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Diffusivity interfaces in lattice Monte Carlo simulations:
Modeling inhomogeneous delivery and release systems
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Lattice Monte Carlo (LMC) simulations are widely used to investigate diffusion-controlled problems such
as drug-release systems. The presence of an inhomogeneous diffusivity environment raises subtle questions
about the interpretation of stochastic dynamics in the overdamped limit, an issue sometimes referred to as the
“Ito-Stratonovich-isothermal dilemma.” We propose a LMC formalism that includes the different stochastic
interpretations in order to model the diffusion of particles in a space-dependent diffusivity landscape. Using as
an example a simple inhomogeneous one-dimensional system with a diffusivity interface and different boundary
conditions, we demonstrate that we can properly reproduce the steady state and dynamic properties of these
systems and that these properties do depend on the choice of calculus. In particular, we argue that the version of
the LMC algorithm that uses Ito calculus, which is commonly used to model drug delivery systems, should be
replaced by the isothermal version for most applications. Our LMC methodology provides an efficient alternative
to Langevin simulations for a wide class of space-dependent diffusion problems.
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I. INTRODUCTION

Lattice Monte Carlo (LMC) algorithms are very popular
and efficient methods to model nontrivial diffusion problems.
For instance, LMC simulations are frequently used to study
drug-release systems with different diffusivity regions, irreg-
ular shapes, and/or complex loading patterns [1–5].

The fundamental quantities required to build LMC simula-
tion algorithms are the probabilities (or rates) for each allowed
transition, and the latter must take into account the local
environment (most naturally, in the form of their dependence
on the properties of the medium at the neighboring sites).
For a particle diffusing in a homogeneous diffusivity land-
scape, the expressions for the hopping probabilities and time
steps are fairly straightforward, although there is a nontrivial
specific choice of these parameters that needs to be made
if an optimal algorithm that properly reproduces the fourth
moment of the particle distribution is required [6]. How-
ever, as soon as the system possesses diffusivity interfaces
or gradients, a subtle problem emerges: What should be the
hopping probability across the interface? In other words, how
should the jumping probabilities take into account the fact that
the next site is not identical to the starting site? This issue,
the “Ito-Stratonovich-isothermal dilemma,” naturally appears
from a Langevin formalism in the overdamped limit and can
impact both the dynamic and the stationary properties of the
system [7,8].

Most of the simulations presented in the drug-delivery
literature implicitly, often without discussion, use LMC
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algorithms based on the Ito interpretation in which the hop-
ping probabilities only depend on the diffusion coefficient at
the starting point of the LMC “jump.” However, simulation
results are generally compared to analytical calculations that
are consistent with the isothermal interpretation [9–12]. We
also note that in the case of drug-delivery systems, the ex-
ternal environment is often treated as an absorbing boundary,
an approximation that does not allow the drug molecules to
diffuse back into the system. However, the probability of
jumping toward this boundary may in principle depend on the
diffusivity in the external environment. Correctly treating the
boundary conditions is thus critical to properly modeling a
broad class of release systems.

In this article, we propose hopping probabilities (and time
durations) for each choice of stochastic calculus, and we ex-
amine the impact of that choice on the properties of simple
diffusion-controlled systems. The article is structured as fol-
lows. We first review some basic elements of the theory of
diffusion in one dimension (1D). We then derive the hopping
probabilities and time steps for LMC simulations. We test
our LMC algorithm on two simple 1D systems and discuss
dynamic and stationary properties: First we study a closed
system with reflecting boundary conditions (BC), and then a
release system modeled with an absorbing BC. In both cases,
we have two regions with different diffusivities separated by
a sharp interface.

II. PARTICLES WITH A POSITION-DEPENDENT
DIFFUSION COEFFICIENT

Let us consider a one-dimensional system of noninteract-
ing identical particles diffusing in a fluid in contact with a
thermostat at temperature T and characterized by a space-
dependent diffusion coefficient D(x). A standard way to study
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such systems consists in writing a Langevin equation for
each particle, or tracer, in order to obtain a set of trajectories
and then compute ensemble averages over the whole set of
trajectories.

We first examine the situation where the diffusivity D is
uniform in space. In this case, the corresponding discretized
overdamped Langevin equation for the displacement �x of a
particle is straightforward:

�x =
√

2D�t ξ�t , (1)

where
√

2D is called the noise multiplicative term and ξ�t is
a random number drawn at each time step �t and obeying a
Gaussian distribution with 〈ξ�t 〉 = 0, 〈ξ 2

�t 〉 = 1 and no cor-
relation between different time intervals. The brackets 〈· · · 〉
represent an ensemble average over all possible realizations of
ξ during the time �t . Physically speaking, ξ�t can be viewed
as the result of a multitude of short, small-amplitude “kicks”
induced by the collisions with fluid particles [13].

