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Sampling rare trajectories using stochastic bridges
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The numerical quantification of the statistics of rare events in stochastic processes is a challenging compu-
tational problem. We present a sampling method that constructs an ensemble of stochastic trajectories that are
constrained to have fixed start and end points (so-called stochastic bridges). We then show that by carefully
choosing a set of such bridges and assigning an appropriate statistical weight to each bridge, one can focus more
processing power on the rare events of a target stochastic process while faithfully preserving the statistics of these
rare trajectories. Further, we also compare the stochastic bridges we produce to the Wentzel-Kramers-Brillouin
(WKB) optimal paths of the target process, derived in the limit of low noise. We see that the generated paths,
encoding the full statistics of the process, collapse onto the WKB optimal path as the level of noise is reduced.
We propose that the method can also be used to judge the accuracy of the WKB approximation at finite levels of
noise.
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I. INTRODUCTION

The most uncommonly occurring events in stochastic sys-
tems are often the most consequential. Instances where this
unlikely-yet-important combination occurs include fade-outs
of epidemics [1,2], the extinction of species in ecology [3,4],
the dynamics of biological switches [5–10], the escape of
a Brownian particle from a double-well potential [11,12],
large fluctuations in chemical reactions [13], and the detection
or prediction of rare natural disasters such as earthquakes,
storms, or heavy rains [14,15]. The broad range of these
applications justifies the considerable recent effort expended
on developing sampling algorithms for rare events in models
of stochastic phenomena [16–20].

Rare events can often be conceived of as paths in phase
space connecting long-lived states. A number of different
approaches exist to generate these transition paths for a given
system. The celebrated Wentzel-Kramers-Brillouin (WKB)
method, for example, is not only used to compute quasista-
tionary distributions and nonequilibrium landscapes [7,10,21–
24], but it also delivers paths describing rare events. This
approach relies on a saddle-point approximation in the limit
of weak noise. As a consequence, little can be learned from
the WKB approach about the statistics of transition paths in
stochastic systems with finite noise. Instead, the WKB instan-
ton only provides information about the most likely path by
which a system transits from one long-lived state to another
[1,4,25–29].

Transition path sampling algorithms [30–32] and forward
flux techniques [31,33,34] to sample rare events account for
stochasticity with finite amplitude. Transition path sampling
starts from an initial trajectory connecting two long-lived
states and then uses a Metropolis scheme to systemati-
cally update this path. Forward flux techniques divide phase
space (or a reduced reaction coordinate space) into patches.

Transition paths are then constructed as a sequence of small
segments connecting these patches. Other techniques such as
so-called weighted ensemble methods [35,36] also rely on a
segmentation of phase space. Methods that introduce artificial
temperatures and sample rare trajectories associated to rare
values of a target macroscopic quantity are also of extended
use [37–39].

While these powerful tools are widely used to sample rare
events, each of these approaches also has limitations. Transi-
tion path sampling methods require detailed balance [32], and
forward flux algorithms are known to draw statistically biased
trajectories [40]. Recent work has focused on combining the
strengths of these two strategies [41].

In this paper we use so-called “stochastic bridges” [42],
which pass through specified start and end points by construc-
tion, to quantify the statistics of rare trajectories. Stochas-
tic bridges are used in physics [43–47], finance [48,49],
and information processing [50]. Further, Langevin bridges
have also been applied to generate trajectories connecting
long-lived states of stochastic differential equations (SDEs)
[51,52].

The method we present here can be summarized as follows:
For a given target stochastic process, we define a bespoke
stochastic bridge process. We show that the statistics of the
target process can be recovered by associating a statistical
weight with each stochastic bridge. This allows us to ded-
icate more computational effort to rare trajectories without
introducing bias or interdependence. The method is flexible;
the target process is fully general, detailed balance is not
required, no small-noise approximation is made, and it is not
limited to the sampling of trajectories associated to a target
macroscopic quantity, nor does it require the introduction of
artificial parameters such as temperatures.

We show further that the stochastic bridges produced pro-
vide the full statistics of the ensemble of transition paths
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between long-lived states of the target process. This allows
one to sample fluctuations around the WKB instanton, and
thus to judge if the WKB approximation scheme is accurate at
various levels of noise.

II. MOTIVATION AND SIMPLE EXAMPLE

We first consider a Markov process in discrete time,
t = 0, 1, 2, . . . , T , with a discrete set of states which we
label xt . The process is defined by the transition probabili-
ties W t

x→y = P(xt+1 = y|xt = x) and a probability distribution
P0(x0) for the initial state x0. As indicated by the superscript
t we allow for an explicit time dependence of the transition
probabilities. We will refer to the ordered sequence of states
visited in a realization of the process as a path. We write this
as T = (x0, x1, x2, . . . , xT ), noting that the same state can be
visited multiple times along a path. The probability to observe
a particular path T is

P (T ) = P0(x0)W 0
x0→x1

W 1
x1→x2

· · ·W T −1
xT −1→xT

. (1)

These probabilities fully characterize the process. For exam-
ple, the probability of finding the system in state x at time
t is the marginal P(x, t ) = ∑

T P (T )δx,xt , where δx,y is the
Kronecker delta.

