎛
⎝l1,0

l2,0

φ0

⎞
⎠ =

⎛
⎝ l∗

l∗
φ∗

⎞
⎠ + εw[

√
ν1 pin(y(0) ) + √

ν2 panti],

⎛
⎝l̇1,0

l̇2,0

φ̇0

⎞
⎠ =

⎛
⎝0

0
0

⎞
⎠. (51)

See Eq. (27) for the definitions of pin and panti. We note that
the amplitude w is of O(ε0). In the Hamiltonian system of
Eq. (49), a corresponding initial condition is

r1,0 =
(−l1,0 cos(φ0/2)

l1,0 sin(φ0/2)

)
, r3,0 =

(
l2,0 cos(φ0/2)
l2,0 sin(φ0/2)

)

r2,0 = p1,0 = p2,0 = p3,0 = 0, (52)

where 0 is the two-dimensional zero vector. The above initial
condition gives the second-order total energy as

E (2) = k

2
w2 + V (2)

bend(φ0). (53)

In the next section we set φ∗ = π/2, which is a local mini-
mum point of the bending potential Vbend. The initial condition
Eq. (51) hence has two free parameters of the amplitude w,
which is equivalent with E (2) through Eq. (53), and the normal
mode energy ratio ν1 (remember that ν2 = 1 − ν1).

C. Efficiency of the effective potential

We concentrate on the in-phase mode, (ν1, ν2) = (1, 0).
Temporal evolution of φ(t ) is exhibited in Figs. 6(d), 6(e),
and 6(f) for three values of w, corresponding to three values
of E (2) [see Eq. (53)]. Small and fast oscillation of φ(t ) comes
from φ(1) and is induced from l (1)

j , governed by Eq. (15).
When the amplitude w is small, the bending angle φ almost
stays around the initial value φ0 [Fig. 6(d)], as is predicted
from the bending potential Vbend. However, the amplitude of
oscillation of φ becomes large as w gets large, and the center
of oscillation approaches the zero [Figs. 6(e) and 6(f)]. We
estimate the center of oscillation by the time average

φave = 1

T

∫ T

0
φ(t ) dt, T = 1000. (54)

The estimated center is plotted as a function of E (2) in
Fig. 6(g) with the minimum φmin and the maximum φmax of
φ(t ) in t ∈ [0, 1000].

Two remarks are in order. First, the minimum and the max-
imum of φ are well predicted by Veff . There is a gap between
φave and the bottom of Veff in the energy interval approxi-
mated by E (2) ∈ [6.8, 10]. The gap is not counterevidence but
supporting evidence of the theory. This gap comes from the
inequality Veff (0) < Veff (φ0), which implies that the bending
angle climbs over the saddle point at φ = 0. This passing is
confirmed by the jump of the theoretical minimum value of φ.
Second, the center of oscillation is continuously modified as
the spring energy increases. The conformation is determined
not by a local minimum of the bending potential Vbend but by a
local minimum of the effective potential Veff derived from dy-
namics. We conclude that the effective potential successfully
predicts the slow bending motion.
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FIG. 6. Graphs of the effective potential (a–c) and temporal
evolution of φ(t ) with the reference conformation φ∗ = π/2 (d–f).
(ν,1 , ν2) = (1, 0). The amplitude w is (a, d) w = 0.5, (b, e) w = 1,
and (c, f) w = 1.5. The vertical black straight solid line represents
a minimum point of Veff . The two vertical gray straight dashed
lines represent the two values of φ satisfying Veff (φ) = Veff (φ0) and
belonging to the same valley. (g) Energy dependence of the time
average φave (red circles) with the minimum φmin (blue triangles)
and the maximum φmax (purple inverse triangles) of φ in the time
interval t ∈ [0, 1000]. The black solid and the gray dashed thick lines
correspond, respectively, to the vertical black and gray straight lines
presented in panels (d), (e), and (f). The three black vertical solid
lines indicate the values of energy, which correspond to panels (d),
(e), and (f) from left to right.

We provide movies in the Supplemental Material [42] to
show dynamics of the system. See Appendix G for explana-
tion of the movies.