However, if D is a continuous function of x (and is thus
an implicit function of t), a subtlety appears since we then
need to specify the position x (or equivalently the time t) at
which the term

√
2D(x) has to be estimated in the interval

�x = x(t + �t ) − x(t ). As a consequence, Eq. (1) can be
written as [7]

�x =
√

2D(x + α�x)�t ξ�t , (2)

where the parameter α can in principle take any value in
the interval α ∈ [0; 1]. In practice, only the values α = 0 (Ito
calculus: the diffusivity is estimated at the beginning of the
jump), α = 1/2 (Stratonovich: at the middle of the jump), and
α = 1 (isothermal: at the end of the jump) have a physical
meaning [14,15].

The fact that the noise multiplicative term is ill defined is
often called the Ito-Stratonovich-isothermal dilemma. As we
will show later, the choice of α (also called the rule of inte-
gration) can change both the dynamics and static properties of
drug-delivery systems.

Using the series expansion

D(x + α�x) ≈ D(x) + α dD(x)
dx �x + O(�x2), (3)

we can rewrite Eq. (2) as (see Appendix A)

�x = α dD(x)
dx �t +

√
2D(x)�t ξ�t . (4)

In this expression, the noise-induced drift velocity α dD
dx [16]

acts in the direction of the diffusivity gradient (but is zero in
the case of Ito calculus, α = 0).

Alternatively, rather than using the Langevin formalism,
the evolution of the system can be obtained by solving the
Fokker-Planck equation for the particle concentration C(x, t ).
The passage from the Langevin equation to the Fokker-Planck
equation is done using the Kramers-Moyal expansion [17]. In
this case, the concentration obeys the conservation law

∂
∂t C(x, t ) = − ∂

∂x J (x, t ), (5)

where J (x, t ) is the particle flux [7]

J (x, t ) = −(1 − α)C ∂D
∂x︸ ︷︷ ︸

Diffusion drift

−D ∂C
∂x .︸ ︷︷ ︸

Fick’s law

(6)

The “diffusion drift” term, which is a flux added to the
classical Fick term, points in the direction opposite to the
diffusivity gradient. This term is zero only for the isothermal
case (α = 1). Using Eqs. (5) and (6), a general expression for
the diffusion equation is obtained:

∂

∂t
C(x, t ) = (1 − α)

∂

∂x

[
C

∂D

∂x

]
+ ∂

∂x

[
D

∂C

∂x

]
. (7)

Assuming that an equilibrium state exists, the flux is
J (x, t → ∞) = 0 everywhere (e.g., the equilibrium state of
a system confined between two reflecting walls). In this case,
the solution to Eq. (6) must be of the form

C(x)D(x)1−α = const. (8)

For the isothermal (α = 1) case, Eq. (8) predicts a uniform
equilibrium (steady-state) concentration C(x, t → ∞) = C∞,
consistent with the Boltzmann distribution in the absence of
external potentials. However, for α = 0 or 1/2, the equilibrium
(stationary) concentration depends explicitly on the space-
dependent diffusion coefficient D(x).

If the diffusivity D(x) is changing very rapidly (so that it
can be considered essentially discontinuous; see Ref. [7] for a
discussion about this concept) at points xi, the concentration
C(x, t ) can be obtained by solving Eq. (7) for each region
where the diffusivity is continuous, and then connecting the
piecewise solutions at the interfaces xi using the continuity
conditions

C(x−
i , t )D1−α (x−

i ) = C(x+
i , t )D1−α (x+

i ) (9)

and

J (x−
i , t ) = J (x+

i , t ), (10)

while also applying the BCs. For example, an analytical
“isothermal” solution for a spherical core-shell system using
Laplace transforms is given in Refs. [9,18]. However, obtain-
ing an analytical expression for C(x, t ) can be difficult (if not
impossible), depending on D(x), the initial state C(x, 0), and
the BCs. Numerical methods, including particle simulations,
are often more convenient. In the next section, we derive
analytical expressions for the hopping probabilities and jump
times required for a LMC algorithm to properly reproduce
the behavior predicted by Eq. (7), thus offering a reliable
simulation method for complex problems.

III. LMC ALGORITHM WITH FIXED SPATIAL AND TIME
STEPS

We employ a LMC scheme where both the time step
�t = τ and the square lattice step �x = a are fixed, and
particles can only jump between nearest neighbor lattice sites.
To ensure microscopic reversibility at equilibrium, the hop-
ping probabilities P must satisfy the detailed balance between
adjacent lattice sites i and i + 1,

CiPi→i+1 = Ci+1Pi+1→i, (11)

where Ci is the stationary concentration of particles on site i.
We can then use the stationary condition (8) for two adja-

cent sites:

CiD
1−α
i = Ci+1D1−α

i+1 . (12)
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Using this relation and Eq. (11), we obtain the local ratio
between the hopping probabilities

Pi+1→i

Pi→i+1
=

(
Di+1

Di

)1−α

. (13)

In order to obtain the probabilities themselves, we need an
expression linking local dynamics to local parameters; we
propose to use the simple expression