A random walk on the set of non-negative integers is
a simple example of such a process. We assume that the
walker departs from a fixed state x0. The transition rates are
Wx→x+1 = p and Wx→x−1 = 1 − p (0 � p � 1). Typical paths
of this process are illustrated in Fig. 1(a). In the figure the
random walk is biased towards lower integers. The probability
that a realization terminates at a state xT > x0 is then low, in
particular when xT is much larger than x0, or when p is much
smaller than 1/2. It is then difficult to sample paths ending at
values xT > x0 in direct simulations of the biased walk.

III. METHOD

Our strategy for sampling paths of a given target dynamics
connecting specific start and end points, x0 and xT , respec-
tively, is based on what we will call an “associated bridge
process.” This process operates backwards in time, that is,
paths of this bridge process are generated from xT to x0. We
first describe this for the case of discrete time and discrete
states (generalizations are discussed below).

We define the associated bridge process via transition prob-
abilities W̃ t

x←y = P(xt = x|xt+1 = y). That is to say, W̃ t
x←y is

the probability that the target process was at x at time t , given
that state y is visited at time t + 1. To define the associated
bridge process we also need to specify a probability distribu-
tion P̃T (x) for the state xT , which must satisfy P̃T (x) = 0 if
P(x, T ) = 0.

By virtue of Bayes’ theorem we have

W̃ t
x←y = W t

x→y

P(x, t )

P(y, t + 1)
. (2)

As a consequence, the probabilities W̃ t
x←y will in general be

time dependent, even if the transition probabilities of the
original model do not depend on time.

The rates W̃ t
x←y defined in Eq. (2) might seem reminis-

cent of a Doob transform of the target process [51,55–57].
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FIG. 1. (a) Red (bottom) lines show trajectories generated from
simulations of the biased random walk described in the text (for
p = 0.45), departing from x0 = 25. We use reflecting boundary con-
ditions (W0→1 = 1). None of these trajectories were found to cross
x∗ = 70 before time t = 500. Lines in the upper part of (a) show
stochastic bridges with fixed initial state x0 = 24 and final states
xT = 150, xT = 130, and xT = 70, respectively (top to bottom).
(b) Distribution of first-passage times at x = x∗ computed from our
approach (see Sec. S2 of SM [53] for details). Also shown (dashed
line) is the analytical result from Ref. [54].

However, it is important to note that there are significant
differences between the two. In particular, the probabilities
P(x, t ) and P(y, t + 1) on the right-hand side of Eq. (2) are
not conditioned on any final state xT , so improving the overall
efficacy of the sampling method [see Sec. S1 of the Supple-
mental Material (SM) [53] for further details].

We now focus on a fixed path T = (x0, . . . , xT ) of the
target process. The path can also occur in the associated bridge
process where it is traversed starting at xT and ending at x0.
The probability to observe path T in the associated bridge
process is

P̃ (T ) = P̃T (xT )W̃ T
xT −1←xT

· · ·W̃ 1
x0←x1

. (3)

Combining Eqs. (1)–(3) we obtain a relation between the
probabilities of finding path T in the target and associated
processes respectively,

P (T ) = P̃ (T )
P(xT , T )

P̃T (xT )
. (4)

Equations (2) and (4) are the key components of our approach.
We use the process defined by Eq. (2) to generate paths T ,
i.e., we sample from P̃(T ). Using Eq. (4) we then read off the
probability with which each sample path occurs in the target
process.

If we choose P̃T (x) = P(x, T ) then P (T ) = P̃ (T ) and
paths that are rare in the target process will also be rare in
the associated bridge process. Equations (2) and (4) then do
not constitute an efficient sampling method for rare paths. If,
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on the other hand, we choose P0(x) = δx,x0 and P̃T (x) = δx,xT ,
the trajectories generated from the process in Eq. (2) will
constitute stochastic bridges connecting xT and x0. For such
paths Eq. (4) then reduces to

P (T ) = P̃ (T )P(xT , T ). (5)

While the most demanding part of the procedure in
terms of computing time is the calculation of P(x, t )
for t = 0, 1, . . . , T , this can usually be obtained effi-
ciently. Depending on the nature of the stochastic process
(continuous/discrete states and time), P(x, t ) can be found
with a number of established numerical methods (e.g.,
Refs. [58–61]).