VI. SUMMARY AND DISCUSSIONS

We have investigated the three-body bead-spring model
and demonstrated the dynamically induced conformation
(DIC). The fast motion of the springs induces the effective
potential for the slow bending motion, and the conformation
is governed by the bottoms of the effective potential instead of
the bending potential. One crucial remark is that the effective
potential depends on the excited normal modes and its energy:
The effective potential tends to have the minimum at φ = 0

(φ = π ), by exciting the in-phase (antiphase) mode. More-
over, a mixed mode makes the two local minima at φ = 0
and π .

We have developed a theory to derive the effective poten-
tial based on the multiple-scale analysis and the averaging
method. The main idea of the theory is to introduce a hypoth-
esis inspired from the adiabatic invariant. The hypothesis with
the energy conservation law eliminate the unknown variables
being unavoidable in autonomous systems, and the elimina-
tion introduces the mode dependence and the total energy
dependence into the effective potential. A theory for a generic
system can be found in Refs. [43,44].

Efficiency of the theoretically obtained effective potential
is successfully examined through numerical simulations. The
bending angle oscillates in general, and the center of oscil-
lation is not a bottom of the bending potential, but a bottom
of the effective potential. An extreme example is that a local
maximum point of the bending potential becomes a local
minimum point of the effective potential. The amplitude of
the bending angle oscillation is also predicted by the effective
potential.

The studied model is quite simple as we neglected the
excluded volume effect, for instance. The potential of the
excluded volume effect, and any other potentials between
the two beads of the ends, can be treated in the same way
as the bending potential discussed in this article (see Ap-
pendix H). Therefore, the phenomenon of DIC is universal
as long as the two assumptions (A1) and (A2) hold.

We give three discussions on DIC: universality, application
to control, and the beat effect. First, DIC must be universal
since the essential mechanism to have DIC is existence of
multiple timescales. Indeed, numerical simulations show that
N-body bead-spring systems exhibit DIC [46]. Details will be
reported elsewhere. Second, it is interesting to use DIC for
controlling the conformation of proteins by changing energy.
Control of a robot is also an interesting subject by changing
the center mass m2 as shown in Fig. 5. Finally, we have
neglected the beat effect between the eigenfrequencies of the
fast springs, namely, λ1 = λ2 at φ = ±π/2. The beat effect
may trigger the Arnold diffusion [45] since the full dynamics
has the three degrees of freedom, (l1, l2, φ) (see, for example,
Refs. [47,48] for the recent progress on systems of three
degrees of freedom). It will be interesting to observe evolution
of the system in a very long time beyond the slow timescale
t1 = εt .
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APPENDIX A: LAGRANGIANS OF THE THREE-BODY
BEAD-SPRING MODEL

The system of Eq. (1) has the two-dimensional trans-
lational symmetry and the rotational symmetry. We reduce
Eq. (1) and derive Eq. (2) by introducing the internal co-
ordinates. For the reduction we perform three changes of
variables.

The first change of variables introduces the vectors along
the springs, denoted by q1 and q2, with the center-of-mass qG.
This change of variables is expressed as⎛

⎝q1
q2
qG

⎞
⎠ =

⎛
⎝ −1 1 0

0 −1 1
m/M m2/M m/M

⎞
⎠

⎛
⎝r1

r2

r3

⎞
⎠ (A1)

with the total mass

M = 2m + m2. (A2)

Since each element of qG is a cyclic coordinate by an as-
sumption and q̇G is conserved, we set q̇G ≡ 0 without loss
of generality. This setting reduces qG and q̇G from the La-
grangian, which is written as

L = 1

2

2∑
i, j=1

Ai j q̇i · q̇ j − V (q1, q2), (A3)

where we assumed that the potential energy function V de-
pends on only q1 and q2. Ai j is the (i, j) element of the size-2
matrix A, which is defined by

A =
(

M2 M1

M1 M2

)
, M2 = m(m + m2)

M
, M1 = m2

M
.

(A4)

The second change of variables introduces the polar coor-
dinates (l j, θ j ), where l j is the length of q j and θ j is the angle
of q j measured from a fixed direction on R2. The vectors q j
and q̇ j are then written as

q j = l jer j, q̇ j = l̇ jer j + l j θ̇ jeθ j, (A5)

where er j is the unit vector to the radial direction of q j , and
eθ j is the unit vector to the angle direction.