Pi+1→i + Pi→i+1 = 2D∗τ/a2, (14)

where D∗ ≡ D∗(i, i + 1; α) = D∗(i + 1, i; α) is an effective
local diffusivity with a value between Di and Di+1. In prin-
ciple, the choice of D∗ is not unique since any symmetric
expression would give the correct ratio Pi+1→i/Pi→i+1. More-
over, since D∗ is multiplied by the arbitrary iteration time step
τ , its value does not influence our simulation results here (data
not shown). However, for reasons described in Appendix B,
we use the expression

D∗ = Dα
i Dα

i+1

(
D1−α

i + D1−α
i+1

)
Dα

i + Dα
i+1

. (15)

Choosing this expression has the advantage of giving the
correct first-passage probabilities in a particular case when the
interface is equidistant between two lattice sites. Interestingly,
the effective diffusivity D∗ corresponds to the arithmetic mean
of Di and Di+1 for α = 0 (Ito), to the geometric mean for
α = 1/2 (Stratonovitch), and to the harmonic mean for α = 1
(isothermal). Note that they are ordered as follows: D∗(α =
1) � D∗(α = 1/2) � D∗(α = 0).

Finally, using Eqs. (13)–(15), we obtain

Pi→i±1 = τ

a2
×

⎧⎪⎪⎨
⎪⎪⎩

Di, if α = 0,

2Di
√

Di±1√
Di+√

Di±1
, if α = 1/2,

2DiDi±1

Di+Di±1
, if α = 1.

(16)

Although the time step τ is arbitrary, its choice must ensure
that Pi→i = 1 − Pi→i−1 − Pi→i+1 � 0 for all sites (Pi→i is the
probability to remain at the same lattice site); therefore, τ

must satisfy the inequality

τ � a2/2Dmax, (17)

where Dmax ≡ max{Di}.
In the uniform case D(x) = D∗ = D0, the time step

τ = a2/2D0 leads to the classical LMC scheme for 1D
Brownian motion with Pi→i±1 = 1/2 and Pi→i = 0. The alter-
native choice τ = a2/6D0 leads to the optimal LMC scheme
[6] with Pi→i±1 = 1/6 and Pi→i = 2/3. Unfortunately, if the
diffusion coefficient is space dependent, it is not possible to
obtain optimal hopping probabilities for all sites; Eq. (17) is
then an appropriate simple choice.

We note that for α = 1, Eq. (16) gives Pi→i+1 = Pi+1→i,
which obviously leads to a uniform steady-state concentra-
tion, hence the name isothermal calculus. On the other hand,
Eq. (16) gives Pi→i±1 = Diτ/a2 when α = 0: The hopping
probabilities then only depend on the diffusivity at the starting
site, the main characteristic of Ito calculus, the most frequent
choice in kinetic LMC algorithms [19–21]. As we will see,
these two choices can give very different simulation results.

Strictly speaking, the term Monte Carlo refers to the use
of random numbers to select (or reject) a new configuration
(or state), such as in the Metropolis algorithm [22]. Instead of
using particle-based Lattice Monte Carlo simulations as such,
we will use a much more efficient method based on Markov
chains. In essence, this method essentially enumerates all
possible trajectories for a finite number of jumps [23–26]. The
result is thus the same as if we were using random-number-
based particle LMC simulations with an infinite ensemble size
(our “simulation” data are thus numerically exact, i.e., without
statistical noise, a useful feature for testing purposes).

IV. RESULTS

We now investigate the relaxation-release dynamics of par-
ticles for two classes of systems with a piecewise uniform
diffusivity landscape. In Sec. IV C, we examine a delivery
system located into an empty reservoir surrounded by a wall.
However, drug-delivery systems are often modeled using a
perfectly adsorbing boundary condition instead of an external
reservoir; a generalized version of such a setup is studied in
Sec. IV D.

A. Systems with a piecewise uniform diffusivity

We consider a 1D system of length L = L− + L+ with a
piecewise diffusivity D(x) = D− if x ∈ [−L−; 0[ (the–side)
and D(x) = D+ if x ∈ [0; L+] (the + side). The system is
discretized into N = L/a lattice sites of size a. The continuity
conditions (9) and (10) then read

C(0−, t ) D1−α
− = C(0+, t ) D1−α

+ (18)

and

D−
∂C

∂x

∣∣∣∣
0−

= D+
∂C

∂x

∣∣∣∣
0+

. (19)

The initial concentration C(x, 0) is chosen to be uniform on
the–side, C(x < 0, 0) = C0, while the + side starts empty,
C(x > 0, 0) = 0. The time evolution of the system is to
be studied as a function of the ratio D+/D− by keeping
D− constant and varying D+. The LMC time step is τ =
a2/(2 max[D−, D+]) and the diffusion time τ− = L2

−/2D− is
used to rescale all times.

In Sec. IV C, the system as a whole is between two reflect-
ing boundaries which must satisfy

∂xC(x, t )|x=±L± = 0, (20)

while Sec. IV D treats the case of an absorbing boundary
at x = L+,

C(x, t )|x=L+ = 0. (21)

Unless otherwise stated, our focus will be systems with two
equal parts of size L+ = L− = L/2, with N = 100. However,
we will also discuss the L+ � L− and L+ � L− cases since
they are both of practical interest.

