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For heat engines (including refrigerators) the separation of total entropy production in reversible parts �S
and irreversible contributions has proved to be very useful. The �S are entropies for ideal lossless processes
at the hot- and cold side and are important system parameters. For Carnot-like heat engines performing
finite-time cycles, the concern was raised in a preceding paper that the �S are not always independent from
irreversibilities, if initial and final working fluid temperatures Tf (t ) differ in the isothermal transitions. It turns
out that the �S are unchanged and independent, if Tf (t) evolution is optimized for entropy minimization and
apparent inconsistencies are cleared up. If nonisentropic transitions in the adiabatic cycle branches are taken
into account, the difference of cold- and hot-side entropy reversibilities is equal to the entropy production in
the adiabats. Maximization of cooling power is studied for various irreversible entropy models. The concepts
are extended to noncyclic steady-state engines. Power maximization and efficiency calculations are performed
exactly analytically. This serves as prerequisite for the hitherto unsolved problem of an accurate definition
of reversible and irreversible entropy parts in thermoelectric (TE) converters in the case of inhomogeneous
three-dimensional material distributions. It is revealed that for nonconstant Seebeck coefficients, additional terms
to the Joule heat arise that destroy positive generator performance in the limit of heat conductance k → 0, in
contrast to the traditional constant material properties model. Thus, the concept of improving TE materials by
reducing k is in question and an adapted figure of merit Z is presented to deal with the situation.
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I. INTRODUCTION

Heat engines operating in Carnot-like cycles between two
heat reservoirs with low and high temperatures Tc and Th

can be described by irreversible entropy functions added to
ideal reversible entropy parts. This concept can be extended to
noncyclic steady-state engines (including refrigerators) and,
in particular, to thermoelectric (TE) devices. This allows for
a novel accurate definition of reversible and irreversible en-
tropy parts in TE converters, also in the most general case of
arbitrary inhomogeneous material distribution with arbitrary
geometry in three dimensions, which is a hitherto unsolved
problem.

The heat engines unavoidably experience losses by irre-
versible entropy generation, at least for macroscopic engines.
Thus, the efficiency η of such engines, defined as ratio of
mechanical or electrical work output W per cycle or per time
unit and corresponding absorbed heat Qh from the hot reser-
voir, is below the Carnot efficiency ηC = 1–Tc/Th of an ideal
heat engine with reversible entropy generation only. “Finite-
time thermodynamics” [1–18] has been developed for engines
performing cycles in finite time, ranging from macroscopic to
microscopic systems. Usually the isothermal expansion and
compression of the working fluid at temperatures Tf h and Tf c,
respectively, have to be performed infinitely slowly in order
to avoid irreversible entropy generation. This is only possible
if the system has a reversible limit for the cycle time →�,
which for macroscopic engines is an idealization. Denoting

the time for isothermal expansion and compression of the
fluid by th and tc, where the system is in contact with the hot
and cold reservoirs, and the time for adiabatic cycle branches
by ta, the engine’s output power P = W/(th + tc + ta) tends
to zero for th + tc → ∞. Finite-time thermodynamics with
th, tc, ta < ∞, and P > 0 requires model assumptions for
the irreversible entropy production Sh(th), Sc(tc), and Sa(ta)
[3,5–15], which are due to thermal nonequilibrium conditions
during contact with reservoirs, friction of moving parts, and
heat leakage currents introduced by the engine’s setup be-
tween hot and cold reservoirs.

In a recent paper, Ref. [15], additional and more general
expressions for the hot- and cold-side isothermal irreversible
entropy generation Sh(th) and Sc(tc) were introduced and the
consequences investigated. Generally, the Sh(th) and Sc(tc)
functions do not only depend on the engine’s isothermal
transition times th and tc, but also on the detailed full time
dependence of the engine’s control parameters during that
transition, e.g., containment potential or volume evolution
V (t) of the enclosed working fluid between initial and final
states. As was pointed out in Refs. [4,7,8,15], the control pa-
rameter evolution functions, also called the detailed protocol,
are chosen in such a way that for fixed transition times th and
tc, the irreversible entropies are minimized. These minimized
entropies S j (t j ), j = h, c, then are unequivocal functions of
transition times t j . In the context of endoreversible models,
the irreversible entropy production Sa(ta) for adiabatic transi-
tions is set to zero, because the engine is isolated from the
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environment during ta. Models with Sa(ta) > 0 have rarely
been considered [9,10] and will be discussed in detail in
Secs. II A and II B.

The heat Qh absorbed per cycle by the heat engine is
reduced, e.g., because of volume expansion with finite time th
and limited heat conductivity between working fluid and heat
bath, or since friction causes the working fluid to be heated,
thus reducing the heat flow from the reservoir. With the ideal
reversible entropy part denoted by �S, the result for Qh

is

Qh = Th[�S − Sh(th)]. (1)

Similarly for the cold-side process with finite time tc, neg-
ative heat rejection Qc to the cold reservoir is increased in
magnitude by the same effects with reversed sign. Thus, Qc

per cycle is

Qc = Tc[−�S − Sc(tc)]. (2)

In Eqs. (1) and (2) and the following, the usual convention
is used that heat absorbed by the engine is counted positive
and otherwise negative. The restriction Sc(tc), Sh(th) � 0 ap-
plies, due to the second law of thermodynamics. The Sj (t j )
may depend in addition to the transition times t j on Th, Tc,
�S, and further system parameters. In particular, the Sj (t j )
may include the effect of a heat leakage current [13,14]. This
effect is of importance especially for thermoelectric steady-
state converters (Sec. IV).

A prominent and frequently used example for the S j (t j )
functions in Eqs. (1) and (2) is the low-dissipation model of
Refs. [5,6,19], where

Sh(th) = σh/th, Sc(tc) = σc/tc, (3)

with positive constants σh and σc. Another class of entropy-
models—the endoreversible models—attributes irreversible
entropy production solely to heat conductances between
working medium and heat baths, where different models for
heat transfer have been used [1,3,7,8,12–15]. The model with
linear (Newtonian) heat transfer is the well-known Curzon-
Ahlborn (CA) theory, resulting in the CA efficiency [1,20,21],
in the case of output power P maximized with respect to th
and tc:

ηP max = ηCA = 1 −
√

Tc/Th = 1 −
√

1 − ηC . (4)

However, this model is not linear in the sense of stan-
dard irreversible thermodynamics [22–26], where the heat
transfer to the engine’s working fluid is proportional to the
thermodynamic force 1/Tf j (t )–1/Tj , j = h, c, with Tf j (t )
denoting the time-dependent temperature of the working fluid
along the hot and cold side of the cycle. The Tf j (t ) itself
always depends nonlinearly on cycle times and other sys-
tem parameters like Th and Tc. The heat flow rates from Th

and Tc reservoirs to the working medium will be denoted
by qh(t) and qc(t). In Ref. [15] a unified theory was pre-
sented for the most general heat-transfer law in endoreversible
models:

q j (t ) = κ j (Tf j (t ), Tj )[Tj − Tf j (t )], j = h, c. (5)

The heat conductances κ j are constants for the CA model.
The detailed protocol of the engine’s control parameters

determines the time dependence of Tf j(t) in the intervals

(0, t j). It was proved for the general heat-transfer law of
Eq. (5) that endoreversible entropy production is minimized
by constant Tf j (t ) and the explicit form of the corresponding
S j (t j ) functions was deduced [15]:

S j (t j ) = �S2

t j κ j (Tf j, Tj ) ± �S
, j = h, c (6)

with Tf j to be inferred for given t j from

±�S = t j κ j (Tf j, Tj )

(
Tj

Tf j
− 1

)
, j = h, c. (7)

The plus in front of �S applies in case of j = h; otherwise,
the minus has to be used.

A peculiarity of the CA efficiency (4) is its independence
from the dissipations κc and κh which is strictly valid only
for Newtonian heat transfer [15,3]. For the low-dissipation
entropy model (3), the CA efficiency is obtained only for
symmetric dissipation σh = σc [6].

The low-dissipation model, as well as all endoreversible
models, have a reversible limit, i.e., S j (t j ) → 0 for t j → ∞.
In reality—at least for macroscopic engines—the reversible
limit does not exist, because of the unavoidable presence
of heat leakage currents or other physical characteristics of
the entropy functions. It has been proved recently that if no
reversible limit exists, i.e., Sj (t j ) > 0 for t j → ∞, the series
expansion of ηPmax in powers of ηC is not possible, and thus
the usual “linear response regime” with Tc ≈ Th is not math-
ematically feasible [15]. Instead, an expansion in powers of
r = Tc/Th can be performed, at least in a sufficiently small
neighborhood of r = 0, although r = 0 (i.e., Tc = 0) is not
physically accessible.

II. CYCLES WITH NONISENTROPIC ADIABATS

Adiabats are those branches of the Carnot cycle where
no heat is exchanged with the environment and the fluid
temperature is changed by external work. If in addition the
fluid entropy stays constant during these processes, the adiabat
is isentropic. For Carnot cycles during adiabats, the engine
is thermally isolated from the heat reservoirs. Thus, for all
endoreversible models, the adiabats are isentropic, because of
κ = 0 in Eq. (5). More realistically, also in case of thermal iso-
lation, additional entropy generation is possible which leads
to further internal fluid heating during the adiabatic processes,
e.g., by friction. This in turn results in a correction for Eqs. (1)
and (2) for the heats Qj absorbed or rejected to the reservoirs.
Then the reversible entropy parts �S are different for the hot
and cold side [9,10].

The paradigm of the ideal-gas endoreversible heat engine
is of basic interest, because it constitutes a guiding principle
for the description of general devices. In the appendix of
Ref. [15], an exact analytical solution has been presented
for the relation between the control parameters V (t) (volume
evolution) and fluid temperature Tf (t ). The fluid’s entropy
changes for the hot- and cold-side transitions turned out to
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FIG. 1. Fluid temperature Tf and control parameter V (vol-
ume) for endoreversible heat engine. Isentropic adiabatic transitions
(dashed lines) between hot and cold side. Transitions between cor-
ner points V1, V2 and V3, V4 (solid lines) with discontinuous Tf (t )
correspond to exact solutions of the entropy minimization following
Eq. (9). Vla is equivalently adapted and Vl rev is ideal Carnot cycle.

be

±�S j = mR log
V (t j + t0 j )

V (t0 j )
+ cv log

Tf (t j + t0 j )

Tf (t0 j )
,

j = h, c, (8)

with �Sh = �Sc and sign “+” for j = h and “–” for j = c
in Eq. (8). Here R denotes the ideal-gas constant, m the mole
fraction of the enclosed gas, and cv its specific heat. t0h and
t0c are the starting times of the isothermal transitions with
duration th and tc, respectively. The corresponding corner
points (vertices) of the Carnot cycle will be denoted in the
following by [V1 = V (t0h), Tf (1) = Tf (t0h)], [V2 = V (th +
t0h), Tf (2) = Tf (th + t0h)], [V3 = V (t0c), Tf (3) = Tf (t0c)],
[V4 = V (tc + t0c), Tf (4) = Tf (tc + t0c)]; cf. Fig. 1.

The equality �Sh = �Sc is generally valid beyond endore-
versible models in case of isentropic adiabats, due to entropy
conservation for the working fluid after one full cycle, since
entropy is an extensive state function. In the appendix of
Ref. [15], the question was raised, how are the �S j in Eq. (8)
related to the reversible �S in Eqs. (1) and (2), which are
considered to be the entropies for the ideal lossless Carnot
cycle with irreversibilities at the hot- and cold-side transitions
turned off. This equivalence was confirmed in case that the ini-
tial and final fluid temperatures for the isothermal transitions
are equal, i.e., for Tf (1) = Tf (2) and Tf (3) = Tf (4). Then the
second term in Eq. (8) disappears with the first one represent-
ing the classical expression �Srev for the ideal Carnot cycle.
However, what happens for Tf (1) �= Tf (2) or Tf (3) �= Tf (4)?
In Ref. [15] it was presumed that the �S in Eqs. (1), (2),
and (8) are not completely independent from the irreversibili-
ties, because of their common dependence on Tf (l ).Tf (1) �=
Tf (2) may arise, when, e.g., the engine’s mechanics does
not fulfill the volume conditions for an ideal Carnot cycle
with Tf j = Tj : V2/V1 = V3/V4 with V3/V2 = (Tf h/Tf c)cv/mR.
[Tf j �= Tj does not affect the volume ratios V2/V1 = V3/V4, but
initial and final volume values V3 and V4 on the cold side, for
fixed V1 and V2; cf. Eqs. (10) ff.]

As was pointed out in Sec. I, to derive unambiguous func-
tions S j (t j ), the detailed protocol V (t) in the intervals (t0 j, t j +
t0 j ) for given vertex positions [Vl , Tf (l )] has to be optimized
in such a way that the irreversibilities are minimized. This was
performed by variation of the entropy expression [15]:

S j =
∫ t j

0
q j (t )

(
1

Tf j (t )
− 1

Tj

)
dt

=
∫ t j

0
κ j (Tf j (t ), Tj )

[Tj − Tf j (t )] 2

Tf j (t ) Tj
dt, (9)

and resulted in the condition Tf j (t ) = const, with Tf j values
determined by Eq. (7). However, by performing variational
techniques for Tf (1) �= Tf (2) or Tf (3) �= Tf (4), no solution
is obtained. The solutions to this problem are discontinuous
functions Tf j (t ) which are out of scope of variational methods.

The actual solutions are depicted in Fig. 1 in the V , Tf

plane. The vertices at [V1, Tf (1)] and [V2, Tf (2)] are connected
by a path starting on the left-side adiabat (dashed line) until
an optimized temperature Tf h is obtained at V1a, and then with
constant Tf h moves on to V2a, and from there along the right-
side adiabat to [V2, Tf (2)], and further to [V3, Tf (3)]. Then the
path leads back on the same adiabat to the optimized low-side
temperature Tf c at V3a and moves on to V4a and [V4, Tf (4)]. At
[V1, Tf (1)] the cycle is completed on the left adiabat. Since
the adiabats do not contribute any entropy generation, the
cycle [Vl,Tf (l )], l = 1 to 4, is in fact equivalent to the adapted
cycle without back and forth movements (Vla,Tf j ), l = 1, 2,
3, 4. The preset times t j for hot- and cold-side transitions
[Vl,Tf (l )] → [Vl+1, Tf (l + 1)], l = 1, 3 are optimally split up,
when the time spent along the adiabatic transitions is shortest
and the time for the isothermal process along the Tf j is largest.
Ignoring relaxation times which are very small for an ideal
gas, the adiabatic transitions can be considered to be infinitely
fast, resulting in discontinuous Tf (t ) and the t j are identical
to the transition times in the adapted (Vla, Tf j ) cycle with
continuous (constant) Tf (t ) = Tf j on the hot and cold side.
For infinitely fast adiabatic transitions, it is not necessary to
isolate the engine thermally, since heat transfer from or to the
environment cannot take place in zero time.