As the third change of variables, we define

φ = θ2 − θ1, ψ = θ2 + θ1, (A6)

where φ represents the bending angle (see Fig. 1). The vari-
ables l1, l2, φ, and ψ describe the Lagrangian

L = 1

2

4∑
α,β=1

Bαβ (z)żα żβ − V (l1, l2, φ), (A7)

where z = (z1, z2, z3, z4) = (l1, l2, φ, ψ ) and V does not de-
pend on ψ by the assumption of rotational symmetry. The
four-dimensional vector is represented by z ∈ R4 to dis-
tinguish from the three-dimensional vector y ∈ R3 used in
Eq. (2). Bαβ is the (α, β ) element of the size-4 matrix B. The
matrix B is symmetric, and we show only the upper triangle

elements. The diagonal elements are

B11 = B22 = M2, B33 = 1
4 M2

(
l2
1 + l2

2

) − 1
2 M1l1l2 cos φ,

B44 = 1
4 M2

(
l2
1 + l2

2

) + 1
2 M1l1l2 cos φ, (A8)

and the off-diagonal elements are

B12 = M1 cos φ, B13 = B14 = − 1
2 M1l2 sin φ,

B23 = −B24 = − 1
2 M1l1 sin φ, B34 = − 1

4 M2
(
l2
1 − l2

2

)
.

(A9)

The Lagrangian of Eq. (A7) does not depend on ψ and ψ

is a cyclic coordinate. The conjugate momentum pψ , which
corresponds to the total angular momentum, is defined by

pψ = ∂L

∂ ż4
=

4∑
α=1

B4α żα (A10)

and is conserved. Eliminating ż4(= ψ̇ ) from the kinetic en-
ergy, we obtain the Lagrangian

L = 1

2

3∑
α,β=1

Cαβ (y)ẏα ẏβ + [pψ (y, ẏ)]2

2B44(y)
− V (y), (A11)

where we identified B(z) and B(y) since B does not depend on
ψ . Assuming pψ = 0, we obtain Eq. (2) because contribution
from pψ to the Euler-Lagrange equation vanishes. The (α, β )
element of the size-3 symmetric matrix C is defined by

Cαβ (y) = Bαβ (y) − 1

B44(y)
B4α (y)B4β (y). (A12)

The diagonal elements are

C11(x) = M2 − M2
1 l2

2 sin2 φ

M2
(
l2
1 + l2

2

) + 2M1l1l2 cos φ
,

C22(x) = M2 − M2
1 l2

1 sin2 φ

M2
(
l2
1 + l2

2

) + 2M1l1l2 cos φ
,

C33(x) = 1

4
M2

(
l2
1 + l2

2

) − 1

2
M1l1l2 cos φ

− M2
2

(
l2
1 − l2

2

)2

4M2
(
l2
1 + l2

2

) + 8M1l1l2 cos φ
, (A13)

and the off-diagonal elements are

C12(x) = M1 cos φ + M2
1 l1l2 sin2 φ

M2
(
l2
1 + l2

2

) + 2M1l1l2 cos φ
,

C13(x) = −1

2
M1l2 sin φ −

1
2 M1M2

(
l2
1 − l2

2

)
l2 sin φ

M2
(
l2
1 + l2

2

) + 2M1l1l2 cos φ
,

C23(x) = −1

2
M1l1 sin φ +

1
2 M1M2

(
l2
1 − l2

2

)
l1 sin φ

M2
(
l2
1 + l2

2

) + 2M1l1l2 cos φ
.