B. Basic definitions and global relaxation times

Ideally, we want to use physical quantities that describe
the evolution of the initial system, i.e., where the particles are
initially located, independent of the nature of the boundary
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conditions or external world. In particular, we want to follow
the time evolution of both the concentration profile C(x, t ) and
the number of particles left in the system, which is defined
given by

N−(t ) =
∫ 0

−L−
C(x, t ) dx. (22)

In the presence of absorbing boundary conditions, the steady-
state concentration is trivially C(x, t → ∞) = 0. However, by
dividing the concentration by its average value in the system
at time t ,

C̃(x, t ) = C(x, t )

L−1
∫ L+

−L−
C(x, t ) dx

, (23)

we obtain a dimensionless description of the distribution of
the remaining particles.

Similarly, we define the normalized amount of particles
present in the release system at time t as

ρ−(t ) = N−(t ) − N−(∞)

N−(0) − N−(∞)
. (24)

Note that ρ−(t ) decays from 1 at t = 0 to 0 when t → ∞.
For this class of problems (i.e., systems bounded by reflec-

tive and/or absorbing boundaries), the normalized quantity
ρ−(t ) decays as a sum of exponentials [27],

ρ−(t ) =
+∞∑
n=0

A∗
n exp

(
− t

τn

)
, (25)

where A∗
n and τn are the weights and relaxation times of the

nth mode, respectively, and both depend on the set of variables
{D−, D+, L−, L+, α}.

The longest relaxation time in Eq. (25), τn=0, which can be
obtained from the inverse slope (on a semilogarithmic plot)
of the long-time exponential decay, is often defined as the
overall process relaxation time. However, this can be mislead-
ing when the initial conditions are such that the weight A∗

0
is small since relaxation is then mostly happening at shorter
times (an example of short time dynamics is shown in the inset
of Fig. 2). Instead, we use the surface under the curve ρ−(t )
to estimate the global relaxation time [5,28]

τ ∗
− =

∫ ∞

0
ρ−(t ) dt =

∞∑
n=0

A∗
n τn. (26)

Note that τ ∗
− is effectively a weighted average over all relax-

ation modes.
For systems in which molecules have a space-dependent

diffusivity D(x) and/or a nonuniform initial loading C(x, 0),
such as core-shell structures [9], it is tedious to obtain analyt-
ical expressions for the parameters A∗

n and τn. However, it is
easier to calculate τ ∗

− because we then only need to solve the
time integrated equation of diffusion—see Appendix C.

We can derive the general asymptotic behaviors of Eq. (25).
For short times, t � τ ∗

−, we obtain

ρ−(t ) ≈ 1 −
√

t/τi, (27)

where the initial diffusion time τi depends on the diffusion
conditions at the interface. For long times t � τ ∗

−, only the

FIG. 1. Two reflecting boundaries: dimensionless concentration
C̃(x, t ) vs x/L for (a) D+/D− = 5; (b) D+/D− = 1/5. The symbols
correspond to LMC data at time t1% defined by ρ−(t1%) = 1%; the
solid lines show the analytical predictions given by Eq. (29). The
vertical dashed line marks the position of the interface.

longest relaxation time τ0 remains and we obtain

ρ−(t ) ≈ A∗
0 exp (−t/τ0), (28)

where 0 < A∗
0 � 1. The preferred way [5] to plot ρ−(t ) versus

t in order to extract useful information about the physical
mechanisms at play is to use the triple-log representation
ln [ − ln [ρ−(t )]] vs ln [t] (we will use this approach in the
following).

FIG. 2. Two reflecting boundaries: ρ−(t ) vs time for the three
calculi and D+/D− = 5 (LMC data). The inset shows the nonexpo-
nential behavior at short times.
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C. A system between two reflecting boundaries

We first consider a system with two reflecting boundaries
satisfying Eq. (20) (with L+ = L− = L/2). Basically, the −
side is the drug delivery system (such as a hydrogel) while
the + side is the reservoir in which it is immersed. The drug
leaks out of the delivery system until an equilibrium is reached
with the reservoir. In this case, the total number of particles
Ntot = ∫ +L/2

−L/2 C(x, t ) dx = C0L/2 is conserved, while Eqs. (8)
and (23) predict that the equilibrium normalized concentration
is then given by

C̃(t → ∞) = 2

D1−α
− + D1−α

+
×

{
D1−α

+ , if x < 0.

D1−α
− , if x > 0.

(29)

Note that C̃(t → ∞) ≡ C̃eq is uniform only if α = 1 (the
isothermal calculus). For α = 0 and 1/2, the diffusivity gra-
dient leads to a flux from the high diffusivity region to the
low diffusivity one, and particles thus accumulate in the latter.
Dimensionless concentration profiles C̃(x, t1%) are shown in
Figs. 1(a) for D+/D− = 5 and 1(b) for D+/D− = 1/5, where
t1% is the time at which ρ−(t ) = 1%. Our long-time LMC
data (symbols) agree with the analytical prediction, Eq. (29).
Only isothermal calculus gives a continuous concentration
profile across the interface and a uniform concentration in
equilibrium. Interestingly, Eq. (18), coupled with the fact that
the total amount of particles is conserved when we use two
reflective walls, leads to the three curves being in reverse
order on both sides of the interface. As we shall see later (see
Fig. 5), a similar inversion can also occur in the presence of
an absorbing wall.