For vertices [Vl,Tf (l )] of the original cycle which lie out-
side of the adapted cycle (Vla,Tf j ), e.g., for l = 1, 3 in Fig. 1,
the work lost and gained by the back and forth movement
along adiabats within the full cycle compensate exactly, so
that all performance data are conserved by the adapted cycle,
and for both cycles the minimized entropies S j (t j ) and opti-
mized Tf j are given by Eqs. (6) and (7).

Two points, denoted by (Vi, Ti) and (Vj, Tj ), lying on the
same ideal-gas adiabat, satisfy a well-known relation to be
inferred from Eq. (8) applied to an adiabat with �Sa = 0:

Ti

Tj
=

(Vj

Vi

)mR/cv

. (10)

Applying this relation to the points [V1, Tf (1)], (V1a,Tf h)
and [V2, Tf (2)], (V2a,Tf h), one obtains Tf (2)/Tf (1) =
[V2aV1/(V1aV2)]mR/cv and a similar expression for Tf (4)/Tf (3)
on the cold side. Thus, Eq. (8) can be written:

�Sh = mR log
V2a

V1a
= �Sc = mR log

V3a

V4a
(11)
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Furthermore, the adiabats can be extended to the reser-
voir temperatures Th and Tc and it can be inferred that the
ideal Carnot cycle (dashed-dotted lines in Fig. 1) with cor-
responding volume vertices Vl rev has the same reversible �S j

as in Eq. (8), because of V2 rev/V1 rev = V2a/V1a, V3 rev/V4 rev =
V3a/V4a:

�Sh = mR log
V2 rev

V1 rev
= �Sc = mR log

V3 rev

V4 rev
= �Srev. (12)

This is the final proof that the �S in Eqs. (1) and (2)
are given by the ideal reversible engine with irreversibilities
turned off. It should be noted that the Vl rev in Eq. (12), contrary
to the Vla in Eq. (11), are independent from the optimized
constant fluid temperatures T f j . Thus the concern expressed
in Ref. [15] that the �S in Eqs. (1), (2), and (8) are not
completely independent from the irreversibilities (9), because
of their common dependence on Tf (l ), is no longer valid.
Consequently, the �S j = �S rev are also independent from
the t j .

In principle the volume values Vl in Eq. (8) can be chosen
at will [27]. The corner points of the cycle are only subjected
to the constraint that they are located on the left- and right-
hand adiabats in Fig. 1, i.e., Tf (1)/Tf (4) = (V4/V1)mR/cv ,
Tf (2)/Tf (3) = (V3/V2)mR/cv . The vertices of the adapted cycle
Vla then are located on the same adiabats. The discontinuous
hot- and cold-side transitions [Tf (l ),Vl ] → [Tf (l + 1),Vl+1],
l = 1, 3, depicted in Fig. 1 by solid lines, are hardly of practi-
cal value. Nevertheless they visualize the exact mathematical
solution to the entropy minimization problem posed following
Eq. (9).

A. Theory including nonisentropic adiabats

In the case of cycles with nonisentropic adiabats, the gen-
erated heat flow qa(t ) in those branches, caused, e.g., by
friction, is absorbed solely by the working medium, since heat
cannot be exchanged with the environment or reservoirs. The
corresponding irreversible entropy production is given by the
first term of Eq. (9):

Sa(ta) =
∫ ta0+ta

ta0

qa(t )

Tf a(t )
dt, (13)

and equals the entropy absorption of the fluid during adiabatic
process time ta. For given transit time ta, an unequivocal Sa(ta)
is defined by the minimized entropy production with respect to
an optimized control parameter evolution V (t) in the interval
(ta0, ta0 + ta). Starting from the energy-balance equation for
an ideal gas, dU = cvdTf j = dQ − dW :

cv

dTf a

dt
= qa(t ) − mR

dV (t )/dt

V (t )
Tf a(t ),

an expression similar to Eq. (8) holds:

Sa(ta) = mR log
V (ta + t0a)

V (t0a)
+ cv log

Tf (ta + t0a)

Tf (t0a)
.

For a closed cycle, the change in fluid entropy is zero, and
thus

�Sh − �Sc + Sar (tar ) + Sal (tal ) = 0, (14)

FIG. 2. Analog of Fig. 1 for nonisentropic adiabats (solid lines)
resulting in �Sh < �Sc [Eq. (14)]. The adapted cycle Vla of Fig. 1
with isentropic adiabats is drawn for comparison.

where –�Sc and �Sh denote the fluid’s entropy changes along
the quasi-isothermal transitions according to Eq. (8). Sar and
Sal are the irreversible entropy changes along the right- and
left-hand adiabats, respectively, which are given by Eq. (13).
Since for nonisentopic transitions qa > 0, the Sar and Sal in
Eq. (14) always are larger than zero and therefore the equality
�Sh = �Sc no longer holds. Instead, �Sh < �Sc is deduced.

In Fig. 2(a) Carnot cycle is visualized with nonisentropic
adiabats (solid lines) which deviate from the ideal isentropic
adiabats (dashed lines), so that an increased volume extension
V3–V2 is needed for the cooldown transition Tf h → Tf c due
to the internal heat generation by qa. Similarly, for the left-
hand adiabat, a reduced volume compression V4–V1 is used,
because the internal heating qa facilitates the temperature rise
Tf c → Tf h. Compared to the cycle with isentropic adiabats
with Sa(ta) = 0 in Fig. 1, for Sa(ta) > 0 no lossless adiabatic
transitions with compensating back and forth movements are
possible and thus one cannot choose the corner-point volume
values of the cycle Vl at will, since an adapted cycle with
Vla values and equal performance does not exist. Therefore
the vertices [Vl,Tf (l )], l = 1, 2, 3, 4 are restricted by the
conditions Tf (1) = Tf (2) = Tf h and Tf (3) = Tf (4) = Tf c in
Fig. 2.

Then, by the same reasoning as for Eqs. (10)–(12), it is
inferred that

�Sh = mR log
V2

V1
= mR log

V2 rev

V1 rev
=: �Sh, rev,

�Sc = mR log
V3

V4
= mR log

V3 rev

V4 rev
=: �Sc, rev. (15)

The reversible �Sh,rev and �Sc,rev thus defined are inde-
pendent from Tf h or Tf c, respectively, since the �S j,rev only
depend on ratios V2/V1 or V3/V4 on hot or cold side, but not on
the individual Vl . If for example V1, V2 are preset values (e.g.,
by the engine’s mechanics), �Sh,rev is fixed. However, the
volume ratio V3/V4, and thus �Sc,rev that develop, depend on
the Sa(ta) according to Eq. (14). Conversely, if the cold-side
V3, V4 volumes and thus �Sc,rev are considered to be fixed,
the resulting V1, V2, and �Sh,rev �Sh,rev depend on Sa(ta). In
any case, Eqs. (1) and (2) stay valid when �S is replaced by
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�Sh,rev, and �Sc,rev which are connected by Eq. (14):

�Sc, rev = �Sh, rev + Sar (tar ) + Sal (tal ),

Qh = Th[�Sh, rev − Sh(th)],

Qc = Tc[−�Sc, rev − Sc(tc)] →
Qc = Tc[−�Sh, rev − Sar (tar ) − Sal (tal ) − Sc(tc)]. (16)

In extreme cases for fixed �Sc,rev > 0 and fixed volume
values V3 < V4 and for very large nonisentropic adiabats
Sa(ta), �Sh,rev = �Sh becomes negative, which means that
right and left adiabats cross each other in Fig. 2 and V2 < V1.
Then output power P after one cycle becomes negative [cf.
Eq. (18)] and a cycle can only be completed by delivering
external work to the engine.

In the following, Qh and Qc in the form (16) will
be used as fundamental description for heat convert-
ers with either �Sh, rev or �Sc,rev used as constant re-
versible system parameter for the ideal lossless heat
engine independent of ta. Equations (16) here have
been exemplified by the paradigm of the ideal-gas heat
engine, but will be used beyond that special case.

Generally, after one full cycle the irreversible entropy produc-
tion is given by

Sirr = −Qh/Th − Qc/Tc = Sh(th)+ Sc(tc)+ Sar (tar )+ Sal (tal ).
(17)

The theory as developed applies equally for the refrigerator
mode with device operation in reverse direction absorbing
heat Qc and releasing heat |Qh| to the hot reservoir. This is
also described by Eqs. (16) and (17) with the proviso that the
constant �Sh,rev or �Sc,rev changes sign and becomes negative
and all irreversibilities stay positive. For example, if �Sh,rev is
the system constant, then �Sh,rev → –�Sh,rev and �Sc,rev →
–�Sh,rev + Sa(ta). If �Sc,rev is the system constant, then
�Sc,rev → –�Sc,rev and �Sh,rev → –�Sc,rev–Sa(ta). In the re-
frigerator mode Tf h > Th and Tf c < Tc holds and |�Sh,rev| >

|�Sc,rev|.

B. Performance optimization with nonisentropic adiabats

The irreversibilities reduce the engine’s power output in the
generator mode according to Eq. (16):

P(th, tc, tar, tal ) = Qh + Qc

th + tc + tar + tal
= (Th − Tc) �Sh, rev − ThSh(th) − Tc[Sc(tc) + Sar (tar ) + Sal (tal )]

th + tc + tar + tal
. (18)

The corresponding efficiency η = W/Qh is

η(th, tc, tar, tal )

= 1 − Tc

Th

�Sh, rev + Sc(tc) + Sar (tar ) + Sal (tal )

�Sh, rev − Sh(th)
. (19)

According to Ref. [15], η can also be directly expressed by
the full irreversible entropy production Sirr without use of the
reversible �S. Dividing Sirr [left-hand side of Eq. (17)] by Qh

and utilizing η = 1 + Qc/Qh yields

η = ηC − TcSirr/Qh. (20)

P(th, tc, tar, tal ) can be maximized with respect to the tran-
sit times t j similar to P(th, tc) in previous works for infinitely
fast isentropic adiabats [6,7,15], by solving the equations
∂P/∂t j = 0 for t j . The solutions τ j � 0 yield

Pmax = P(τh, τc, τar, τal ), ηPmax = η(τh, τc, τar, τal ). (21)

Since now an equation system for four unknown τ j arises,
instead of two, analytical solutions for cases of practical in-
terest can hardly be obtained. In Ref. [15], extended solutions
for endoreversible models with isentropic adiabats for ta > 0
have been obtained, which yield for sufficiently large ta results
for ηPmax above the CA efficiency, Eq. (4).

Nonisentropic adiabats have been considered in
Refs. [9,10] with a relation similar to Eq. (14). The
discussion in the present work reveals the identity of �S j

and the reversible ideal entropies �S j,rev. Reference [9]
presents an analytical solution for the power-maximization
problem (21) in case of a low-dissipation assumption (3)
for all four cycle branches. For the refrigerator mode with
the same low-dissipation assumptions, only bounds for
special maximized refrigerator figures of merit could be

deduced [10]. For the adiabats, also constant irreversibilities
have been considered [Sa(ta) = const > 0].

The refrigerator efficiency ε is defined as heat Qc ab-
sorbed per cycle from the reservoir to be cooled, divided
by work input –W . This is called coefficient of performance
(CoP):

ε = Qc/(−W ) = −Qc/(Qc + Qh) (22)

The direct correspondence to the maximization of power
output in the generator mode is the minimization of input
power –P = –W/(th + tc + tar + tal ) in the refrigerator mode
[cf. Eq. (18) now with negative �S j,rev]. However, in all litera-
ture (with the exception of Ref. [15]) monotonous decreasing
irreversibilities S j (t j ) for increasing t j have been assumed.
Thus, –P in Eq. (18) is monotonously decreasing with the
limit zero for t j → ∞. Hence, a finite extremum for –P does
not exist.

This is the deeper reason for the fundamental difference
in performance optimization of refrigerators and generators.
As has been pointed out in Ref. [15], physically it is not
mandatory that the S j (t j ) are monotonous decreasing func-
tions, since—at least for macroscopic engines—friction is
always present and can increase with lower piston speed,
depending on the kind and the roughness of surfaces. A widely
used refrigerator figure of merit for performance optimiza-
tion is the product of ε and cooling power qc = Qc/tcycle,
where tcycle is the cycle time [10,13,28]: χ = εqc. For t j →
∞, tcycle = ∑

jt j → ∞, and typically S j (t j ) → 0. Thus, by
Eqs. (16) and (22): ε → εC = Tc/(Th–Tc) and qc → 0 and
χ → 0, where εC is the reversible Carnot CoP.

On the other hand, cooling power qc itself can be an object
for maximization and has a finite upper bound, also in case of
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input power –P → +∞. For qc maximization, it is preferable
to rewrite Eqs. (16) by use of �Sc,rev instead of �Sh,rev:

Qh = Th[�Sc, rev − Sh(th) − Sar (tar ) − Sal (tal )],

Qc = Tc[−�Sc, rev − Sc(tc)]. (23)

In terms of Fig. 2, the cold-side control parameters V3 and
V4 are fixed, so that �Sc,rev < 0 stays constant for all adiabatic
process times ta.

For low-dissipation cold-side entropy Sc(tc) = σc/tc and
arbitrary functions for the other Sj (t j ), j = h, ar, al , cooling
power qc = Qc/tcycle, tcycle = th + tc + tar + tal , can be first
maximized with respect to tc with the other t j held fixed. It
can be shown that the simultaneous maximization, e.g., with
respect to tc, th, leads to a degenerate equation system without
solution. The optimized time for tc is

tc,opt = σc

−�Sc, rev

(
1 +

√
−�Sc, rev

σc
tah + 1

)
,

tah = th + tar + tal , (24)

and thus qc maximized with respect to tc is

qcmLD = Tc

tah

[
−�Sc, rev − 2

σc

tah

(√
1 − �Sc, rev

tah

σc
− 1

)]
.

(25)
qcmLD is a monotonous decreasing function of tah and achieves
its absolute maximum for tah → 0:

qc,max = lim
tah→0

qcmLD = Tc

4σc
�S2

c, rev, (26)

irrespective of the Sa(ta) and Sh(th) functions. However, qh and
thus also CoP ε [Eq. (22)], depend on those entropies which
in low-dissipation approximation become infinite for tah → 0.
Then, qh → –∞ and ε → 0. Generally for arbitrary Sa(ta) and
Sh(th), qh for the optimized tc,opt [Eq. (24)], is

qhm = Th[�Sc, rev − Sh(th) − Sar (tar ) − Sal (tal )]

tah − σc
�Sc, rev

(1 +
√

1−�Sc, rev
tah
σc

)
.