(A14)

APPENDIX B: KAPITZA PENDULUM

We review an analysis of the Kapitza pendulum. This re-
view is adjusted to our theory for easily capturing a road map
of long computations.
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We consider a pendulum on the xy plane where the y axis
points to the upward direction of the gravity g. The pendulum
has the length l and a point mass m at the tip. The angle
φ is taken from the downward direction of the y axis to the
anticlockwise direction. An external force oscillates the pivot
of the pendulum along the y axis with the amplitude a and
the frequency ω. The position (x, y) of the point mass is then
written as

x = l sin φ, y = −l cos φ − a cos(ωt + δ), (B1)

where δ is the initial phase of the pivot. Constructing the
Lagrangian, we have the Euler-Lagrange equation for φ as

d2φ

dt̄2
= −

[(ω0

ω

)2
+ a

l
cos(t̄ + δ)

]
sin φ, (B2)

where ω0 = √
g/l and t̄ = ωt . If no external oscillation is ap-

plied to the pivot, namely, a = 0, the unique stable stationary
point is clearly φ = 0.

We assume that (1) the amplitude a of the oscillating pivot
is much smaller than the pendulum length l and is of O(ε),
and (2) the frequency ω0 is much smaller than ω and is
of O(ε), where ε is a dimensionless small parameter. These
assumptions imply

a

l
= εα,

ω0

ω
= εβ, |ε| � 1, (B3)

where α and β are of O(ε0).
We introduce two timescales of

t0 = t̄, t1 = εt̄, (B4)

which induce

d

dt̄
= ∂

∂t0
+ ε

∂

∂t1
. (B5)

The angle φ is also expanded as

φ(t ) = φ(0)(t1) + εφ(1)(t0, t1). (B6)

Substituting the above expansions into the Euler-Lagrange
equation, Eq. (B2), we have the expanded equation

ε2 ∂2φ(0)

∂t2
1

+ ε
∂2φ(1)

∂t2
0

+ 2ε2 ∂2φ(1)

∂t0∂t1
+ ε3 ∂2φ(1)

∂t2
1

= −[ε2β2 + εα cos(t0 + δ)] sin(φ(0) + εφ(1) ). (B7)

The equation to O(ε) is

∂2φ(1)

∂t2
0

= −α cos(t0 + δ) sin φ(0)(t1). (B8)

Solving the above equation with avoiding secular terms, we
have

φ(1)(t0, t1) = α cos(t0 + δ) sin φ(0)(t1). (B9)

The equation to O(ε2) is

∂2φ(0)

∂t2
1

+ 2
∂2φ(1)

∂t0∂t1

= −[β2 sin φ(0) + αφ(1) cos(t0 + δ) cos φ(0)]. (B10)

Substituting the O(ε) solution Eq. (B9) and averaging over the
fast timescale t0, we have

∂2φ(0)

∂t2
1

= −
(

β2 sin φ(0) + α2

4
sin 2φ(0)

)
. (B11)

The effective potential Veff (φ(0) ) satisfying

∂2φ(0)

∂t2
1

= − dVeff

dφ(0)
(φ(0) ) (B12)

is then obtained as

Veff (φ(0) ) = −
(

β2 cos φ(0) + α2

8
cos 2φ(0)

)
. (B13)

This effective potential has a local minimum at φ(0) = π for
α2 > 2β2 in addition to φ(0) = 0. The inverted pendulum (i.e.,
φ = π ) is therefore stabilized by sufficiently fast oscillation
(i.e., small β) of the pivot irrespective of the initial phase δ.

APPENDIX C: ORDER OF THE BENDING POTENTIAL

We show V (0)
bend(φ) ≡ 0 and V (1)

bend(φ) ≡ 0 under assump-
tions (A1) and (A2).

1. O(ε0 )

There is no time derivative term in O(ε0), and we have

∂V (0)
bend

∂φ
(φ(0) ) = 0. (C1)

The zeroth-order term V (0)
bend is hence constant, and we can

set V (0)
bend(φ) ≡ 0 without loss of generality. We note that the

identical zero is induced because φ(0) in Eq. (C1) is a variable.
The spring potential Vspring is not identically zero in general
because it is required to hold in O(ε0):

∂Vspring

∂l j
(l∗, l∗) = 0 ( j = 1, 2) (C2)

at the point (l1, l2) = (l∗, l∗).