The time evolution of ρ−(t ) (LMC data) for the three
calculi is shown in Fig. 2 for D+/D− = 5. Although the long-
time decay is clearly exponential, the inset shows that higher
modes play a role at short time. However, a semilog plot is
not ideal here. Instead, Fig. 3 shows the data using a triple-
log representation for (a) D+/D− = 5 and (b) D+/D− = 1/5.
The expected slopes for short [=12, Eq. (27)] and long [=1,
Eq. (28)] times are shown in red. The qualitative behavior
of ρ−(t ) is identical in both limits: ρ−(t ; α = 0) < ρ−(t ; α =
1/2) < ρ−(t ; α = 1).

For this symmetric system (i.e., L+ = L− = L/2), the ana-
lytical expression for the global relaxation time is

τ ∗
−

τ−
= 2

3

D−
D∗ , (30)

where D∗ is given by Eq. (15). This exact result is compared
to LMC data in Fig. 4: The data perfectly match the analytical
prediction. We thus conclude that our algorithm gives the right
final states and relaxation times for all three calculi. Interest-
ingly, we observe that τ ∗

−(α = 1) > τ ∗
−(α = 1/2) > τ ∗

−(α = 0)
for all ratios D+/D− except when D+/D− = 1 (uniform dif-
fusivity) where τ ∗

−/τ− = 2/3 (the choice of the calculus does
not matter in a uniform system).

The generalization of Eq. (30) for an asymmetric system of
total length L = L− + L+ reads

τ ∗
−

τ−
= 2

3

⎡
⎣1 −

1 − D−L2
+

D+L2−

1 + L+
L−

(D−
D+

)1−α

⎤
⎦. (31)

FIG. 3. Two reflecting boundaries: triple-log plot of ρ−(t ) vs
time for the three calculi (LMC data) (a) D+/D− = 5; (b) D+/D− =
1/5. The expected slopes for short (1/2) and long (1) times are
shown in red.

Equations (30) and (31) can be derived using an approach
similar to the one used in Appendix C.

There are two interesting reservoir size limits here. First,
when L+/L− � 1, we find that

τ ∗
− ≈ 1

3

L+L−
Dα−D1−α

+
. (32)

We note that τ ∗
− is then independent of D− for Ito, indepen-

dent of D+ for isothermal and symmetric with respect to D−
and D+ for Stratonovich calculus. However, it is important
to stress that these results do not imply that the full release
process is independent of D− or D+, respectively, for α = 0
or 1; see Appendix D for details.

FIG. 4. Two reflecting boundaries: Scaled relaxation time τ ∗
−/τ−

vs diffusivity ratio D+/D−. The symbols correspond to LMC data
and the solid lines to Eq. (30).
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Conversely, for L+/L− � 1 (the large reservoir limit), we
obtain

τ ∗
− ≈ 1

3

L+L−
Dα+D1−α

−
. (33)

Note that Eqs. (33) and (32) just differ by a permutation of the
signs + and–,which naturally implies that τ ∗

− is the same in
both limits for α = 1/2.

D. Using an absorbing boundary

We now replace the reflecting BC at x = L+ by an absorb-
ing one (i.e., a perfect sink), following Eq. (21). There are
three ways to interpret this type of system. If L+ = 0, this
is equivalent to the standard approach of modeling a release
system by imposing an absorbing boundary condition at its
surface. If L+ > 0, the + region can be seen as the shell of a
two-phase delivery system, again with an absorbing boundary
at its surface (in most cases, we would then have 0 < L+ � L−
and D+ < D−). This type of system has been extensively
studied using Ito-calculus LMC in the field of drug release,
especially in the L+ = 0 limit [4,9,11,12,29–32], but it is also
possible to see the L+ > 0 case as the release of drugs into
a large outside volume which is surrounded by an absorbing
boundary at a distance L+.

In this case, the analytical expressions for the equilibrium
concentration are

C̃(x) =
{

C̃− cos x+L−
(D−τ0 )1/2 , if x < 0,

C̃+ sin L+−x
(D+τ0 )1/2 , if x > 0,

(34)

where C̃−, C̃+, and τ0 have to calculated numerically (except
for α = 1/2 where analytical expressions can be found); see
Appendix E for details.

As before, our numerical example will use L+ = L− =
L/2. Dimensionless concentration profiles C̃(x, t1%) are
shown in Fig. 5, together with the analytical forms presented
in Eq. (34), for (a) D+/D− = 5 and (b) D+/D− = 1/5. Once
more, only isothermal calculus gives continuous concentra-
tion profiles. We observe a near-linear concentration gradient
(hence a flux) between the end of the drug-delivery system
(x = 0), which acts as a source, and the absorbing boundary
(the sink, at x/L = 1/2). Although the three curves appear
to cross at a universal point near x/L  −0.3, high-precision
calculations show that this is not the case (i.e., there are three
different crossover points; result not shown).