For tah → 0, qhm stays finite, if Sa(0) and Sh(0) are
finite values (e.g., for constant entropies). Then, ε =
–1/(1 + qhm/qcmLD) > 0. With the help of Eq. (25), the ex-
plicit expression for ε is obtained:

1/ε = −1 + Th[�Sc, rev − Sh(th) − Sar (tar ) − Sal (tal )]

Tc

[
�Sc, rev + σc

tah

(√
1 − �Sc, rev

tah
σc

− 1
)] ,

(27)
and the limit for tah → 0 yields

ε(0) = −�Sc, revTc/[−�Sc, rev(2Th − Tc) + Th(Sh(0)

+Sar (0) + Sal (0))].

A further standard entropy model is the endoreversible
model of Eq. (6). For refrigerators, �S = �Sj,rev < 0 and the
hot-side entropy Sh(th) experiences a singularity due to its
compression stroke, instead of the cold-side entropy Sc(tc).
The case of Sc(tc) singularity was treated in Ref. [15]. Again,
maximizing cooling power qc = Qc/tcycle with respect to tc
by use of Eqs. (23) and (6) for arbitrary entropies Sh(th) and
Sa(ta) and specializing to constant heat conductance κc for
Sc(tc), yields

tc,opt =
√

−�Sc, rev

κc
tah,

qcmCA = Tc

/(√
1/κc +

√
tah

−�Sc, rev

)2

. (28)

One might conclude that the maximum of qc is achieved
for tah → 0 with qc,max = Tcκc. However, usually the hot-side
entropy is also given by an endoreversible Sh(th) [Eq. (6),
corresponding to Sc(tc)]. Because of the refrigerator compres-
sion stroke, Sh(th) has a singularity for th → –�Sh,rev/κh and
th cannot become smaller, since otherwise Sh(th) < 0 or the
condition of constant �S in Eq. (7) would be violated with
Tf h → ∞ [15]. The limit of (28) to the smallest possible th =
–�Sh/κh has to take into account the relation (14) between
�Sh and �Sc where �Sh depends on the ta:

qcm = −Tc�Sc

/(√
−�Sc

κc
+

√
−�Sc

κh
+ tar + tal + Sar (tar ) + Sal (tal )

κh

)2

. (29)

Here �S j = �S j,rev has been set according to Eqs. (15). The nonisentropic adiabats Sa(ta) are not of the form (6), but can be
assumed to be of the low-dissipation form (3). Then the limit ta → 0 leads to qcm → 0. In order to maximize qcm with respect to
tar and tal , the conditions hold: S′

ar (tar ) = –κh, S′
al (tal ) = –κh, i.e., ta = √

σa/κh and ta + Sa(ta)/κh = 2
√

σa/κh. Thus,

qc,max = −Tc�Sc

/(√
−�Sc

κc
+

√
−�Sc

κh
+ 2

√
σar/κh + 2

√
σal/κh

)2

. (30)

Provided that Sh(th) is not of the endoreversible form (6), an endoreversible part of the form (6) is present—at least for
macroscopic engines—in addition to other parts, e.g., for friction. Then again the endoreversible part causes a finite limit for
the smallest th → –�Sh, rev(ta)/κh > 0 by its singularity in Sh(th). Therefore, the maximum cooling power achievable should be
of the form (29) or (30) rather than just Tcκc, obtained for th, ta → 0 from Eq. (28). By the same reasoning, the finite limit for
th > 0 can be applied to alter the cold-side low-dissipation result (26) in an extended theory.

The ejected heat flow qh < 0 for the endoreversible model is calculated by Eq. (23) with tc = tc,opt from Eq. (28):

qhmCA = Th κh th [�Sc − Sa(ta)]

[ta + th + √−�Sc(ta + th)/κc] [�Sc − Sa(ta) + κhth]
, (31)
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where Sa(ta) = Sar (tar ) + Sal (tal ) and ta = tar + tal . The limit
th → –�Sh/κh = –[�Sc–Sa(ta)]/κh leads to qhmCA → –∞
with CoP ε = −1/(1 + qhmCA/qcmCA) → 0. For general th,
the efficiency ε is obtained from Eqs. (28) and (31).

III. STEADY-STATE HEAT ENGINES

Steady-state heat engines do not operate in cycles with
alternating engine connections to the heat reservoirs. Instead
the engine is constantly connected to both reservoirs and the
heat flows qh and qc at the hot and cold side are constant
in time, and insofar different from Eq. (5). Examples are
mechanical turbines and thermoelectric and thermionic con-
verters [29] (Sec. IV). Dividing Eqs. (16) by the cycle time
tcycle = th + tc + tar + tal leads to the analogous equations for
average values per cycle with entropy rates defined for j = h,
c, ar, al by s j = S j (t j )/tcycle, and reversible entropies �s j =
�S j/tcycle and heat f lows q j = Qj/tcycle for j = h, c:

qh = Th(�sh(p)− sh(p)), qc = Tc(−�sc(p)− sc(p)),

�sc(p) = �sh(p) + sa(p), sa(p) = sar (p) + sal (p). (32)

The entropy rates thus defined still depend for averaged
Carnot cycles on the t j and, contrary to �S j , also the re-
versible �s j depend on t j . For genuine steady-state engines,
t j is not defined and s j(p) and �s j (p) in Eq. (32) express the
dependence on an engine-specific parameter set p which may
include reservoir temperatures Tc and Th. For power genera-
tors, �s j > 0 and for refrigerators, �s j < 0 with unaltered
sign for the s j .

The total irreversible entropy production rate sirr is given
by the sum of entropy loss per unit time of the hot reservoir
–qh/Th and entropy gain of the cold reservoir –qc/Tc, since the
steady-state engine itself cannot accumulate entropy or heat.
Thus, by Eq. (32),

sirr = −qh/Th − qc/Tc = sh + sc + sa. (33)

Generally, the sign of sa is not fixed and sa < 0 may occur,
as will be the case for the thermoelectric converter in Sec. IV.
Similar to Eq. (20), the efficiency η of the heat engine can be
expressed for steady state by sirr without use of the �s:

η = ηC − Tcsirr/qh. (34)

For the model (32), the endoreversibility assumption is
possible in a similar way as for Carnot engines with Eq. (5).
Power maximization for that case has been done first in a
somewhat obscure way, in Ref. [20], where thermodynamic
cycles are mentioned, but no cycle times or t j were defined.
The maximized work output thus corresponds to maximized
power, since in effect a steady-state heat engine was assumed.
Heat transfer similar to (5) was applied only on the hot side
with constant fluid temperature Tf h and κh. Thus, κc = ∞.
Maximizing work- (power-) output with respect to Tf h led to
Tf h = √

(ThTc) and ηCA in Eq. (4). So, the problem was solved
only for the extremely asymmetric case with dissipation ratio
κh/κc = 0. Curzon and Ahlborn in their work [1] used the
Carnot cycle with optimized t j , and with κ j and Tf j constant
in time on both sides. With the endoreversibility require-
ment Qh/Tf h = –Qc/Tf c, the ηCA was obtained. Since ηCA is
completely independent from the κh and κc, the originally

strongly simplifying assumptions in Ref. [20] could be suc-
cessful.

For the general steady-state engine (32), the power-
maximization problem in the case of endoreversibility can be
solved along similar lines as in Ref. [1]. An ideal steady-
state engine without irreversible entropy production can be
assumed to operate between the temperature levels Tf h on
the hot side and Tf c on the cold side, in the same way as
for the cyclic engine in Secs. I and II. However, the Tf j do
not necessarily denote temperatures of a working fluid, but
now are conceived to be mere contact temperatures of an
internal heat engine which are independent of time. They are
connected by heat conductances κh and κc to the reservoirs
Th and Tc as single source of irreversibility. If in addition,
the internal engine is no longer considered to be lossless, but
includes internal irreversible entropy generations si j , j = h, c,
a in the form of Eqs. (32), the system may be called pseudo-
endoreversible:

qh = Tf h(�si h − si h), qc = Tf c(−�si c − si c),

�si c = �si h + si a. (35)

The internal reversible entropy parts �si j can differ from
the �s j of the complete system in Eqs. (32). The external heat
flows q j , however, are the same for the complete engine in
Eqs. (32) and for the internal engine in Eqs. (35):

qh = κh(Th − Tf h), qc = κc(Tc − Tf c), (36)

with generally temperature-dependent κ j (Tf j, Tj ). In the case
of an ideal internal engine, the si j are zero and �sic = �sih =
�s. Thus, qh = Tf h�s, qc = –Tf c�s, and the usual endore-
versibility condition qh/Tf h = –qc/Tf c is fulfilled [1].

Using (35) for the Tf j , j = h, c, Eqs. (36) yield q j =
κ jTj (±�si j–si j )/(±�si j + κ j–si j ) with ± =“+” for j = h
and “–” for j = c. Inserting these expressions for qj into
Eqs. (32), the s j irreversibilities for the complete engine can
be inferred:

s j = �ŝ2
j

κ j (Tf j, Tj ) ± �ŝ j
, j = h, c

�ŝh = �si h − si h,�ŝc = �si c + si c. (37)

The �ŝ j can be shown to be identical to the �s j of Eq. (32).
From Eqs. (35) q j/Tf j = ±�si j–si j = ±�ŝ j , where q j /Tf j

are the entropy flows to or from the internal engine. It can
be shown that q j/Tf j = ±�s j and therefore �ŝ j = �s j . This
is supported by summing up all sources of irreversible entropy
production. For the heat conductances κ j in analogy to Eq. (9),
the entropy production rates are

sκ j = q j

(
1

Tf j
− 1

Tj

)
= κ j

(Tj − Tf j ) 2

Tf j Tj
, j = h, c. (38)

The total irreversible entropy production of the internal
engine is obtained in the same way as in Eq. (33):

si ir = −qh/Tf h − qc/Tf c = si h + si c + si a, (39)

and the sum of Eqs. (38) and (39) gives the total irreversibil-
ity of the full system in Eq. (33): sκh + sκc + si,ir = sirr =
sh + sc + sa. Thus, the sκ j and the internal si,ir have to be
identified with the s j and sa entropies of the complete system
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in Eqs. (32):

sh = sκ h, sc = sκc,sa = si,ir . (40)

Equations (32) with the expressions (38) for s j = sκ j yield

±�s j = q j/Tj + s j = q j/Tf j = κ j (Tj/Tf j − 1), (41)

which proves the relation ±�s j = q j/Tf j = ±�ŝ j with the
help of Eq. (35). The difference �sc–�sh = sa leads to a
“pseudo-endoreversibility condition” for the case of sa =
si,ir �= 0:

sa = −qh/Tf h− qc/Tf c =−κh(Th/Tf h− 1)− κc(Tc/Tf c− 1)
(42)

In the first part of Eq. (41), replacing q j by ±�s jTf j leads
to s j = ±�s j (1–Tf j/Tj ), and by eliminating Tf j/Tj with the
help of the second part of Eq. (41) again Eq. (37) is confirmed.
In the case of sa = si,ir = 0 with si j = 0, the relations hold:
�sc = �sh = �sic = �sih = �s for a fully endoreversible
model description.

Equation (37) for s j can be compared with Eq. (6) for
endoreversible Carnot cycles. The essential difference is the
missing factor t j for the isothermal transit time. For the Carnot
cycle, Tf j is adapted for different t j by Eq. (7), so that �S
stays constant. This is no longer the case in steady state for
the �s j in Eqs. (37) and (41), and �s j directly depends on the
contact temperatures Tf j of the internal engine.

The power output P = qh + qc to be maximized can be ex-
pressed by (36) with Tf h, and Tf c as variables to be optimized,
which however are not independent due to the pseudo-
endoreversibility condition (42): qh/Tf h = –qc/Tf c–sa which
can be used in (36) in order to eliminate Tf c by

Tf c = κc Tc

κc + κh − sa − κh Th/Tf h
.

The right-hand side can still depend on Tf c for temperature-
dependent κ j and also sa may depend on the Tf j . Nevertheless,
P = qh + qc expressed in this way is correct. However, when
maximizing P with respect to Tf h, unspecified temperature
dependences of κ j and sa cannot be taken into account. For
constant κ j and sa, the optimized Tf h is

Tf h = κc
√

Th Tc + κh Th

κc + κh − sa
, (43)

which includes the result of Ref. [20] for κc → ∞, even for
internal irreversibility sa > 0. When utilizing Eq. (43) for
Pmax, the result emerges:

Pmax = (
√

Th − √
Tc)

2 − sa(Th/κc + Tc/κh)

1/κh + 1/κc − sa/(κcκh)
. (44)

Also for sa = 0, this steady-state result differs essentially in
the denominator from that for the endoreversible cycle [1,15]:

Pmax CA = (
√

Th − √
Tc)

2

(
√

1/κh + √
1/κc) 2 .

It can be shown that Pmax in Eq. (44) is a monotonous
decreasing function for increasing sa, and Pmax will become
negative (i.e., invalid) before the singularity for zero denomi-
nator is reached.

For ηPmax = 1 + qc/qh, one obtains

ηP max = (1 − √
Tc/Th) 2 − sa[1/κc + (Tc/Th)/κh]

1 − √
Tc/Th − sa/κc

,

which coincides with the CA efficiency (4), if sa = 0.
For maximized power, the variables qj , �s j , and s j can be

expressed solely by the κ j , Tj , and sa by eliminating the Tf j

variables. The relation qh/Tf h = –qc/Tf c–sa from (42) can be
solved with the help of Eqs. (36) and (43) for Tf c:

Tf c = κh
√

ThTc + κc Tc

κc + κh − sa
.

Thus, for the heat flows q j and ±�s j = q j/Tf j ,

q j = Tj − √
Tc Th − saTj κ j/(κcκh)

1/κc + 1/κh − sa/(κcκh)
,

�s j =
√

Th − √
Tc ∓ sa

√
Tj κ j/(κcκh)√

Tc/κh + √
Th/κc

, j = h, c.

It is easily verified that �sc–�sh = sa is satisfied, as re-
quired by Eq. (32). Now the s j from Eq. (37) for maximized
power read

sh =
[
(1 − sa/κc)

√
Th − √

Tc
] 2

√
Th(1 + κh/κc − sa/κc) (

√
Tc/κh + √

Th/κc)

sc =
[
(1 − sa/κh)

√
Tc − √

Th
] 2

√
Tc(1 + κc/κh − sa/κh) (

√
Tc/κh + √

Th/κc)
.

Since the heat engine in steady state is connected simul-
taneously to both heat reservoirs Th and Tc, it is important
to take into account leakage heat currents—caused, e.g.,
by the engine’s housing—which contribute to irreversible
entropy production. The leakage heat current λ can be
described generally by a temperature-dependent heat conduc-
tance κL(Th, Tc):

λ(Th, Tc) = κL(Th, Tc) (Th − Tc). (45)

The qh and qc from Eqs. (36) are thus altered to q′
h, q′

c:

q′
h = κh(Th − Tf h) + κL(Th − Tc),

q′
c = κc(Tc − Tf c) − κL(Th − Tc).