2. O(ε)

The terms of O(ε) constructs

C(y(0) )
∂2

∂t2
0

⎛
⎜⎝

l (1)
1

l (1)
2

φ(1)

⎞
⎟⎠ =

⎛
⎜⎝

−kl (1)
1

−kl (1)
2

−(∂Vbend/∂φ)(1)

⎞
⎟⎠, (C3)

where(
∂Vbend

∂φ

)(1)

= ∂2V (0)
bend

∂φ2
(φ(0) )φ(1) + ∂V (1)

bend

∂φ
(φ(0) ). (C4)

The first term of the right-hand side in Eq. (C4) is zero since
V (0)

bend ≡ 0, and there is no restoring force for the variable φ(1),
while Eq. (C2) does not imply the zero restoring force for
the springs. The second term (∂V (1)

bend/∂φ)(φ(0) ) is constant
in the timescale t0. If the second term is not zero, φ(1) has a
secular term, and the secular term breaks the perturbation ex-
pansion (10), which assumes |φ(0)| � |εφ(1)|. Therefore, the
second term must be zero, and we can set V (1)

bend ≡ 0 without
loss of generality.
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APPENDIX D: MATRICES IN THE EQUATIONS OF O(ε)

We give the explicit forms of the matrix X(y(0) ) appearing in Eq. (15). The inverse matrix of C at y = y(0) is

[C(y(0) )]−1 = 1

M2
2 − M2

1

⎛
⎜⎝

M2 −M1 cos φ(0) 1
l∗

M1 sin φ(0)

−M1 cos φ(0) M2
1
l∗

M1 sin φ(0)

1
l∗

M1 sin φ(0) 1
l∗

M1 sin φ(0) 2
l2∗

(M2 + M1 cos φ(0) )

⎞
⎟⎠. (D1)

The matrix X(y(0) ) = [C(y(0) )]−1K is hence

X(y(0) ) = k

M2
2 − M2

1

⎛
⎜⎝

M2 −M1 cos φ(0) 0
−M1 cos φ(0) M2 0
1
l∗

M1 sin φ(0) 1
l∗

M1 sin φ(0) 0

⎞
⎟⎠. (D2)

APPENDIX E: VALIDITY OF THE HYPOTHESIS

Under the equal mass condition m2 = m, we examine
validity of the hypothesis (H) expressed in Eq. (33). We in-
troduce the approximations of

∂l (1)
j

∂t0
→ dl j

dt
, φ(0) → φ, (E1)

and the amplitudes of normal modes are expressed as

w2
1 = 1

2

[
(l1 + l2 − 2l∗)2 + 1

λ1
(l̇1 + l̇2)2

]
,

w2
2 = 1

2

[
(l1 − l2)2 + 1

λ2
(l̇1 − l̇2)2

]
, (E2)

where the eigenvalues λ1 and λ2 are defined in Eq. (25). We
compute the normal mode energy ratio defined by

R = E1

E1 + E2
, Ej = k

2
w2

j ( j = 1, 2). (E3)

The hypothesis is valid if R is constant in time.
We use the initial condition of Eq. (51) with φ∗ = π/2, and

the amplitude of the normal modes is w = 1.5. Temporal evo-
lution of R is exhibited in Fig. 7 for ν1 = 1, 0.75, 0.5, 0.25,

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

1

0.75

0.5

0.25

0

R

t

FIG. 7. Temporal evolution of the normal mode energy ratio R.
ν1 = 1.0 (red), 0.75 (orange), 0.5 (green), 0.25 (blue), and 0 (ma-
genta) from top to bottom. The amplitude of the normal modes is
w = 1.5.

and 0 with ν2 = 1 − ν1. The hypothesis (H) is valid around
ν1 = 1 and 0 in particular.

APPENDIX F: ANALYSIS OF THE EFFECTIVE
POTENTIAL Veff

Let us study the critical points of the effective potential Veff .
A critical point is defined as the point at which V ′

eff = 0. The
derivative of Veff is

V ′
eff (φ) = Meff (φ)Gν (φ). (F1)

Thus, we have

φ is a critical point ⇐⇒ Gν (φ) = 0 (F2)

since the effective mass Meff is always positive as found in
Eq. (45). The effective potential at a critical point takes a local
minimum or a local maximum depending on the sign of the
second derivative. At a critical point, we have Gν = 0 and the
second derivative of Veff is

φ is a critical point �⇒ V ′′
eff (φ) = Meff (φ)G′

ν (φ). (F3)

Again from Meff > 0, the sign of V ′′
eff is determined by the

sign of G′
ν . Keeping in mind the above discussions, we study

the critical points of the effective potential for absence and
appearance of the bending potential.