Figure 6 shows the evolution of ρ−(t ) using the
triple-log representation. There is a striking difference be-
tween the three calculi here: The order ρ−(t ; α = 0) >

ρ−(t ; α = 1/2) > ρ−(t ; α = 1) obtained when D+/D− = 5
is inverted to ρ−(t ; α = 0) < ρ−(t ; α = 1/2) < ρ−(t ; α = 1)
when D+/D− = 1/5. Nevertheless, the two asymptotic slopes
are recovered.

Finally, the global relaxation time is given by

τ ∗
−

τ−
= 2

3

[
1 + 3

(
D−
D+

)α]
; (35)

see Appendix C for the details. Figure 7 shows that the
LMC data match the analytical prediction. Interestingly,
τ ∗
−(α = 1) > τ ∗

−(α = 1/2) > τ ∗
−(α = 0) when the diffusivity

ratio D+/D− < 1 while τ ∗
−(α = 1) < τ ∗

−(α = 1/2) < τ ∗
−(α =

FIG. 5. One absorbing boundary: dimensionless concentration
C̃(x, t1%) vs x/L for (a) D+/D− = 5; (b) D+/D− = 1/5. The symbols
correspond to LMC data at time t1% defined by ρ−(t1%) = 1%; the
solid lines show the analytical predictions given by Eq. (34). The
vertical dashed line marks the position of the interface.

0) when D+/D− > 1. Note that Ito calculus predicts a con-
stant value τ ∗

−/τ− = 8/3, which also corresponds to the case
for a homogeneous diffusivity D+ = D−; in other words, the

FIG. 6. One absorbing boundary: triple-log plot of ρ−(t ) vs time
for the three calculi (LMC data) (a) D+/D− = 5; (b) D+/D− =
1/5. The expected slopes for short ( 1

2 ) and long (1) times are
shown in red.
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FIG. 7. One absorbing boundary: Scaled relaxation time τ ∗
−/τ−

vs diffusivity ratio D+/D−. The symbols correspond to LMC data
and the solid lines to Eq. (35).

diffusivity in the + region does not impact τ ∗
− in the case of

Ito calculus, which seems to be an unphysical result.
For an asymmetric system (L− �= L+) Eq. (35) becomes

τ ∗
−

τ−
= 2

3

[
1 + 3

L+
L−

(
D−
D+

)α ]
. (36)

When L+/L− � 1, we basically have a uniform delivery sys-
tem with a diffusivity D− and an absorbing boundary at its
surface—a standard model used by many authors in the field.
We then obtain τ ∗

−/τ− → 2/3: Note that the global relaxation
time τ ∗

− is then independent of the diffusivity in the + zone or
the calculus chosen for the simulations. However, this is only
true if the “shell” region is of zero width; for finite values
of L+, the release rate, as measured by τ ∗

−, does depend on
the calculus chosen. In other words, while using Ito calculus
might be valid for a uniform system with a thin absorbing
boundary at its surface, it cannot be used for core-shell sys-
tems (unless there is a physical reason to do so).

Finally, if L+/L− � 1, corresponding to a very large exter-
nal reservoir, one finds

τ ∗
− ≈ L+L−

Dα+D1−α
−

. (37)

which is simply three times larger than the result for two
reflecting boundaries, Eq. (33). In this limit, the nature of the
boundary condition is of minimal importance.

V. DISCUSSION AND CONCLUSION

Many passive, diffusion-controlled drug delivery systems
are composed of different layers through which the drug
molecules must diffuse in order to escape and be transferred
to an external biological system. Analytical and computa-
tional models often replace these layers by structureless zones
in which the drug molecules have different diffusion coeffi-
cients. In other words, the reduced drug diffusivity due to a
layer’s finite porosity is replaced by an effective local diffu-
sion coefficient, while the material itself is removed from the
problem. Moreover, the external system is generally replaced

by an absorbing boundary located at the interface between
the delivery system and the external medium. Since these
“tricks” greatly simplify modeling and analysis, they have
become standard approaches and have indeed led to numerous
advances. However, replacing porous materials by effective
diffusion coefficients introduces conceptual issues that have
been largely neglected although they are critical for lattice
Monte Carlo simulations.

In this paper, we have investigated two of these issues:
the LMC proper jumping probabilities across a diffusivity
interface, and the properties of an absorbing boundary. The
additional issue of the lack of free volume conservation (e.g.,
when a hydrogel region is replaced by a free zone with a re-
duced diffusivity, the volume available to the drug molecules
effectively changes) will be the subject of another paper.