Again, generated power is P = q′
h + q′

c = qh + qc, since
the heat leakage currents on hot and cold side compensate ex-
actly. Therefore, the procedure for maximizing P leads to the
same result for Tf h and Pmax as in Eqs. (43) and (44). However,
the result for efficiency ηPmaxL = Pmax/q′

h is reduced, because
of increased heat absorption in q′

h:

ηP max L = η2
CA − sa[1/κc + (Tc/Th)/κh]

ηCA + κLηC (1/κh + 1/κc) − sa(κh + κLηC )/(κhκc)

(46)

For κL → 0 and sa → 0, ηCA of Eq. (4) is obtained. Gener-
ally ηPmaxL is no longer independent from the dissipations κc

and κh, neither for sa = 0.
Equations (32) with inclusion of the additional irreversible

heat leakage (45), read

q′
h = Th(�sh − s′

h), q′
c = Tc(−�sc − s′

c),
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where

s′
h = sh − λ(Th, Tc)/Th, s′

c = sc + λ(Th, Tc)/Tc. (47)

It is obvious from Eq. (47) that for sufficiently large
λ(Th, Tc), s′

h can become negative, whereas s′
c is increased

by a larger amount, since Th > Tc. This does not violate the
second law of thermodynamics, since the sum of s′

h and s′
c

plus internal sa constitutes the overall entropy generation rate
s′

irr = s′
h + s′

c + sa and for the same time points only s′
irr �

0 is required. In case of the Carnot cycle, Sc(tc), Sh(th) � 0
is required, since both conditions apply separately, because
those entropies are generated at different times, when the
engine is either connected to the cold or hot reservoir. From
Eqs. (45) and (47),

s′
irr = sirr + λ/Tc − λ/Th = sirr + κL(Th − Tc)2/TcTh � 0,

(48)

and the κL -entropy term is always a positive contribution.
In the refrigerator or heat-pump mode, the heat engine

works in the reverse direction with �s j → –�s j for either
j = h or j = c [cf. discussion following Eq. (17)] and un-
altered sign for sirr , sa, and s′

irr . The engine then ejects heat
q′

h < 0 to the Th reservoir and absorbs heat q′
c > 0 from

the Tc reservoir. Thus, necessarily |�sc| > s′
c and the size

of λ(Th, Tc) is limited by this condition, or equivalently by
qc > λ(Th, Tc).

IV. THERMOELECTRIC CONVERTERS

In this section the theory of thermoelectric (TE) converters
will be treated with special consideration of reversible and
irreversible entropy production rates in the form of Eq. (32).
Both one-dimensional (1D) and three-dimensional (3D) de-
vice theory will be considered for general position- and
temperature-dependent material parameters. The definition of
reversible entropy production as part of total entropy genera-
tion so far has only been given for constant material properties
(CMP) in 1D, e.g., Refs. [30,31]. The thermal transconduc-
tance is often set to zero in the CMP literature and thermal
contact resistances and heat leakage currents are included
by an additional equivalent circuit. The present approach in-
cludes thermal and electrical contact and bulk resistances by
taking into account arbitrary device profiles for thermal and
electrical conductivities. The effect of inhomogeneous See-
beck coefficient in the device volume gives rise to additional
Thomson-Peltier heating or cooling and is of particular im-
portance with respect to reversible and irreversible entropies.

A. General 3D TE device theory

The starting point for the theory is a steady-state equation
for the total heat flux (heat-flow density), which following
the Onsager–deGroot–Callen theory [22–24,32–34] includes
the Fourier heat flow proportional to the temperature gradient
∇T (x) and heat transport by electron particle flow (Peltier
heat) in an arbitrary volume V . With electric current density
j (x) the total heat flux at position x is given by

q(x) = −k(x, T (x)) ∇T (x) + T (x) j(x) α(x, T (x)) . (49)

The heat-flux vector q (x) here denotes the heat flow per
unit area at location x, contrary to the heat flows qj , j = h, c
in Sec. III. The symbol x denotes the spatial coordinates (x, y,
z) in the 3D case within the device volume V , or only x in the
1D case. The electric current flux vector j is associated with
the Peltier heat flux T jα in the volume. Generally, the ma-
terial properties of thermal conductivity k, electric resistivity
ρ, and thermopower (Seebeck coefficient) α of the material
simultaneously depend on location x and temperature T (x) at
that location, i.e., k(x, T (x)), ρ(x, T (x)), and α(x, T (x)) for
the description of different materials at different locations in
the volume [35–37]. The individual materials only depend on
T . The divergence of the heat flux turns out to be

∇ · q(x) = ρ(x, T (x)) j(x)2 + j(x) α(x, T (x)) · ∇T (x).
(50)

The first term on the right-hand side is the electric Joule
heating ρ j2. The second term is the generated electric power
density, which in part is converted into Joule heat. Insert-
ing (49) in Eq. (50) leads to the heat balance or thermoelectric
equation:

∇(−k(x, T ) ∇T (x)) = ρ(x, T ) j(x)2−T (x) ∇( j(x) α(x, T ))
(51)

This can be interpreted as a classical Fourier heat-
conduction equation with the divergence of the Fourier heat
flux on the left-hand side and Joule heat and Thomson–
Peltier heat generation or cooling terms on the right-hand
side. Usually electric current conservation requires ∇ j(x) =
0. In Refs. [35–37] a more general theory has been presented
for the inclusion of arbitrarily distributed electric sources
and sinks from external circuits, e.g., for the description of
cascaded TE converters. Then ∇ j(x) = c(x) is a prescribed
function. This current condition together with Eq. (51) can
be condensed into two partial differential equations for the
fields of electrochemical potential ϕ(x) and T (x), which for
appropriate boundary conditions defines the solutions T (x)
and j (x) uniquely [36]. ϕ(x) is related to j(x) by –∇ϕ = E =
ρ j + α∇T . The genuine local electric field ρ j, arising from
ohmic voltage drop, cannot always be expressed as a gradient
in the 3D case, since rot (ρ j) may differ from zero, contrary
to the E field. The mentioned solution strategy for ϕ(x) and
T (x) was not used in Refs. [35–37], since the product j α(x)
was considered as single vector function to be optimized for
maximization of generator or refrigerator performance (output
power, cooling power, efficiencies) with given TE figure of
merit Z = α2/(kρ). Thus, the more general problem of si-
multaneous optimization of material distribution and electric
current distribution with � j (x)�0 in 3D was treated.

In the following, electric current conservation ∇ j(x) = 0 is
assumed. The general 3D device volume V has by definition
on its surface ∂V two disjoint thermal and electric contact
areas ah and ac of arbitrary shape, connected to hot and cold
heat reservoirs of temperature Th and Tc, respectively. The
remaining parts of ∂V constitute the device sidewalls ∂VS with
zero boundary condition for heat flow through the sidewalls:

q(a)n(a) = 0 for a ∈ ∂VS. (52)

n (a) denotes the unit outward vector normal to the sidewall.
Dirichlet conditions are required on the contact areas ah, ac :
T (a) = Th for a ∈ ah, T (a) = Tc for a ∈ ac. Similarly, for the
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electric current j (x) the boundary conditions hold:

j(a)n(a) = 0 for a ∈ ∂VS,

i = −
∫

ah
j(a)da =

∫
ac

j(a)da, (53)

with i the electric current entering at contact ah and leaving at
ac. Here da is an infinitesimal surface element of areas ah or ac

directed in normal outward direction. In addition it is assumed
that the contact region ah and ac are electric equipotential sur-
faces for the applied outside voltages, i.e., contacts of metallic
character. By use of Eq. (49), the heat inflow qh through con-
tact area ah and heat outflow qc through area ac can be written
as

qh = −
∫

ah
q(a) · da =

∫
ah

[k(a, Th) ∇T (a) − Th j(a) α(a, Th)] da, (54)

qc = −
∫

ac
q(a) · da =

∫
ac

[k(a, Tc) ∇T (a) − Tc j(a) α(a, Tc)] da. (55)

The sign convention for qj in Eqs. (54) and (55) is chosen in such a way to coincide with Sec. III for general steady-state
engines, i.e., qh is positive and qc is negative in the generator mode.

In the generator mode the generated electric power Pel converted from heat to electricity is again given by Pel = qh + qc, or
with the help of Eqs. (50), (52), (54), and (55):

Pel = qh + qc = −
∫

∂V
q(a) da = −

∫
V

∇q(x) d3x =
∫

V
[− j(x)α(x, T (x)) ∇T (x) − ρ(x, T (x)) j(x)2] d3x. (56)

The generator efficiency η is defined by the ratio of Pel and heat inflow qh from the hot-side Th reservoir:

η = Pel

qh
=

∫
V

[− j(x)α(x, T (x)) ∇T (x) − ρ(x, T (x)) j(x)2
]

d3x∫
ah [k(a, Th) ∇T (a) − Th j(a) α(a, Th)] da

. (57)

For the cooling mode, the electric current density j is
reversed and the heat flux q enters through the ac contact
and leaves through the ah contact. On average q then is in
opposite direction to the Fourier heat flux –k∇T by reason of
the dominating Peltier heat flux T jα.

For the description of entropy production, the concept of
entropy current density js(x) = q(x)/T (x) can be formally
introduced [24,32–34]. However, it should be noticed that
the current js is not governed by a continuity equation,
as, e.g., for electric charge, since ∇ js(x, t ) �= –∂s(x, t )/∂t ,
where s(x, t ) is the local entropy density. In steady state
∂s/∂t = 0, whereas ∇ js(x) �= 0 can hold and contributes
to overall entropy generation. The situation can rather be
compared with the heat conduction equation cv∂T (x, t )/∂t +
∇(–k∇T (x, t )) = Hgen(x, t ), with cv as material’s specific
heat capacity and Hgen a heat generation density at position
x. In steady state cv∂T/∂t = 0 and Hgen(x) is the analog to
an entropy generation rate per unit volume denoted by ∇ js(x)
and whose integral over volume V gives the total irreversible
entropy generation rate including heat flows from the reser-
voirs to the TE engine. The TE engine itself does not change
its entropy content with time.

Thus, with the help of Eqs. (49) and (50), the irreversible
entropy production rate of the TE device is given by

sirr =
∫

V
∇ js(x) d3x

=
∫

V
∇ q(x)

T (x)
d3x =

∫
V

[
ρ j(x)2

T (x)
+ k

(∇T (x)

T (x)

)2]
d3x

=
∫

∂V

q(a)

T (a)
da = − qh

Th
− qc

Tc
. (58)

This result is valid for general spatial and temperature-
dependent material functions k(x, T (x)), ρ(x, T (x)). An
expression similar to the second line of Eq. (58) has been
presented for the 1D case in Refs. [38,39]. For the surface
integral form of sirr in (58), Eqs. (54) and (55) have been
used for the heat flows q j . This form is equivalent to Eq. (33)
for general steady-state heat engines. The contribution T j
α(a, T ) in the surface integrals of (54) and (55) can be made
to disappear by a thin metallic layer with α(a, T ) = 0 at the
contact boundaries. However, this will be nearly compensated
by altered k(a, T )∇T (a) with unknown ∇T (a). The deter-
mination of ∇T (a) requires solution of the thermoelectric
Eq. (51) for T (x).

A methodology for the solution T (x) of Eq. (51) satisfying
∇ j(x) = 0 can start by scaling the electric contact current i
with an arbitrary dimensionless factor μ. Since the internal
current density j (x) influences the temperature distribution
T (x), the knowledge of the scaling of j (x) with μ or i is
also required. In cases of sufficiently symmetric volume V
and material distributions in it, j (x) is proportional to i and
can be written as j(x) = μu(x) with a normalized current dis-
tribution u (x) with ∇u(x) = 0 corresponding to a complete
solution of the partial differential equation system for T (x),
ϕ (x). In particular for 1D geometries with inhomogeneous
material distribution, j(x) = μu is always valid, since then j
(x) is constant everywhere. In the most general case, j(x) =
�n=0μ

nun(x) with u0(x) �= 0, i.e., there may be internal eddy
currents, also for zero contact current i. The temperature T (x)
in (51) can be expanded in powers of μ:

T (x) =
∞∑

n=0

tn(x) μn, (59)
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where t0(x) corresponds to the solution of Eq. (51) for i, j =
0, i.e., to the temperature distribution for pure Fourier heat
flux: –k[x, t0(x)]∇t0(x). Then, following Eqs. (52) and (53),
t0(x) satisfies the boundary conditions ∇t0(a)n(a) = 0 for
a ∈ ∂VS , t0(a) = Th for a ∈ ah, t0(a) = Tc for a ∈ ac. Since the
expansion (59) is valid for a continuous region of μ, all other
tn(x) satisfy ∇tn(a)n(a) = 0 for a ∈ ∂VS and tn(a) = 0 for
a ∈ ah, ac, i.e., tn for n � 1 has only zero boundary conditions.

In the following, j(x) = μu(x) will be assumed for TE
devices with sufficient symmetry. Inserting the T (x) expan-
sion (59) into Eqs. (54) and (55) and sorting terms with respect
to powers of μ, only consideration of the ∇T (a) terms is
necessary. For the contact heat flows qj , coefficients q j,n arise
with q j = �n=0q j,nμ

n for j = h, c:

q j,0 =
∫

a j
k(a, Tj ) ∇t0(a) da

q j,1 =
∫

a j
(k(a, Tj ) ∇t1(a) − Tj u(a) α(a, Tj )) da

q j,m =
∫

a j
k(a, Tj ) ∇tm(a) da for m � 2. (60)

The surface gradient terms ∇tm(a) in the above integrals are
unknown and have to be determined by solution of a recursive
equation system by sorting Eq. (51) in powers of μ by utiliz-
ing Eq. (59). In the case of temperature-independent material
parameters k(x), ρ(x), and α(x), this can be easily done:

∇(−k(x) ∇t0(x)) = 0 for n = 0,

∇(−k(x) ∇t1(x)) = −t0(x) u(x) ∇α(x) for n = 1,

∇(−k(x) ∇t2(x)) = −t1(x) u(x) ∇α(x)

+ ρ(x) u(x)2 for n = 2,

∇(−k(x) ∇tn(x)) = −tn−1(x) u(x) ∇α(x) for n > 2. (61)

For Seebeck functions α(x, T (x)) with additional T depen-
dence and still only spatially dependent ρ(x) and k(x), the
right-hand sides of the recursive equation system (61) for the
coefficient functions tm(x) become much more complicated.
In order to express T ∇α(x, T (x)) in the last term of Eq. (51),

jT (x)∇a(x, T (x)) = jT (x)[∇1a(x, T (x))

+∂a(x, T )/∂T ∇T (x)], (62)

by a power series in μ, the terms with α(x, T (x)) have to be
first expanded in powers of T (x)–t0(x) = �n=1tn(x)μn:

∂

∂T
α

(
x, t0(x) +

∞∑
n=1

tn(x) μn

)

=
∞∑

ν=0

bν[x, t0(x)]

[ ∞∑
n=1

tn(x) μn

]v

,

where bv[x, t0(x)] = α(v+1)[x, t0(x)]/v! and α(m)(x, T ) de-
notes the mth derivative of α(x, T ) with respect to T . By use
of [ ∞∑

n=1

tn(x) μn

]v

=
∞∑

m=0

aν m(x) μm with a00 = 1, a0m = 0

for m > 0, avm = 0 for m < v and else aν m(x) =
m+1−v∑

λ1,λ2,..,λv �1
λ1+λ2+...+λv =m

tλ1(x) tλ2(x)... tλv (x), one obtains

α(1)

(
x,

∞∑
n=0

tn(x) μn

)
=

∞∑
m=0

Am(x)μm,

Am(x) =
m∑

ν=0

bν av m(x).