1. Absence of the bending potential

The function Gν is proportional to Tν for Vbend ≡ 0, and the
sinusoidal function in Tν gives the two critical points of φ = 0
and π . In addition, there are the other two possible critical
points φ = ±φ�, which solve the equation

ν1

M2 − M1 cos φ
− ν2

M2 + M1 cos φ
= 0 (F4)

with ν2 = 1 − ν1 and exist in the interval

M2 − M1

2M2
< ν1 <

M2 + M1

2M2
. (F5)

The derivatives of Gν at φ = 0 and π are, respectively,

G′
ν (0) = E (2)

l2∗

M1

M2 − M1

(2ν1 − 1)M2 + M1

M2
2 − M2

1

(F6)
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and

G′
ν (π ) = E (2)

l2∗

M1

M2 + M1

(1 − 2ν1)M2 + M1

M2
2 − M2

1

, (F7)

where we used the relation ν2 = 1 − ν1. The point φ = 0 is
hence a local minimum point (V ′′

eff (0) > 0) if and only if

ν1 >
M2 − M1

2M2
, (F8)

and the point φ = π is a local minimum point (V ′′
eff (π ) > 0) if

and only if

ν1 <
M2 + M1

2M2
. (F9)

The two points φ = 0 and φ = π are the local minimum
points in the interval of Eq. (F5). The periodicity of the
effective potential Veff (φ) requires the same numbers of lo-
cal minimum points (V ′′

eff > 0) and local maximum points
(V ′′

eff < 0), and hence the critical points φ = ±φ� are the local
maximum points.

2. Appearance of the bending potential

We write the function Gν (φ) as

Gν (φ) = sin φ

l2∗ (M2 − M1 cos φ)
gν1 (φ), (F10)

where

gν1 (φ) = −8 cos φ + (E (2) − cos 2φ − 1)

×
(

ν1

M2 − M1 cos φ
− ν2

M2 + M1 cos φ

)
. (F11)

The effective potential has the critical points at φ = 0, π ,
and φ� satisfying g(φ�) = 0. We separately discuss the second
derivative

V ′′
eff (φ) = gν1 (φ)

∂

∂φ

[
sin φ

l2∗ (M2 − M1 cos φ)

]

+ sin φ

l2∗ (M2 − M1 cos φ)
g′

ν1
(φ) (F12)

at a critical point.

a. The critical points φ = 0 and π

The second term of the right-hand side of Eq. (F12) is zero,
and

∂

∂φ

[
sin φ

l2∗ (M2 − M1 cos φ)

]
= cos φ

l2∗ (M2 − M1 cos φ)
. (F13)

This factor is positive (negative) at φ = 0 (π ), and the sign of
V ′′

eff is determined by gν1 (φ). We have

gν1 (0) = −8 + (E (2) − 2)
M1M2

M2
2 − M2

1

(
2ν1 − 1 + M1

M2

)
(F14)

and

gν1 (π ) = 8 + (E (2) − 2)
M1M2

M2
2 − M2

1

(
2ν1 − 1 − M1

M2

)
. (F15)

We separately discuss for 0 � E (2) � 2 and E (2) > 2, where
the boundary E (2) = 2 comes from the bending potential at
φ = 0 and π : V (2)

bend(0) = V (2)
bend(φ) = 2.

If 0 � E (2) � 2, the maximum value of gν1 (0) is realized
at ν1 = 0, which gives

g0(0) = −8 + (2 − E (2) )
1 − 1/(M2/M1)

M2/M1 − 1/(M2/M1)
< −7

(F16)
for 0 � E (2) � 2. Note M2/M1 > 1. The point φ = 0 is hence
a local maximum point for 0 � E (2) � 2. A similar discussion
states that the point φ = π is a local maximum point for 0 �
E (2) � 2.