Most particle-based Monte Carlo simulations in the rel-
evant literature implicitly use Ito formalism: The jumping
probability depends solely on the diffusivity of the drug
molecule on the initial site. We have shown that this generally
leads to unphysical results, both in equilibrium (inhomoge-
neous or discontinuous concentrations—see Fig. 1) and in a
drug-delivery scenario (Fig. 5). In order to obtain valid sim-
ulation results, one must use isothermal calculus (it is indeed
implicitly used in analytical calculations). We have thus in-
troduced a generalized lattice Monte Carlo (LMC) algorithm
with fixed time and lattice steps for systems where molecular
diffusivity is space dependent. In fact, this LMC scheme can
handle diffusion gradients for all three calculi of interest (Ito,
isothermal, Stratonovich).

We first tested our LMC algorithm on a simple one-
dimensional system with a sharp diffusivity interface and
reflecting boundary conditions (i.e., a closed system). Our
data show excellent quantitative agreement with theoretical
predictions. In particular, they clearly demonstrate that in or-
der to obtain a uniform concentration in equilibrium, one must
abandon traditional Ito calculus and use isothermal Monte
Carlo instead. We also showed that the relaxation time of the
system agrees with the theoretical predictions.

We then studied diffusion-controlled drug-release systems
using all three calculi. Again, standard Ito and Stratonovitch
LMC data were observed to be generally inconsistent. How-
ever, we also showed that the probability of moving across the
interface separating a drug delivery system from the outside
does not depend on the diffusivity of the molecule on both
sides on the interface if this interface is treated as a perfect
absorber; this is thus the only case where the three calculi
give the same result. In the presence of a core-shell struc-
ture or an external reservoir, the choice of calculus can have
dramatic effects on the release dynamics (see Figs. 3 and 6)
and consequently on the system’s global relaxation time (see
Figs. 4 and 7).

The LMC formalism presented here can easily be used in
two and three dimensions (it is also possible to add an external
field to the formalism) and with (onion-shaped) systems made
of multiple layers. Crucially, the standard Ito Monte Carlo
methodology should be replaced by the isothermal one, as
described above.

Particle-based simulations with particle-particle collisions
(finite drug concentrations) and immobile obstacles (e.g., hard
porous walls) can use the algorithm developed here. Our tests
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show that it is reliable both in terms of kinetics and equilib-
rium states.
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APPENDIX A: THE NOISE-INDUCED DRIFT TERM

When the diffusivity depends on position (or time), the
integration of the stochastic term in the Langevin equation re-
quires one to choose a rule of integration [14]. An alternative
method consists in using the series expansion of D(x + α�x)
given in Eq. (3); assuming that |α dD

dx
�x

D(x) | � 1, the stochas-
tic term in the overdamped Langevin equation (2) can be
written as√

2D(x + α�x)�t ≈
√

2D(x)�t

(
1 + α

2

dD

dx

�x

D(x)

)
,

(A1)
which leads to, keeping terms up to �t ,

�x ≈
√

2D�t ξ�t
1

1 −
√

�t
2DαD′ξ�t

,

≈
√

2D�t ξ�t + α
dD

dx
�t ξ 2

�t + O(�t3/2). (A2)

We want to reproduce the first and second moments of
�x to order �t ; 〈�x〉 ≈ α dD

dx �t and 〈�x2〉 ≈ 2D�t (only the
first two moments will matter over long times because of the
central limit theorem). It turns out that one can replace ξ 2

�t by
〈ξ 2

�t 〉 = 1, without any impact on the expressions of 〈�x〉 and
〈�x2〉 given above, which finally leads to Eq. (4).

Physically speaking, Eq. (4) means that the stochastic term
is calculated using the position of the particle before the jump,
which is the Ito rule of integration (α = 0). The other calculi
(or stochastic interpretations) are generated by adding the
additional deterministic term α dD

dx called the noise-induced
drift term.

It is worth noting that this interpretation problem’ only
appears for overdamped dynamics. Indeed, when the accel-
eration term (mẍ in one dimension) is kept, the displacement
during one time step is ∼�t instead of ∼√

�t , the velocity
drift is also ∼�t , while the difference in velocity between
different calculi is O(�t3/2), which is negligible. This is in
contrast to the overdamped case, where the difference in �x
between the calculi is ∼�t , i.e., the same order as �x itself.

APPENDIX B: THE EFFECTIVE LOCAL DIFFUSIVITY D∗

The goal of this Appendix is to derive the expression for
the local diffusivity D∗ given by Eq. (15).

We recall that D∗ appearing in the closure relationship
[Eq. (14)] can be chosen arbitrarily as long as D∗ = D when
Di = Di+1 = D. We also impose the condition that the effec-
tive diffusivity D∗ must reproduce correctly the first passage
probabilities from sites i and i + 1 to their neighbours when
there is an interface halfway between these sites. This ensures

that sequences of visited sites are sampled correctly even for
a finite lattice step size a. Note that the choice of the interface
position makes sense since dividing the domain into bins
with lattice sites in the middle of the bins ensures that the
diffusivity is constant within each bin.