Hence,

∇α(x, T (x)) = ∇1α(x, T (x)) + ∇T (x)
∞∑

m=0

Am(x)μm.

The last term in (62) is a product of three power series in
μ:

j(x)T (x)α(1)∇T (x)

= μ u(x)
∞∑

n=0

tn(x)μn
∞∑

m=0

Am(x)μm
∞∑

p=0

∇tp(x)μp

= μ u(x)
∞∑

m=0

BT,m(x)μm,

BT,m(x) =
m∑

n=0

n∑
p=0

tp(x)∇tn−p(x) Am−n(x). (63)

Quite similarly follows for the term ∇1α(x, T ):

∇1α(x, T (x)) =
∞∑

m=0

Ax,m(x)μm,

Ax,m(x) =
m∑

ν=0

bx,ν av m(x),

bx,v = ∇1α
(v)(x, t0(x))/v!, and thus

j(x) T (x) ∇1α(x, T (x)) = μ u(x)
∞∑

n=0

tn(x)μn
∞∑

m=0

Ax,m(x)μm

= μ u(x)
∞∑

m=0

Bx,m(x)μm,

Bx,m(x) =
m∑

n=0

tn(x) Ax,m−n(x). (64)

With Bn(x) = Bx,n(x) + BT,n(x), Eq. (62) reads
jT (x)∇α = j�n=0Bn(x)μn and the equation system for
the tm(x) is

∇(−k(x) ∇t0(x)) = 0 for n = 0,

∇(−k(x) ∇t1(x)) = −u(x) B0(x) for n = 1,

∇(−k(x) ∇t2(x)) = −u(x) B1(x) + ρ(x) u(x)2 for n = 2,

∇(−k(x) ∇tn(x)) = −u(x) Bn−1(x) for n � 2. (65)
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The Bn(x) vector functions only contain the coefficients
tm(x) and ∇tm(x) up to order n so that the system (65) is a
recursive one. The low-order functions Am(x) and BT,m(x) can
be derived from Eqs. (63):

A0(x) = b0(x, t0(x)), A1(x) = b1t1(x),

A2(x) = b1t2 + b2t2
1 , A3(x) = b1t3 + 2b2t1t2 + b3t3

1 ,

BT ,0(x) = t0(x)∇t0(x)A0(x),

BT ,1(x) = (t0∇t1 + t1∇t0) A0(x) + t0∇t0A1(x),

BT ,2(x) = (t0∇t2 + t1∇t1 + t2∇t0)A0(x)

+ (t0∇t1 + t1∇t0) A1(x) + t0∇t0A2(x),

and for Ax,m(x), Bx,m(x) from Eqs. (64):

Ax,0(x) = bx,0(x, t0(x)), Ax,1(x) = bx,1t1(x),

Ax,2(x) = bx,1t2 + bx,2t2
1 ,

Ax,3(x) = bx,1t3 + 2bx,2t1t2 + bx,3t3
1

Bx,0(x) = t0(x)Ax,0(x), Bx,1(x) = t1Ax,0(x) + t0Ax,1(x),

Bx,2(x) = t2Ax,0(x) + t1Ax,1(x) + t0Ax,2(x).

In particular, the result is obtained for B0(x) and B1(x):

B0(x) = t0(x)[∇t0(x)∂α(x, t0)/∂T + ∇1a(x, t0)]

= t0(x)∇a(x, t0),

B1(x) = (t0∇t1 + t1∇t0)∂α(x, t0)/∂T

+ t0t1∇t0∇2α(x, t0)/∂T 2+
+ t1(x)∇1α(x, t0) + t0(x)t1(x)∂[∇1α(x, t0)]/∂T =

= ∇[t0t1∂α(x, t0)/∂T ] + t1(x)[∇1α(x, t0)

+t0(x)∇1∂α(x, t0)/∂T ]. (66)

If α(x, T ) = α(x) is temperature independent, the functions
Am(x) and BT,m(x) are equal to zero and Ax,m(x) = 0 for m >

0 with Ax,0(x) = ∇α(x). Thus Bm(x) = tm(x)∇α(x) and the
equation system (61) is recovered.

The series of Pel = qh + qc in powers of μ is given by
Pel = �n=0Pnμ

n = �n=0(qh,n + qc,n)μn and is closely related
to a relation between hot- and cold-side temperature gradients
∇tm(a) which is obtained by Eq. (56) after partial integration
of the volume integral term and use of Eqs. (54) and (55):∫

V
− ja(x, T )∇T d3x

=
∫

V
j∇a(x, T )T d3x −

∫
∂V

ja(a, T )T (a)da,

∫
∂V

k(a, T )∇T (a) da

=
∫

V
[ j ∇α(x, T ) T (x) − ρ(x, T ) j(x)2] d3x. (67)

Expansion of (67) in powers of μ with j(x) = μu(x) for
temperature-independent function ρ(x), or equivalently by in-
tegration of the equation system (65) over V and utilizing (60),

leads with
∫
∂V = � j

∫
a j to

∑
j=h,c

q j,0 =
∑
j=h,c

∫
a j

k(a, Tj )∇t0(a) da = 0,

∑
j=h,c

q j,1 =
∑
j=h,c

∫
a j

k(a, Tj )∇t1(a) da −
∫

a j
Tj u α(a, Tj ) da

=
∫

V
u B0(x) d3x −

∫
∂V

Tj u α(a, Tj ) da

= −
∫

V
u α(x, t0(x)) ∇t0(x) d3x

∑
j=h,c

q j,2 =
∑
j=h,c

∫
a j

k(a, Tj )∇t2(a) da

=
∫

V
[u B1(x) − ρ(x)u(x)2] d3x

∑
j=h,c

q j,n =
∑
j=h,c

∫
a j

k(a, Tj )∇tn(a) da

=
∫

V
u Bn−1(x) d3x for n � 3. (68)

It is interesting to note that in the special case of
merely temperature-dependent α(x, T ) = α(T ) and spatially-
dependent ρ(x), Pel in Eq. (56) can be calculated exactly to
all orders in i, since the series will end with the second-order
term, whereas for α(x) the series usually includes all powers
of i (or μ). For α(T ) the first term in the volume integral of
Eq. (56) can be written as a divergence:

j(x)α(T (x)) ∇T (x) = ∇
[

j(x)
∫ T (x)

0
α(T̃ ) dT̃

]
,

and thus ∫
V

− j(x)α(T (x)) ∇T (x) d3x

= −
∑
j=h,c

∫ Tj

0
α(T̃ ) dT̃

∫
a j

j(a) da

=
∑
j=h,c

± i
∫ Tj

0
α(T̃ ) dT̃

= i
∫ Th

Tc

α(T̃ ) dT̃ ,

where Eq. (53) for the contact currents has been used. There-
fore, for Pel ,

Pel = i
∫ Th

Tc

α(T̃ ) dT̃ − μ2
∫

V
ρ(x)u(x)2 d3x. (69)

Here μ2 = i2/[
∫

a j u(a)da]2. Comparing the result (69) with
the Pel coefficents for the powers of μ in Eq. (68), it is obvious
that all volume integrals over the u Bm(x) functions have to
disappear for m > 0. Indeed, by writing the integrands Bm(x)
as a divergence of a function that is zero on the volume bound-
ary ∂V , according to Eq. (66), B1(x) = ∇[t0t1∂α(t0)/∂T ] and
it can be shown that the higher-order Bm(x) are of a similar
form with at least one factor tn(x), n > 0, in the boundary in-
tegrand, where tn(a) = 0. A nonzero contribution is obtained
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only for P1 in Eq. (68). With B0(x) = t0(x)∇α(t0(x)), the
second part of Eq. (68) reduces to the leading term of Eq. (69).

Following the general Eqs. (32) for steady-state heat en-
gines, a definition has to be given for the reversible entropies
�s j of the TE converter. From the TE-entropy definition in
Eq. (58), reversible entropies can be extracted by expanding
sirr in powers of the current scaling factor μ. According to the
last term in Eq. (51), the classical local Peltier heat generation
or cooling is a reversible process in the sense of equal amounts
of heat generated or absorbed by reversing the current j with
unaltered magnitude. For infinitesimal j , the Joule heat [first
right-hand term in Eq. (51)] is negligible as second-order ef-
fect. The change of the temperature field T (x) for infinitesimal
j also results in a second-order effect for the Thomson-Peltier
heat in the last term of Eq. (51). Expanding the third line in
Eq. (58) up to first order in μ yields

sirr = sirr,0 + μ sirr,1 = −qh,0

Th
− qc,0

Tc
+ μ

(
−qh,1

Th
− qc,1

Tc

)
,

where q j,n is defined in Eq. (60). The zero-order term of
sirr can be interpreted as arising from a heat leakage cur-
rent λ(Th, Tc) = κL(Th, Tc)(Th–Tc) formed by the conserved
Fourier heat flow λ = qh,0 = –qc,0 [cf. first line in Eq. (68)] in
the same way as explained in Eqs. (45)–(48). The correspond-
ing heat conductance κL is κL(Th, Tc) = qh,0/(Th–Tc) and sirr,0

can also be written as

sirr,0 = qh, 0(Th − Tc)/TcTh = κL(Th − Tc)2/TcTh � 0.

The linear sirr,1 term has to be considered as reversible
entropy production, since it is proportional to μ and therefore
to i. We are thus led to define, following Eqs. (32),

�sh = μ qh, 1/Th, �sc = −μ qc, 1/Tc,

�sc − �sh = sa = μ sirr,1. (70)

It is important to note that sa is not restricted to positive
values for the TE converter, since �s j and sa change sign for
reversed current μ→–μ. As elucidated following Eq. (47), not
all terms contributing to sirr at the same time point are nec-
essarily positive. Only for the total sum, sirr > 0 is required.
In Sec. III, pseudo-endoreversible heat engines connected by
external heat conductances to the reservoirs have been dis-
cussed with an internal engine undergoing irreversible entropy
production sa. In that case �sc–�sh = sa > 0 is necessarily
valid. The present description of TE converters does not use
external conductances to connect to the environment, since
those elements are now included in the “internal” engine.

According to Eq. (60), the �s j can be expressed as

�s j = ±μ

∫
a j

(k(a, Tj ) ∇t1(a)/Tj − u(a) α(a, Tj )) da,

sa = −μ
∑
j=h,c

∫
a j

(k(a, Tj ) ∇t1(a)/Tj − u(a) α(a, Tj )) da.

For k(x, T ) = k(x) and by use of Eqs. (65), sa can also be
presented by the volume integral:

sa = −μ

∫
V

∇ [k(x)∇t1(x)/t0(x) − u(x) α(x, t0(x))] d3x

= −μ

∫
V

[u B0(x)/t0(x) − k(x)∇t1(x)∇t0(x)/t0(x)2

− u ∇α(x, t0(x))] d3x.

Because of Eq. (66), B0(x) = t0(x)∇α(x, t0(x)), and thus,

sa = μ

∫
V

k(x)∇t1(x)∇t0(x)/t0(x)2 d3x.

The quadratic term μ2q j,2 of q j is proportional to i2 =
μ2[

∫
a j u(a)da]2 with the electric contact current i of Eq. (53).

Thus, μ2q j,2 = –i2r j can be defined with r j of Ohmic dimen-
sion. Following Eq. (60), the r j can be expressed as

r j = −
∫

a j
k(a, Tj ) ∇t2(a) da

/[∫
a j

u(a) da
]2

,

and for rh + rc by Eq. (68):

r =
∑
j=h,c

r j

=
∫

V
[ρ(x)u(x)2 − u B1(x)] d3x

/[∫
a j

u(a) da
]2

. (71)

The contact heat flows qh and qc can be generally repre-
sented with the help of Eqs. (70) and (71):

qh = +qh,0 + �shTh − i2rh +
∞∑

n=3

μnqh,n

qc = −qh,0 − �scTc − i2rc +
∞∑

n=3

μnqc,n. (72)

From sh = �sh–qh/Th and sc = –�sc–qc/Tc and by again
utilizing Eqs. (70) and (71),

s j = −q j,0

Tj
+ i2 r j

Tj
− 1

Tj

∞∑
n= 3

μnq j,n for j = h, c. (73)

The relation (33), sirr = –qh/Th–qc/Tc = sh + sc + sa stays
valid. Here sa < 0 can never cause sirr < 0, because according
to the second line of Eq. (58), sirr � 0 and sirr is only zero for
j = 0 and T (x) = Th = Tc. The q j,n are given by Eq. (60) for
general position- and temperature-dependent material func-
tions k(x, T ) and α(x, T ). The generated power qh + qc is, by
Eq. (72),

Pel = �shTh − �scTc − i2r +
∞∑

n=3

μn(qh,n + qc,n). (74)

An important conclusion can be drawn from Eqs. (60)
and (61) or (65). For constant Seebeck α(x, T ) = α, the
tm(x) are determined by homogeneous Eqs. (61) with the
exception of t2(x). Thus, by the zero boundary conditions of
tm(x) for m > 0, tm(x) = 0 for m � 1 and m �= 2. Therefore
q j,m = 0 for m > 2, and Eqs. (72)–(74) for q j , s j , sirr , and
Pel reduce to quadratic expressions in μ. The linear parts
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q j,1 of q j by Eqs. (60) and (53) then turn out to be q j,1 =
–αTj

∫
a j u(a)da = ±iαTj/μ, and thus by utilizing Eq. (70),

�sh = �sc = �s = i α, (75)

i.e., sa = 0 for homogeneous distribution of the Seebeck coef-
ficient α within the device volume. It is a major result that the
difference of �sh and �sc is caused by the inhomogeneity of
α, where for k(x) and ρ(x) in Eq. (61) or (65) arbitrary positive
functions have been used. For simplicity in Eqs. (61) and (65),
no temperature dependence of k and ρ has been assumed, but
the thesis is here established that the result (75) also holds for
general k(x, T ) and ρ(x, T ) functions. Pel reduces for constant
α to

Pel = iα(Th − Tc) − i2r,

r =
∫

V
ρ(x)u(x)2 d3x

/[∫
a j

u(a) da
]2

. (76)

The expression for r in Eq. (76) also applies in the case of
nonconstant temperature-dependent α(T ), since then in the
defining Eq. (71) the volume integral over u B1(x) is zero.