For E (2) > 2, the effective potential takes a local minimum
at φ = 0 if

ν1 >
1

2

(
1 − 1

M2/M1

)
+ 4

E (2) − 2

(
M2

M1
− 1

M2/M1

)
,

(F17)
and takes a local minimum at φ = π if

ν1 <
1

2

(
1 + 1

M2/M1

)
− 4

E (2) − 2

(
M2

M1
− 1

M2/M1

)
.

(F18)
By changing the inequalities into the equality, Eq. (F17) gives
the red dotted line, and Eq. (F18) gives the blue dashed line in
Figs. 4 and 5. We remark that Eq. (F18) is equivalent with

ν2 >
1

2

(
1 − 1

M2/M1

)
+ 4

E (2) − 2

(
M2

M1
− 1

M2/M1

)
,

(F19)
whose right-hand side is identical with that of Eq. (F17).

b. The critical point φ = φ�

We have g(φ�) = 0, and

V ′′
eff (φ�) = sin φ�

l2∗ (M2 − M1 cos φ�)
g′(φ�). (F20)

−1 0 1

(a)

V
eff

0

10

20

−1 0 1

(b)

−1 0 1

(c)

−1 0 1

(d)

V
eff

0

10

20

−1 0 1

(e)

−1 0 1

(f)

φ/π φ/π φ/π

φ/π φ/π φ/π

FIG. 8. Initial conformations (red points) and effective potentials
(black lines). The reference conformations are φ∗ = π/2 in panels
(a), (b), and (c), and φ∗ = 0.01 in (d), (e), and (f), where the initial
conformation φ0 is close to φ∗. See Figs. 6(d), 6(e), and 6(f) for
temporal evolution of φ(t ) corresponding to panels (a), (b), and (c),
respectively.
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The effective potential takes a local minimum (maximum) if
V ′′

eff (φ�) > 0 (V ′′
eff (φ�) < 0) at the critical point φ�.

APPENDIX G: EXPLANATION OF MOVIES

We provide movies for the initial conformations shown
in Fig. 8 in the Supplemental Material [42]. The bending
potential V (2)

bend(φ) of Eq. (48) is in use. The excited spring
mode is (ν1, ν2) = (1, 0), and the amplitude w is w = 0.5
for Figs. 8(a) and 8(d), w = 1 for Figs. 8(b) and 8(e), and
w = 1.5 for Figs. 8(c) and 8(f). The other initial conditions are
described in Sec. V B, and the system parameter values (mi, k,
and l∗) are given in Sec. V A. Dynamics of the system corre-
sponding to the panels from Figs. 8(a) to 8(f) is demonstrated
in Movie A to Movie F, respectively. We stress that temporal
evolution is well understood by the effective potential Veff ,
while the bending potential [see Fig. 3(a)] does not explain
it.

APPENDIX H: FROM A GENERAL POTENTIAL
TO THE BENDING POTENTIAL

The bending potential Vbend(φ) represents the interaction
between the two beads of the ends, because the interaction

between an end and the center beads results in the spring
potential. We show that the bending potential energy function
of φ is derived from any potential VG which is a function
of the distance r = ||r3 − r1||, although it is assumed to be
a function of only φ in the main text. Here r is represented by
using l1, l2, and φ as

r = ||(r3 − r2) + (r2 − r1)|| =
√

l2
1 + l2

2 + 2l1l2 cos φ.

(H1)
Substituting Eq. (9) into Eq. (H1), we have r = r (0) + O(ε)

and

r (0) = l∗
√

2(1 + cos φ(0) ). (H2)

As shown in Appendix C, the potential VG depending on φ is
of O(ε2) under the assumptions (A1) and (A2), and we expand
it as

VG(r) = ε2V (2)
G (r) + O(ε3) = ε2V (2)

G (r (0) ) + O(ε3). (H3)

Therefore, the second-order bending potential V (2)
bend is derived

as a function of only φ(0) as

V (2)
bend(φ(0) ) = V (2)

G (l∗
√

2(1 + cos φ(0) )). (H4)

The effective potential Veff is obtained from Eq. (46) by sub-
stituting the above bending potential V (2)

bend into Eq. (42).
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