We note that the knowledge of P(x, t ) does not disclose the
whole statistical characterization of the enquired stochastic
processes. For example, the maximum span of a trajectory or
the description of transition paths is not accessible with the
only knowledge of P(x, t ). Instead, any quantity of interest
can be obtained from a representative set of paths. There is,
therefore, a genuine value in estimating P(T ) using P(x, t ) as
an input.

The complexity can be reduced further for escape paths
from long-lived states. The distribution P in Eq. (2) can then
be replaced by the time-independent quasistationary distribu-
tion PQS describing the metastable state, which can often be
approximated analytically (see, e.g., Refs. [3,25,58,62,63]).
Analytical expressions for PQS will make available a gen-
eral expression for the rates of one-dimensional and one-step
stochastic bridge process (see Sec. S4 of SM [53]). This is of
particular interest since the explicit form of the generator for
stochastic bridges is only known for a few systems (see, e.g.,
Refs. [45,51,64]). If the transition probabilities of the target
process are time independent, so are then the probabilities of
the associated process W̃x←y = Wx→yPQS(x)/PQS(y).

We now return to the example of a biased random walk.
Figure 1(a) shows three ensembles of bridges, all starting
at a fixed value of x0 at t = 0 and each ensemble ending
at a different choice of xT at time t = T . These paths were
generated from the associated process in Eq. (2), where we
have chosen P̃(xT ) as delta functions at the desired end points.

For a fixed final time T and choice of xT we can deter-
mine whether the generated trajectories have crossed a fixed
x∗ (x0 < x∗ < xT ) by time T . For each trajectory we record
the first crossing time. Repeating the process for different
values of xT and weighting trajectories according to Eq. (4)
we then obtain the distribution of first-passage times through
x∗ (see Sec. S2 of the SM [53] for details). A comparison of
our simulations with the analytical predictions in Ref. [54] is
shown in Fig. 1(b), confirming the validity of our sampling
method.

IV. CONTINUOUS-TIME PROCESSES

The method can also be used when time or the state space
of the target process are continuous. The only modification is
an adjustment of the expression in Eq. (2),

ω̃t
x←y = ωt

x→y

P(x, t )

P(y, t + dt )
= ωt

x→y

P(x, t )

P(y, t )
+ O(dt ), (6)

where ωt
x→y are the transition rates of the target dynamics,

and ω̃t
x←y those of the associated process. For discrete states

a process with time-dependent rates can be simulated for
example using Lewis’ thinning algorithm [65,66].

We note that ω̃t
x←y is a Gaussian bridge process [42,44,50]

when the original process is Gaussian (for details see Sec. S3
of the SM [53]).

V. APPLICATIONS: MODELS OF AN EPIDEMIC
AND OF A SIMPLE GENETIC SWITCH

In the context of two examples, we now compare the WKB
trajectories of the target process to the associated bridge tra-
jectories. The WKB optimal path of the target process is the
most likely path that the system will take (in the limit of
small noise) given the end points x0 and xT . At finite noise
levels our method captures stochastic fluctuations about the
WKB instanton. As the level of noise is reduced, we find that
the realizations of the associated bridge process approach the
WKB trajectory.

We first focus on the extinction of an epidemic (or “fade-
out”) in the individual-based susceptible-infected-susceptible
(SIS) model. Conceptually this is similar to extinctions of
species in ecology [67]. The model describes N individuals,
of which n are infected. The population evolves in continuous
time via infection and recovery processes, with rates

ωn→n+1 = β
n(N − n)

N
, ωn→n−1 = γ n. (7)

The parameters β and γ characterize speed of infection and
recovery, respectively.

When β > γ , the model is known to evolve to a quasis-
tationary “endemic” state in which the number of infected
individuals fluctuates around N (1 − γ /β ) [68]. The pop-
ulation will remain in this metastable state until a large
fluctuation drives the epidemic to extinction. The mean
time to reach this absorbing state grows exponentially with
the population size N [69]. For large populations it is therefore
difficult to observe extinction in direct simulations of the SIS
dynamics. Such paths can however be generated straightfor-
wardly using the associated bridge process with rates given by
Eq. (6). To evaluate these rates we use the analytical solution
for the quasistationary distribution in PQS(n) [69] (see also
Sec. S4 of the SM [53]).

An ensemble of extinction paths is shown in Fig. 2(a),
along with the WKB instanton to extinction [25,63]. As illus-
trated in Fig. 2(a), the extinction paths at finite N fluctuate
around the WKB instanton. We also show the distribution
of transition times (τ ) towards the infection-free state in
Fig. 2(b). This timescale characterizes the duration of the
transition towards extinction once the system has left the
endemic state, and is not to be confused with the lifetime of
the metastable state itself [3,21,25,62,63], nor with the fixed
total duration of the stochastic bridges (T ) (see Sec. S4 of
the SM [53]). This distribution is relatively broad for small
populations, but becomes more and more concentrated on the
WKB estimate for larger N .