B. Analytical 1D TE device theory

In the following, TE-device theory is considered analyt-
ically for electrical- and heat current flows in parallel in a
1D-TE leg with constant cross-section area A. The material
parameters are assumed to depend only on the 1D dimension
x and temperature T (x). The theory of Sec. IV A is thus
considerably simplified, since the electric current density j is
now constant by ∇ j(x) = 0. The normalized current density
u (x) can be set to u = 1 Amp/m2 and is kept in the following
equations for dimensional reasons. The TE leg length is L with
x = 0 at the hot-side contact area and x = L at the cold-side
area.

The contact heat flows in Eqs. (54) and (55) then read

qh = A

[
−k(0, Th)

d T (0)

dx
+ Th j α(0, Th)

]
,

qc = A

[
k(L, Tc)

d T (L)

dx
− Tc j α(L, Tc)

]
.

The heat-flow coefficients q j,n from Eq. (60) reduce to

q j,m = ∓A k(a j, Tj )
d tm(a j )

dx
for m = 0, 2, 3, . . . .,

qj,1 = A

[
∓k(a j, Tj )

d t1(a j )

dx
± u Tjα(a j, Tj )

]
for m = 1.

(77)

Here the upper sign applies for j = h and the lower sign for
j = c. The contact locations x = 0, L are correspondingly
characterized by aj = 0, L.

An explicit solution for the qj,1 and q j,2 coefficients is
required, in order to find the reversible entropies of Eq. (70)
and resistances r j of Eq. (71) for the 1D case. For general
Seebeck function α(x, T ), this amounts to solving the equa-
tion system (65) for the t0(x), t1(x), and t2(x) functions. For
t0(x) with boundary conditions t0(0) = Th, and t0(L) = Tc, the
solution is obtained by double integration. The first integration

yields qh,0 = –Ak(x)dt0(x)/dx = const, i.e., the pure Fourier
heat flow arising for j = 0. Integrating qh,0/k(x) results in

t0(x) = K (Tc − Th)

K (x)
+ Th,

1

K (x)
=

∫ x

0

d x̃

k(x̃)
, K = K (L)

qh,0 = AK (Th − Tc), (78)

where 1/K (x) is the total heat resistance in the interval (0, x).
K (L) is the heat conductance of the full TE leg per unit area.

For the higher-order terms tm(x), one obtains from (65)

k(x)t ′
m(x) = k(x)gm(x) + k(0)t ′

m(0), (79)

with

gm(x) = 1

k(x)

∫ x

0
uBm−1(x̃) d x̃ for m = 1, 3, 4, . . .,

g2(x) = 1

k(x)

∫ x

0

[
uB1(x̃) − ρ(x̃)u2

]
d x̃ for m = 2. (80)

The prime on t ′
m(x) denotes the derivative with respect to x.

The unknown t ′
m(0) in Eq. (79) has to be determined from

the zero boundary conditions for tm(x), m > 0, in particular
tm(L) = 0. Integrating Eq. (79) leads to

tm(x) =
∫ x

0
gm(x̃) d x̃ + k(0)t ′

m(0)

K (x)
,

and thus by tm(L) = 0:

tm(x) =
∫ x

0
gm(x̃) d x̃ − K

K (x)

∫ L

0
gm(x̃) d x̃,

k(x)t ′
m(x) = k(x)gm(x) − K

∫ L

0
gm(x̃) d x̃. (81)

Hence, at the contacts for x = 0, L,

k(0)t ′
m(0) = −K

∫ L

0
gm(x̃) d x̃,

k(L)t ′
m(L) = k(L)gm(L) − K

∫ L

0
gm(x̃) d x̃. (82)

Equations (82) for m = 1, 2 can be inserted in Eq. (77) to
obtain general 1D expressions for the �s j and r j in Eqs. (70)
and (71).

For �s j , it is found from Eqs. (70), (77), and (82) with
μ = i/(Au) that

�sh = μ qh,1

Th
= iα(0, Th) + i

u Th
K

∫ L

0
g1(x̃) d x̃

�sc = −μ qc,1

Tc

= iα(L, Tc) + i

u Tc

[
K

∫ L

0
g1(x̃) d x̃ − k(L)g1(L)

]

sa = �sc − �sh =

= i K

u

∫ L

0
g1(x̃) d x̃

(
1

Tc
− 1

Th

)

− i k(L)

uTc
g1(L) + i[α(L, Tc) − α(0, Th)]. (83)

If α = const, Bm(x) = 0 in Eq. (66) and thus also g1(x) = 0.
Hence, Eqs. (75) are recovered with sa = 0.
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From Eq. (71) we find for r j

rh = k(0)t ′
2(0)

Au2
= −K

Au2

∫ L

0
g2(x̃) d x̃,

rc = k(L)t ′
2(L)

Au2
= 1

Au2

[
−k(L)g2(L) + K

∫ L

0
g2(x̃) d x̃

]

= 1

Au2

[∫ L

0

[
ρ(x̃)u2 − uB1(x̃)

]
d x̃ + K

∫ L

0
g2(x̃) d x̃

]
,

and therefore

r = rh + rc = –k(L)g2(L)/(Au2), (84)

or

r = 1

A

∫ L

0
[ρ(x̃) − B1(x̃)/u] d x̃.

Again, as in the 3D case with Eqs. (71) and (74), the Joule
losses, defined as second-order effect in i, cannot be attributed
solely to ρ(x), but depend in addition on the inhomogeneity of
α(x, T ) by the B1(x) term. For α = const, B1(x) = 0.

The full evaluation of (83) and (84) for general α(x, T )
leads by Eqs. (66) to complicated expressions. In the follow-
ing, two special cases will be treated, which are of particular
interest: only spatially dependent Seebeck α(x) and merely
temperature-dependent α(T ). In both cases a suitable choice
of the profiles ρ(x) and k(x) allows for the inclusion of
electrical and thermal series resistances at the device contact
areas. Thus, no additional equivalent circuit components are
required for a general description, contrary to previous litera-
ture with otherwise constant material properties (CMP model)
and neglect of bulk heat conductance.

1. Results for spatially dependent Seebeck coefficient

The function g1(x) in Eqs. (83) is given by Eqs. (80), (78),
and (66) with B0(x) = t0(x)dα(x)/dx. One obtains

g1(x) = u

k(x)

[
K �T

∫ x

0

α(x̃)− α(x)

k(x̃)
d x̃+ Th(α(x)− α(0))

]
,

and thus∫ L

0
g1(x)dx = uTh

∫ L

0

α(x) − α(0)

k(x)
d x + uK �T Dα,k,

(85)
with

Dα,k =
∫ L

0

∫ x

0

α(x̃) − α(x)

k(x̃)k(x)
d x̃ dx.

The double-integral Dα,k depends solely on the profiles
α(x) and k(x) in the same way as the first integral in (85).
Thus no dependence on ρ(x) occurs in Eqs. (83), since ρ(x) is
exclusively connected to the second-order effects in i:

�sh = i K

[∫ L

0

α(x)

k(x)
dx + 1

Th
K �T Dα,k

]

�sc = i K

[∫ L

0

α(x)

k(x)
dx + 1

Tc
K �T Dα,k

]

sa = �sc − �sh = i Dα,k K2�T 2/(ThTc). (86)

sa is determined by the sign of Da,k and i. For monotonous
decreasing α(x), Da,k > 0. For increasing α(x), Da,k < 0 and
for constant α, Da,k = 0. For nonmonotonously varying α(x),
Da,k can accidentally be zero, depending on the k(x) function.
If the TE device is in the generator mode, iα > 0, i.e., if α < 0
for n-doped semiconducting material, then also i < 0. In order
to find the bounds of the �s j in Eq. (86), the bounds of KDα,k

can be obtained by representing KDα,k in the form

KDα,k =
∫ L

0

α(x)

k(x)
dx − 2

∫ L

0

K

K (x)

α(x)

k(x)
dx.

The factor K /K (x) can take on the extreme values 0 or 1,
depending on the form of the k(x) profile. Thus, for α > 0,

−
∫ L

0

α(x)

k(x)
dx < KDα,k <

∫ L

0

α(x)

k(x)
dx.

With this, the bounds of �s j in Eq. (86) for iα > 0 are

0 < i K

(
1 − �T

Th

) ∫ L

0

α(x)

k(x)
dx < �sh < i K

(
1 + �T

Th

) ∫ L

0

α(x)

k(x)
dx,

i K

(
1 − �T

Tc

) ∫ L

0

α(x)

k(x)
dx < �sc < i K

(
1 + �T

Tc

) ∫ L

0

α(x)

k(x)
dx. (87)

Thus, it turns out that �sh for iα > 0 is always >0. �sc can be smaller than 0, depending on the sign of 1–�T/Tc.
For the generated power Pel up to first-order P1 = (qh,1 + qc,1), the result is obtained from Eq. (86):

μ P1 = �shTh − �scTc = i K �T
∫ L

0

α(x)

k(x)
dx, (88)

which is independent of Da,k . The open-circuit voltage of the TE device can be defined by Pel/i for i → 0 and thus is obtained
by dividing μP1 in Eq. (88) by i. It may be interesting to note that this open-circuit voltage is independent from any overall factor
of the heat conductivity k(x), but can depend critically on the shape of k(x) for inhomogeneous α(x).

The second-order effects in i are given by the r j coefficients of Eqs.(84), which are determined by the g2(x) function (80). By
Eq. (66) with B1(x) = t1(x)dα(x)/dx, it reads

g2(x) = 1

k(x)

∫ x

0

[
uα′(x̃)t1(x̃) − ρ(x̃)u2

]
d x̃ = u

k(x)

∫ x

0
[(α(x) − α(x̃)) t ′

1(x̃) − ρ(x̃)u] d x̃.
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t ′
1(x) following Eq.(81) can be expressed by the g1(x) function

in Eq. (85), which leads to

g2(x) = u

k(x)

∫ x

0
[α(x) − α(x̃)]

×
(

g1(x̃) − K

k(x̃)

∫ L

0
g1( ˜̃x) d ˜̃x

)
d x̃

− u2

k(x)

∫ x

0
ρ(x̃)d x̃

and ∫ L

0
g2(x)dx = u

∫ L

0

∫ x

0

α(x) − α(x̃)

k(x)
g1(x̃) d x̃ dx+

+ uK Dα,k

∫ L

0
g1(x̃) d x̃

− u2
∫ L

0

1

k(x)

∫ x

0
ρ(x̃)d x̃ dx.

With these expressions for g2(x) and its integral, a com-
plete analytical representation is obtained for the rh and rc in
Eq. (84), and in particular for r = rh + rc:

r = r1 + r2 = −k(L)g2(L)

A u2
, r1 = 1

A

∫ L

0
ρ(x̃)d x̃ ,

r2 = 1

Au

∫ L

0
[α(x̃) − α(L)]

×
(

g1(x̃) − K

k(x̃)

∫ L

0
g1( ˜̃x) d ˜̃x

)
d x̃ . (89)

The first term r1 of r is the usual definition of the internal
electrical resistance of the TE device. The second term r2

only differs from zero for nonconstant α. By the definition
of the function g1(x) and K , it is obvious that r2 scales in-
versely proportional with an overall factor of the function
k(x) and quadratically with an overall factor of α(x). Is it
possible to achieve negative values for r2? It is difficult to
come to conclusions for the general form of r2 in Eq. (89);
however, for the simplifying case that k(x) = kc is constant
and α(x) = α(0) + α′x is linear, the surprisingly simple result
can be inferred from (89):

r2 = α′ 2L3(Th + Tc)

24A kc
. (90)

This is valid for positive as well as for negative α(x) and
α′ values. From Eq. (90), the hypothesis is established that
r2 � 0 is always valid and r generally is equal or larger than
the pure internal electric resistance r1.

From Eq. (84) rh is obtained by the integral over g2(x) and
thus rh splits into the terms rh = rh1 + rh2, with

rh1 = K

A

∫ L

0

1

k(x)

∫ x

0
ρ(x̃)d x̃ dx,

rh2 = − K

Au

(∫ L

0

∫ x

0

α(x) − α(x̃)

k(x)
g1(x̃) d x̃ dx + K Dα,k

×
∫ L

0
g1(x̃) d x̃

)
. (91)

The index 2 on r here and in the following again denotes the
contribution for nonconstant α. The question arises whether
rh2 can become negative. Once more, for constant k(x) and
linear α(x), a positive result is obtained:

rh2 = α′ 2L3(8Th + 7Tc)

360A kc
. (92)

By Eq. (84), rc is obtained as rc = r–rh = (r1–rh1) +
(r2–rh2) = rc1 + rc2. So, for the approximation used above for
k(x) and α(x), the second term of rc is also positive:

rc2 = r2 − rh2 = α′ 2L3(7Th + 8Tc)

360A kc
, (93)

and the first term is always positive, since it can be written in
the form

rc1 = r1 − rh1

= 1

A

∫ L

0
ρ(x̃)d x̃− K

A

∫ L

0

1

k(x)

∫ x

0
ρ(x̃)d x̃ dx

= 1

A

∫ L

0
ρ(x̃)d x̃ − K

A

∫ L

0

∫ L

x̃

dx

k(x)
ρ(x̃) d x̃

= 1

A

∫ L

0
ρ(x̃)d x̃ − K

A

∫ L

0

(
1

K (L)
− 1

K (x̃)

)
ρ(x̃) d x̃

= K

A

∫ L

0

ρ(x̃)

K (x̃)
d x̃ > 0. (94)

Therefore, it can be supposed that r2, rh2,and rc2 are pos-
itive for general k(x) and α(x) functions. It is easily verified
that if k(x) and ρ(x) are constants, r1/2 = rh1 = rc1. Together
with r2, rh2, and rc2 = 0 for α(x) = const, this leads to the
well-known result r/2 = rh = rc for the CMP [40,41].

The generated electric power is given up to second order in
current i by utilizing Eqs. (74) and (88):

Pel = i K �T
∫ L

0

α(x)

k(x)
dx − r i2,

with r from Eq. (89). Pel thus is decreased by an additional
positive r2i2 contribution to the Joule losses in the case of
inhomogeneous α(x). Since r2 generally scales inversely pro-
portional with an overall factor of k(x), any positive TE
performance is destroyed by r2 in the limit k(x) → 0, al-
though the losses of the heat leakage current qh,0 [Eq.(78)] are
eliminated. The singularity with respect to k is also revealed
in Eq. (90).