As a second example, we focus on a model of cell differen-
tiation discussed in Ref. [7]. The two real variables x1 � 0 and
x2 � 0 in the model describe protein concentrations, governed
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FIG. 2. Extinction paths for the SIS model (β = 2, γ = 1).
(a) Paths leading to extinction from a common starting point x0 =
n
N = 1 − γ

β
= 0.5 to xT = 0 for N = 103, which have been shifted

in time to match the WKB instanton, shown as a dashed line (see
Sec. S4 of the SM [53] for additional information about this pro-
cedure). The time τ = 0 corresponds to the point where the WKB
instanton crosses n/N = 0.48. Boxes indicate the median and first
quartiles, and error bars the observed range of the ensemble of
stochastic paths. The inset shows the distribution of n/N at time
τ = 2.8. (b) Distribution of transition times for extinction trajec-
tories from the quasistationary state towards the absorbing state
(see Sec. S4 of the SM [53] for details). Dots show fits to log-
normal distributions. The inset shows that the modes τpeak of these
fits approach the value predicted from the WKB instanton, with
|τWKB − τpeak| ∼ N−0.7.

by the SDEs

ẋ1 = xn
1

Sn + xn
1

+ Sn

Sn + xn
2

− x1 +
√

2Dξ1(t ),

ẋ2 = xn
2

Sn + xn
2

+ Sn

Sn + xn
1

− x2 +
√

2Dξ2(t ), (8)

where ξ1(t ) and ξ2(t ) are Gaussian noise variables with mean
zero and 〈ξi(t )ξ j (t ′)〉 = δi jδ(t − t ′). The noise describes ef-
fects external to the gene circuit and its strength is governed
by the model parameter D � 0. The deterministic terms on the
right-hand side of Eqs. (8) represent self-activation, mutual
inhibition, and degradation, respectively [23].
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FIG. 3. (a) Phase portrait of the system in Eqs. (8) for D = 0.
Arrows indicate the deterministic flow. Due to the x1 ↔ x2 symmetry
we only show one of the two fixed points describing differentiated
states, and one saddle point. The corresponding separatrix is in-
dicated as a dashed line. (b) Stochastic transition paths from the
undifferentiated to one the differentiated states obtained with our
sampling method. The dashed line is the WKB instanton. In both
panels, n = 4 and S = 0.5.

In the deterministic limit (D = 0) Eqs. (8) have three stable
fixed points: (i) one with x1 = x2 = 1, (ii) one with x1 > x2,
and (iii) a third one obtained from the second by exchanging
x1 and x2. The first fixed point describes an undifferentiated
cell state, and the other two differentiated states [7]. The
deterministic model also has two saddle points on the sepa-
ratrices between the basins of attraction of the fixed points.
The resulting phase portrait is shown in Fig. 3(a).

For D > 0, noise-driven transitions from the undifferenti-
ated to either one of the differentiated states become possible.
Similar to the SIS model the typical escape time grows expo-
nentially with the inverse noise strength [70]. For small noise
amplitudes, numerical integration of Eqs. (8) is therefore un-
likely to generate transition paths within realistic computing
times.

To sample these rare paths we first discretize time using
an Euler-Maruyama scheme [61,71]. The resulting process is
described by Gaussian transition rates. These are then used in
Eq. (6) together with the quasistationary distribution describ-
ing the undifferentiated state (see Sec. S5 of the SM [53] for
details). As a result of this procedure we obtain an ensemble of
trajectories starting from the undifferentiated state and ending
in the differentiated state x2 > x1 (see also Sec. S6 in the SM
[53]). In Fig. 3(b) we show ensembles of transition paths for
different noise amplitudes. As demonstrated in the figure the
stochastic trajectories approach the WKB instanton as D → 0.

The level of noise at which the WKB approximation is
useful very much depends on the application. The above ex-
amples illustrate that the comparison between the generated
stochastic bridges and the WKB instantons allows us to ap-
praise the accuracy of WKB results.

VI. CONCLUSIONS

In this paper, we have presented a method to sample rare
trajectories. The core component of the approach is a process
in reverse time that generates stochastic bridges connecting
desired start and end points. Using Eq. (4) we can then cal-
culate the probability with which these paths occur in the
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target process under consideration. This allows us to quantify
the statistics of rare events such as first passage times. Our
approach does not require the noise in the model to be weak,
and it generates uncorrelated and unbiased transition paths.

Our approach goes beyond the WKB method, and delivers
an ensemble of transition paths along with their statistical
weights. This enables us to obtain entire distributions of first-
passage times or other characteristics in simulations.

We envisage that the method that we have developed will
have applications in myriad systems where sampling rare
events is important. We imagine that it can also be used as a
numerical aid to intuit when the WKB method will be accurate
and useful. The approach presented here can also be extended

to sample stochastic trajectories constrained to pass through
more than two desired points.
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