2. Results for temperature-dependent Seebeck coefficient

In the case of merely temperature-dependent α(T ), again
electrical and thermal series resistances at the device contact
areas can be included by forming the ρ(x) and k(x) functions
appropriately. The mathematical description to some extent
becomes simpler and more transparent than for spatially de-
pendent α(x); however, it should be noted that the physical
description of the TE performance with α(T ) is not always re-
liable. For example, in the case of extremely thin TE-material
layers (e.g., for superlattices) the temperature drop along the
parasitic thermal series resistances becomes appreciable and,
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as described in Sec. III for general heat engines, the tempera-
ture drop between Tf h and Tf c along the internal engine (i.e.,
the TE material) becomes much smaller than �T = Th–Tc.
Then, the performance deteriorates accordingly. With only
one material function α(T ), this effect cannot be described,
since the true Seebeck α in the contact intervals (Tf j,Tj ) is
nearly zero and not ≈ a(Tj ).

Equation (56) applied to the 1D case with α(T ) leads to

Pel =
∫ L

0

(
−i α(T (x))

dT (x)

dx
− i2ρ(x)/A

)
dx

= i
∫ T h

T c
α(T ) dT − i2

∫ L

0

ρ(x)

A
dx. (95)

The substitution of the integration variable x by T in the first
term is valid also for nonmonotonous temperature profile T (x)
and is independent of the detailed T function. Equation (95)
corresponds to Eq. (69) in the 3D case and both results are
valid to all orders in i, i.e., the power series of Pel is complete
with the second order, since Pn = qh,n + qc,n = 0 for n > 2,
as elucidated following (69). However, the series of the indi-
vidual contact heat flows qj,n in (60) does not stop, except for
constant α, which leads to tn(x) = 0 for n > 2.

By use of Eqs. (83) and (84), the q j,n up to order n = 2 can
be calculated. From Eq. (80), g1(x) is obtained with the help of
Eq. (66), B0(x) = t0(x)dα(t0(x))/dx. Partial integration and
change of the integration variable from x to t0 leads to

g1(x) = u

k(x)

[
−

∫ t0(x)

Th

α(t ) d t + α[t0(x)] t0(x) − α(Th)Th

]
.

(96)
Integration over g1(x) is performed again by substituting t0 as
integration variable with the help of dx/dt0 = –k(x)/(K�T ).
Since by Eq. (78), t0(x) is a strictly monotonous function, the
inverse x(t0) exists and k(x) can be replaced by k(t0):

∫ x

0
g1(x̃)dx̃ = u

K�T

∫ t0(x)

Th

∫ t̃0

Th

α(t ) d t d t̃0

− u

K�T

∫ t0(x)

Th

α(t )t d t − u

K (x)
α(Th)Th.

The first double integral can be evaluated by adjusting
integration bounds to be equal by a step function θ (t) in the
integrand and by interchanging the integration sequence:

∫ Th

t0(x)

∫ Th

t0(x)
θ (t − t̃0) d t̃0 α(t )d t

=
∫ Th

t0(x)
α(t ) t d t − t0(x)

∫ Th

t0(x)
α(t ) d t,

and thus∫ x

0
g1(x̃)dx̃ = 2u

K�T

∫ Th

t0(x)
α(t ) t d t

− u t0(x)

K�T

∫ Th

t0(x)
α(t ) d t − u

K (x)
α(Th)Th. (97)

With Eqs. (96) and (97), the reversible entropies �s j ac-
cording to Eq. (83) are

�sh = i

Th�T

(
2

∫ Th

Tc

α(t ) t d t − Tc

∫ Th

Tc

α(t ) d t

)

�sc = i

Tc�T

(
2

∫ Th

Tc

α(t ) t d t − Th

∫ Th

Tc

α(t ) d t

)
(98)

and

sa = �sc−�sh = 2i

TcTh

(∫ Th

Tc

α(t ) t d t

−Th + Tc

2

∫ Th

Tc

α(t ) d t

)
.

Again, as for the α(x) result in Eqs. (86) and (87), �sh for
iα > 0 is always positive and �sc can be smaller than zero,
when Th > 2Tc. Furthermore, similar to Eq. (88),

μ P1 = �shTh − �scTc = i
∫ T h

T c
α(T ) dT ,

which confirms (95) in first order.
The r j coefficients of Eqs. (83) for the α(T ) case

are determined by the g2(x) function (80) with B1(x) =
∇[t0(x)t1(x)∂α(t0(x))/∂T ] from Eq. (66). With t1(0) =
t1(L) = 0,

g2(x) = u

k(x)
t0(x)t1(x)α′(t0(x)) − u2

k(x)

∫ x

0
ρ(x̃) d x̃,

g2(L) = − u2

k(L)

∫ L

0
ρ(x̃)d x̃,

and the integral of g2(x) is obtained by changing integration
again to t0 by use of dx/dt0 = –k(x)/(K�T ):∫ L

0
g2(x)dx = u

K�T

∫ Th

Tc

t0 t1[t0]α′(t0) d t0

− u2
∫ L

0

1

k(x)

∫ x

0
ρ(x̃)d x̃ dx. (99)

The function t1(x) can be expressed as t1[t0(x)] by Eq. (81)
with g1(x) and its integral from (96) and (97), and with (78)
leading to K/K (x) = [Th–t0(x)]/�T :

t1[t0] = u

K�T

[
Tc(Th − t0)

�T

∫ Th

Tc

α(t ) d t − t0

∫ Th

t0

α(t ) d t+

+2
∫ Th

t0

tα(t ) d t − 2
Th − t0
�T

∫ Th

Tc

tα(t ) d t

]
.

Now, Eq. (84) yields for r

r = r1 + r2 = −k(L)g2(L)

A u2
= 1

A

∫ L

0
ρ(x̃)d x̃, r2 = 0,

(100)
which coincides with the first term of Eq. (89), while the r2

contribution is zero, also for nonconstant α. This confirms the
second term in Eq. (95). However, nonconstant α matters for
the hot- and cold-side coefficients rh and rc of the heat flows
qh and qc. From Eq. (84), it follows by use of (99) for rh =
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rh1 + rh2 that

rh1 = K

A

∫ L

0

1

k(x)

∫ x

0
ρ(x̃)d x̃ dx,

rh2 = −1

Au �T

∫ Th

Tc

t0 t1[t0]α′(t0) d t0, (101)

with the same rh1 as in Eq. (91) for the α(x) theory. Since rc =
rc1 + rc2 = r–rh, for rc1 = r1–rh1 the same expression applies
as in Eq. (92), and for rc2

rc2 = r2 − rh2 = −rh2

is obtained. Thus, one of the rh2 and rc2 will be negative and
the other positive, contrary to the α(x) case, where both values
are assumed to be positive. If α(T ) is a linear function in T
with steepness α′ and k(x) = kc is a constant, it is inferred
from (101):

rc2 = −rh2 = α′ 2L�T
(
4T 2

h + 7ThTc + 4T 2
c

)
180A kc

> 0. (102)

One is thus led to presume that rc2 is positive for general α(T ),
k(x), and rh2 is negative. Thus, rc2 gives rise to a negative
contribution to the heat flow qc while rh2 evokes a positive
contribution to qh of equal magnitude. So, these contributions
have the character of a heat leakage current similar to qh,0

in Eq. (78), which however is independent from current i.
Generally for α(T ), all heat-flow terms q j,m, m > 2, also have
this leakage current character according to Eq. (68).

Following Eqs. (72) and (73), the entropy production rate
can be expressed generally up to second order in i as

sirr = qh,0

(
1

Tc
− 1

Th

)
+ (�sc − �sh) + i2

( rc

Tc
+ rh

Th

)
.

(103)
The additions r j2 caused by nonconstant α in r j in

Eq. (103) are positive for α(x). Also, for α(T ) the additional
term i2rc2 (1/Tc–1/Th) gives rise to a positive contribution. On
the other hand, sa = �sc–�sh can become negative in some
cases.

The different behavior for the cases of α(x) and α(T ) is
surprising but it is not inconsistent, since both theories deviate
considerably. Generally, it is not possible in the context of our
theory to describe the device behavior for a material function
α(T ) by one adapted function α(x) = α(T (x)), because T (x)
depends, by Eq. (59), on the current scaling μ, and for each
contact current i another function αμ(x) = α(Tμ(x)) applies.
Then αμ(x) also has to be expanded in a power series of μ

[which in fact is done in Eqs. (63) and (64)]. This leads to
quite different governing equations compared to Eq. (61) with
different functions tm(x).

Both theories have in common the inverse scaling of rh2

and rc2 with the heat conductivity k(x). Pel in the α(T ) the-
ory [Eq. (95)] does not at all depend on k(x). However, the
efficiency η = Pel/qh is zero for k(x)→0, since qh,2 ∼ rh2 →
∞, unless simultaneously i → 0, which means Pel = 0. Opti-
mization of TE devices should take into account that reduction
of k may be disadvantageous for this reason, or only applica-
ble for sufficiently small electric currents, although increased
material’s figure of merit Z = α2 (kρ) arises for decreased k.
In the traditional CMP model the limit for k → 0 is ηPmax =
ηC/(2–ηC/2) and Pmax = α2�T 2/4r as will be shown now.

C. CMP model extended to linear Seebeck coefficicients

The simple 1D theory with constant material properties in
the TE legs (CMP-model) is well known [40,41], but will now
be briefly recalled in order to compare the entropy concepts
with the general case. In addition an analytical extension for
linear Seebeck variation of α(x) or α(T ) will be established
with new material- and device figure of merit for this case.

In the 1D CMP case, the heat balance Eq. (51) for T (x) re-
duces to a simple linear differential equation: –Akd2T/dx2 =
i2ρ/A with boundary conditions T (0) = Th and T (L) = Tc.
Then the heat flows qh and qc according to Eqs. (54) and (55)
are

qh = �TA k/L + i αTh − i2r/2,

qc = −�TA k/L − i αTc − i2r/2

with Ak/L = AK from Eq. (78) and r = ρL/A = r1 from
Eq. (89). In the generator mode the electrical output power
Pel and maximized Pmax with respect to i = iPmax are

Pel = qh + qc = i α�T − i2r,

iPmax = a�T/(2r), Pmax = α2�T 2/(4r). (104)

The efficiency reads

η = Pel

qh
= �T

Th

iα − i2r/�T

�T A k/(ThL) + iα − i2r/Th
. (105)

In the literature, its maximization with respect to i utilizes
the ratio of internal TE-leg resistance r and external load
resistance. Then optimization with respect to this ratio leads
to an expression of η including a figure of merit for the device:

Z = α2/(r AK ) = α2/(ρk) (106)

which—in the case of a single TE leg (unicouple)—is simul-
taneously the figure of merit for the TE material with constant
material properties. Usually thermocouples are considered
with p- and n-doped TE legs put thermally in parallel and
electrically in series. Then, for the Seebeck parameters αp > 0
and an < 0 with corresponding leg geometries Ap,n and Lp,n,
the device figure of merit turns out to be [36,41]

ZD = α2/(r AK ), α = αp − αn,

r = ρpLp/Ap + ρnLn/An, AK = Apkp/Lp + Ankn/Ln.

Maximization of η can be performed without inclusion
of an artificial external load resistance by eliminating in η

the variable r = α2/(ZAK ) by i2r = (iα)2/(ZAK ). Varying η

with respect to iα as a single variable [35–37], the optimized
iαopt is

iαopt = AK �T (
√

1 + ZTav − 1)/Tav, Tav = (Th + Tc)/2.

(107)
Inserting this into Eq. (105), one obtains

ηmax = �T

Th

√
1 + ZTav − 1√

1 + ZTav + Tc/Th

= �T

Th

ZTh/2 + 1 − √
1 + ZTav

ZTh/2 + �T/Th
. (108)

Obviously ηmax → ηC for Z → ∞. A broad literature in
thermoelectrics is dedicated to achieving high-Z values by

064136-18



CYCLIC HEAT ENGINES WITH NONISENTROPIC … PHYSICAL REVIEW E 105, 064136 (2022)

reduction of thermal conductivity k. As was shown in the
previous subsection, this can only be fully successful for the
CMP model, which is never realized exactly in practice. With
k → 0 in Eq. (107), iαopt → 0 for finite α and r > 0, and
thus in Eq. (104), Pel , qh → 0. In order that ηmax → ηC and
in addition Pel > 0, it is either required that α→� with k, r
finite, or for finite iα that k and r → 0. This can be read off
from Eq. (105).

These findings are supported by entropy evaluation accord-
ing to Eqs. (58) and (103):

sirr = AK �T

(
1

Tc
− 1

Th

)
+ i2 r

2

(
1

Tc
+ 1

Th

)
,

since following Eq. (75) �sh = �sc = iα with sa = 0, and
due to Eqs. (91) and (94) rh = rc = r/2. The losses by sirr

cause ηmax < ηC , except for α→� with Pel → ∞, because
the losses by k, r > 0 then are negligibly small. Regrettably,
α is limited to small values by the requirement of positive
thermal conductance of the electron gas [42]. Superconduc-
tors with r = 0 are not thermoelectrics because of α = 0 in
that case.

The efficiency ηPmax corresponding to Pmax in Eq. (104) is
found by inserting iPmaxα = ZAK�T/2 into Eq. (105):

ηPmax = ηC

4/(ZTh) + 2 − ηC/2
.

Pmax itself only depends on the power factor ZAK = α2/r and
is independent of k. For k → 0, ηPmax → ηC/(2–ηC/2) and
Pmax = a2�T 2/4r. It can be shown that ηPmax < ηCA is always
valid with ηCA from Eq. (4).

The CMP theory can be extended for linear α(x) or α(T )
variation with ρ and k being constants. For α(x) = α(0) + αx
by use of Eqs. (72) and (86),

qh = �TAk/L + �shTh − i2rh,

qc = −�TAk/L − �scTc − i2rc,

with

�sh = i[a(0) + a′L(2 + Tc/Th)/6] = i ah,

�sc = i[a(0) + a′L(4 − Th/Tc)/6].

Here αh is considered as some sort of average of α(x) in the
interval (0, L). Then Pel = qh + qc = iαav�T –i2r with αav =
α(L/2) and r = rh + rc including the singular rh2, rc2 parts
for k → 0 of Eqs. (92) and (93). Similar to Eq. (104), Pmax =
α2

av�T 2/(4r) and iPmax = αav�T/(2r). For η = Pel/qh, one
obtains

η = �T

Th

iαhc − i2r/�T

�T A k/(ThL) + iαh − i2rh/Th
, c = αav

αh
,

(109)
where c is a correction factor in order to have the same
variation variable iαh in the numerator and denominator. Max-
imizing η with respect to iαh and introducing rh = βr leads to

iαh,opt = AK �T

√
1 + (Th − cβ �T )cZ − 1

Th − cβ �T
, Z = α2

h

r AK
,

ηmax = �T

Th

√
1 + (Th − cβ �T )cZ − 1√

1 + (Th − cβ �T )cZ/c + 1/c − 2β�T/Th

= �T

Th

ZThc/2 + 1 − √
1 + (Th − cβ �T )cZ

ZTh/2 + 2β �T/Th
(110)

For homogeneous α with c = 1 and β = rh/r = 1/2,
Eqs. (107) and (108) are recovered. A figure of merit Z has
been introduced in Eqs. (110), which includes a singular r
with respect to k and instead of a homogeneous α an averaged
αh defined above. For Z→∞, ηmax = cηC . However, Z→∞
is only possible for αh or α(0) → ∞. Then, c = 1 and ηmax

cannot exceed ηC . For k → 0, Z is now bounded by Eq. (90):

lim
k→0

Z = α2
h/(r2Ak/L) = 24α2

h

/
[α(L) − α(0)]2(Th + Tc).

(111)
For the ratio β = rh/r, it is obtained from Eqs. (89)–(93)

that

lim
k→ ∞

β = r1/2

r1
= 1/2, lim

k→ 0
β = rh2

r2
= 8Th + 7Tc

15 (Th + Tc)
> 1/2.

For linear α(T ), the relation α(T ) = α(0) + α′T is used
with very similar results. The �sh and �sc from Eq. (98) then
read

�sh = i[a(0) + a′(4Th + Tc + T 2
c /Th

)
/6] = i ah,

�sc = i[a(0) + a′(4Tc + Th + T 2
h /Tc

)
/6],

and Pel = iαav�T –i2r with αav = α(Tav). Equations (109)
and (110) stay valid, now with

c = αav

αh
= α(0) + α′Tav

α(0) + α′(4Th + Tc + T 2
c /Th)/6

.

In the α(T ) theory, according to Eq. (100), r = r1 and r2 =
0. Thus Z → ∞ for k → 0, as for the CMP model. However,
following Eq. (102) for β = rh/r, limk→ 0 β = rh2

r1
= −rc2

r1
=

−∞ and therefore η→0, because β appears in the denomina-
tor of Eq. (109) through rh = βr. For large k,

lim
k→ ∞

β = r1/2 + rh2

r1
= r1/2

r1
= 1/2.

Again, ηmax = ηC is only obtained for α(0)→� with Z →
∞.
The Z variable used in Eq. (110) for the α(x) the-
ory can be written in the form of a material figure of
merit by introducing ρ = rA/L = ρ1 + ρ2, where ρ1 is
the material’s electric resistivity and ρ2 = r2A/L with r2

from Eq. (90). Then Z = α2
h/(rAK ) = α2

h/(ρk) = α2
h/[ρ1k +

(α(L)–α(0))2(Th + Tc)/24] with the finite limit for k → 0
from Eq. (111). For the α(T ) theory, ρ2 = 0 and Z → ∞ for
k → 0 is neutralized by the simultaneous limit β → –∞.

V. CONCLUSION

The separation of total entropy production in ideal re-
versible parts and irreversible contributions is analyzed in
detail for Carnot-like heat engines. The reversible �S in
Eqs. (1), (2), and (16) are considered to be entropies for ideal
lossless processes at the hot and cold side with irreversibil-
ities turned off. The reversible entropy parts are important
system parameters and useful for an efficient description of
the irreversibilities, e.g., in Eq. (6). In Ref. [15], the concern
was raised that the �S in Eqs. (1), (2), and (8) are not al-
ways independent from the irreversibilities (9) in the case of
different initial and final temperatures Tf (t ) of the working
fluid in the isothermal transitions. The present analysis reveals
that in any case the reversible �S = �S rev are unchanged, by
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using the evolution of Tf (t ) optimized with respect to entropy
minimization for the transitions and apparent inconsistencies
are cleared up. Then, in the limit, the Tf (t ) become discontinu-
ous functions, as shown in Fig. 1. If nonisentropic transitions
in the adiabatic cycle branches are considered, the hot- and
cold-side reversibilities �S j,rev, j = h, c, are no longer equal
and their difference is equal to the entropy production in the
adiabats.

For the refrigerator mode, maximization of cooling power
is studied with inclusion of nonisentropic adiabats. Results
are shown in Eqs. (25) and (26) with corresponding efficiency
CoP (27), for the low-dissipation entropy assumption (3) for
cold-side transition. In the case of endoreversible entropy
model (6) for the isothermal transitions, and low-dissipation
model for the adiabats, Eqs. (28)–(30) are obtained for the
cooling power. Also, combined occurrence of different en-
tropy models on either side is discussed.

The theory for steady-state engines is introduced by time
averaging over one Carnot cycle, to obtain constant entropy
rates �s j , s j , sa and heat flows q j at the thermal contacts
to the reservoirs. The concept of endoreversibility is general-
ized to pseudo-endoreversibility, which describes an internal
irreversible engine connected by heat conductances to the
reservoirs. The internal entropy production rate sa = �sc–�sh

is the analog to the adiabatic entropy production for the Carnot
cycle, whereas the s j entropy rates in Eq. (32) correspond to
the effect of the heat conductances. Power maximization with
respect to the internal engine contact temperatures Tf h and Tf c

can be performed for constant heat conductances and Eq. (44)
is obtained, which, also for sa = 0, differs essentially in the
denominator from the Curzon-Ahlborn result [1]. For sa = 0,

the efficiency at maximum power (EMP) is identical to the
CA efficiency. The effect of a heat leakage current of arbitrary
form is investigated with EMP given in Eq. (46).

The results obtained are a necessary prerequisite to treat
thermoelectric converters as steady-state heat engines in 1D
and 3D with arbitrary spatially- and temperature-dependent
material parameters. The definition of the reversible entropy
parts in that general case has been an unsolved problem
up to now. A methodology is presented for solving the TE
equation (51) (heat-balance equation) in form of a recursive
equation system sorted by powers of electric contact current
i [Eqs. (61) and (65)]. The reversible entropy parts can be
exactly identified by first-order contributions to heat flows q j

in powers of i [Eq. (70)]. The second-order contributions to q j

are given for the common CMP model by Joule losses –r j i2,
and r = rh + rc, with r determined by the electrical resistivity
ρ and rh = rc = r/2, which is no longer valid outside of the
CMP assumption. Exact analytical expressions are presented
for r j in the general case. As a major result it turns out that
for inhomogeneously distributed Seebeck coefficient α(x, T )
in the device volume, contributions r j2 arise in r j which only
depend on the α and the thermal conductivity k. The r j2 terms
are singular for k → 0. This leads to zero efficiency for the TE
device in Eq. (109), in contrast to the CMP description which
leads for k → 0 to finite EMP and Pmax. A broad literature
in thermoelectrics is dedicated to achieving high-Z values by
reduction of k. This concept of improving TE materials is
in question, and an adapted figure of merit Z is presented
to deal with the situation. The analytical calculation methods
presented allow for an improved device analysis also in case
of low-k materials.

[1] F. L. Curzon and B. Ahlborn, Am. J. Phys. 43, 22 (1975).
[2] M. H. Rubin, Phys. Rev. A 19, 1272 (1979).
[3] L. Chen and Z. Yan, J. Chem. Phys. 90, 3740 (1989).
[4] T. Schmiedl and U. Seifert, Phys. Rev. Lett. 98, 108301 (2007).
[5] T. Schmiedl and U. Seifert, EPL 81, 20003 (2008).
[6] M. Esposito, R. Kawai, K. Lindenberg, and C. Van den Broeck,

Phys. Rev. Lett. 105, 150603 (2010).
[7] Y. Wang and Z. C. Tu, Phys. Rev. E 85, 011127 (2012).
[8] Z. C. Tu, Chin. Phys. B 21, 020513 (2012).
[9] J. Wang and J. He, Phys. Rev. E 86, 051112 (2012).

[10] Y. Hu, F. Wu, Y. Ma, J. He, J. Wang, A. C. Hernandez, and
J. M. M. Roco, Phys. Rev. E 88, 062115 (2013).

[11] C. Van den Broeck, EPL 101, 10006 (2013).
[12] R. S. Johal, Phys. Rev. E 96, 012151 (2017).
[13] J. Gonzalez-Ayala, A. Medina, J. M. M. Roco, and A. C.

Hernández, Phys. Rev. E 97, 022139 (2018).
[14] J. Gonzalez-Ayala, J. M. Roco, A. Medina, and A. C.

Hernandez, Entropy 19, 182 (2017).
[15] Y. C. Gerstenmaier, Phys. Rev. E 103, 032141 (2021).
[16] J. A. Martinez, E. Roldan, L. Dinis, D. Petrov, J. M. R.

Parrondo, and R. A. Rica, Nat. Phys. 12, 67 (2016).
[17] V. Cavina, A. Mari, and V. Giovannetti, Phys. Rev. Lett. 119,

050601 (2017).
[18] H. Yuan, Yu-Han Ma, and C. P. Sun, Phys. Rev. E 105, L022101

(2022).

[19] Yu-Han Ma, Ruo-Xun Zhai, J. Chen, C. P. Sun, and H. Dong,
Phys. Rev. Lett. 125, 210601 (2020).

[20] I. I. Novikov, Atomic Energy 3, 1269 (1957); J. Nucl. Energy
II 7, 125 (1958).

[21] P. Chambadal, Les Centrales Nucléaires (Armand Colin, Paris,
1957), pp. 41–58.

[22] L. Onsager, Phys. Rev. 37, 405 (1931).
[23] L. Onsager, Phys. Rev. 38, 2265 (1931).
[24] H. B. Callen, Thermodynamics and an Introduction to Thermo-

statistics, 2nd ed. (Wiley, New York, 1985).
[25] C. Van den Broeck, Phys. Rev. Lett. 95, 190602 (2005).
[26] Y. Izumida and K. Okuda, Phys. Rev. E 80, 021121 (2009).
[27] It is even possible that volume values are reversed, e.g., V2 < V1

and V3 < V4, because the adiabats Tf (V ) according to Eq. (10)
are hyperbolas running through all Tf and V values. An adiabat
starting at [Tf (2), V2] with very high Tf (2) and small V2 value
will run downward to the higher V2a with the proper Tf h value.
In the same way the adiabat through [Tf (1), V1] with low Tf (1)
value will run upward until the lower V1a value is reached
at temperature Tf h. In the end, the same adapted cycle Vla is
obtained as in Fig. 1. The isothermal transitions in the Vla cycle
are always part of the Vl cycle and thus volume expansion or
compression cannot be reduced by choosing V2 ≈ V1, V3 ≈ V4.

[28] Y. Wang, M. Li, Z. C. Tu, A. C. Hernandez, and J. M. M. Roco,
Phys. Rev. E 86, 011127 (2012).

064136-20

https://doi.org/10.1119/1.10023
https://doi.org/10.1103/PhysRevA.19.1272
https://doi.org/10.1063/1.455832
https://doi.org/10.1103/PhysRevLett.98.108301
https://doi.org/10.1209/0295-5075/81/20003
https://doi.org/10.1103/PhysRevLett.105.150603
https://doi.org/10.1103/PhysRevE.85.011127
https://doi.org/10.1088/1674-1056/21/2/020513
https://doi.org/10.1103/PhysRevE.86.051112
https://doi.org/10.1103/PhysRevE.88.062115
https://doi.org/10.1209/0295-5075/101/10006
https://doi.org/10.1103/PhysRevE.96.012151
https://doi.org/10.1103/PhysRevE.97.022139
https://doi.org/10.3390/e19040182
https://doi.org/10.1103/PhysRevE.103.032141
https://doi.org/10.1038/nphys3518
https://doi.org/10.1103/PhysRevLett.119.050601
https://doi.org/10.1103/PhysRevE.105.L022101
https://doi.org/10.1103/PhysRevLett.125.210601
https://doi.org/10.1007/BF01507240
https://doi.org/10.1016/0891-3919(58)90244-4
https://doi.org/10.1103/PhysRev.37.405
https://doi.org/10.1103/PhysRev.38.2265
https://doi.org/10.1103/PhysRevLett.95.190602
https://doi.org/10.1103/PhysRevE.80.021121
https://doi.org/10.1103/PhysRevE.86.011127


CYCLIC HEAT ENGINES WITH NONISENTROPIC … PHYSICAL REVIEW E 105, 064136 (2022)

[29] Y. C. Gerstenmaier and G. Wachutka, J. Appl. Phys. 125,
215105 (2019).

[30] Y. Apertet, H. Ouerdane, C. Goupil, and Ph. Lecoeur, Phys.
Rev. E 85, 031116 (2012).

[31] Y. Apertet, H. Ouerdane, C. Goupil, and Ph. Lecoeur, Phys.
Rev. E 88, 022137 (2013).

[32] H. B. Callen, Phys. Rev. 73, 1349 (1948).
[33] C. A. Domenicali, Phys. Rev. 92, 877 (1953).
[34] C. A. Domenicali, Rev. Mod. Phys. 26, 237 (1954).
[35] Y. C. Gerstenmaier and G. Wachutka, Phys. Rev. E 86, 056703

(2012).
[36] Y. C. Gerstenmaier and G. Wachutka, Phys. Status Solidi B 254,

16000690 (2017).

[37] Y. C. Gerstenmaier and G. Wachutka, J. Appl. Phys. 122,
204501 (2017).

[38] E. Thiébaut, C. Goupil, F. Pesty, Y. D’Angelo, G. Guegan, and
Ph. Lecoeur, Phys. Rev. Applied 8, 064003 (2017).

[39] C. Goupil, W. Seifert, K. Zabrocki, E. Müller, and G. J. Snyder,
Entropy 13, 1481 (2011).

[40] G. S. Nolas, J. Sharp, and H. J. Goldsmid, Thermoelectrics,
Basic Principles and New Materials Developments (Springer,
Berlin, 2001).

[41] S. W. Angrist, Direct Energy Conversion, 3rd ed. (Allyn &
Bacon, Boston, 1977).

[42] G. D. Mahan and J. O. Sofo, Proc. Natl. Acad. Sci. U.S.A. 93,
7436 (1996).

064136-21

https://doi.org/10.1063/1.5086293
https://doi.org/10.1103/PhysRevE.85.031116
https://doi.org/10.1103/PhysRevE.88.022137
https://doi.org/10.1103/PhysRev.73.1349
https://doi.org/10.1103/PhysRev.92.877
https://doi.org/10.1103/RevModPhys.26.237
https://doi.org/10.1103/PhysRevE.86.056703
https://doi.org/10.1002/pssb.201600690
https://doi.org/10.1063/1.4994642
https://doi.org/10.1103/PhysRevApplied.8.064003
https://doi.org/10.3390/e13081481
https://doi.org/10.1073/pnas.93.15.7436