For the sake of simplicity, let us assign number 1 to the site
immediately to the left of the interface that is located midway
between sites 1 and 2. We denote P the probability that a parti-
cle starting at site 1 and governed by the continuum Langevin
equation reaches site 2 before site 0. Then to reproduce this
probability correctly in our LMC algorithm, we should have

P = P1→2

P1→0 + P1→2
, (B1)

where

P1→0 = D−τ

a2
(B2)

and

P1→2 = 2D∗τ
a2

1

1 + (D+/D−)1−α
. (B3)

Combining Eqs. (B1), (B2), and (B3), one obtains

D∗ = PD−
2(1 − P )

[
1 +

(
D+
D−

)1−α]
. (B4)

We now consider an auxiliary lattice with step size a/2,
with additional sites midway between those of the original
lattice, including one at the interface (that we denote 1.5).
Consider a particle obeying the Langevin equation. Equiv-
alently, its motion can be represented as a continuous time
lattice random walk, where the particle moves between adja-
cent sites when the continuous trajectory, starting at the first
site, reaches the second one without visiting any other site.
This lattice random walk is unbiased, except possibly at the
interface site; this means that the probabilities of moving left
and right are always the same (=1/2), except at the interface
site where they may be different (we denote them p− and p+
for the moves left and right, respectively). It should be kept in
mind that the mean time between steps is different on the two
sides of the interface (longer by factor D−/D+ on the right).
This means that to ensure the correct particle concentration,
as given by Eq. (8), the frequency of visits to a site (per unit
length of the sequence of visited sites) should be proportional
to Dα (which will give the probability of being at the site
at any given time proportional to Dα−1, as required). This
means that

p+
p−

=
(

D+
D−

)α

(B5)

and then, since p− + p+ = 1,

p− = Dα
−

D− + D+
, (B6)

p+ = Dα
+

D− + D+
. (B7)

We are now in a position to calculate the probability P
that a particle starting at site 1 reaches site 2 before site 0.
This can happen in three different ways. First, the particle
can move to site 1.5 (probability 1/2) and then from there to
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site 2 (probability p+); the probability of this sequence of two
steps is (1/2) × p+. Second, the particle can move to site 1.5
(probability 1/2), then return to 1 (probability p−), and from
there the probability to get to 2 before 0 is again P; thus, the
resulting probability is (1/2) × p− × P . Finally, the particle
can move to site 0.5 (to the left of 1; probability 1/2), return to
1 (probability 1/2), and from there the probability is again P;
thus, we get for this class of trajectories (1/2) × (1/2) × P .
Then the resulting equation is

P = p+
2

+ p−P
2

+ P
4

, (B8)

and the solution is

P = 2p+
3p+ + p−

. (B9)

Finally, using Eqs. (B6), (B7), and (B4), one gets

D∗ = Dα
−Dα

+(D1−α
− + D1−α

+ )

Dα− + Dα+
. (B10)

Note that, of course, we could have considered sites 1, 2
and 3 instead, comparing probabilities to reach sites 1 and
3 from site 2; by symmetry, the result would have been the
same. It should also be noted that this derivation is done for
the case where the interface is midway between two sites and
there is, of course, no reason to assume that it will be valid
more generally, say, for the interface at another position or a
general continuous change of the diffusivity.

APPENDIX C: DERIVATION OF EQ. (36)

We define S±(x) = ∫ ∞
t=0 C±(x, t ) dt and integrate the diffu-

sion equation over time to obtain

−C0 = D−
∂2S−(x)

∂x2
, (C1)

for the–region and

0 = D+
∂2S+(x)

∂x2
(C2)

for the + region. The boundary conditions for S(x) are similar
to those for C(x, t ):

∂S−
∂x

∣∣∣∣
x=−L−

= 0 reflecting BC, (C3)

S+(x = L+) = 0 absorbing BC. (C4)

The continuity conditions at the x = 0 interface are

D−
∂S−
∂x

∣∣∣∣
x=0−

= D+
∂S+
∂x

∣∣∣∣
x=0+

, (C5)

D1−α
− S−(0−) = D1−α

+ S+(0+). (C6)

The solutions for each region are simply

S−(x)

C0τ−
= −

(
x

L−

)2

− 2

(
x

L−

)
+ 2

L+
L−

(
D−
D+

)α

, (C7)

S+(x)

C0τ−
= 2

D−L+
D+L−

(
1 − x

L+

)
. (C8)

Finally, we integrate S−(x) over x ∈ [−L−, 0] and divide the
result by the initial loading N0 = C0L−: The global relaxation
time of the − region is then given by

τ ∗
−

τ−
= 2

3

[
1 + 3

L+
L−

(
D−
D+

)α]
. (C9)

This reduces to Eq. (35) when L± = L/2.

APPENDIX D: THE RELAXATION TIME FOR
REFLECTING BOUNDARIES IN THE SMALL AND LARGE

LENGTH RATIO LIMITS

For sake of simplicity, let us suppose we start with C = 1
on the (−) side and C = 0 on the (+) side.

1. The L+/L− � 1 limit

In this case, except for a very short initial time period
(∼L2

+/D+), in the lowest-order approximation the concen-
tration on the + side will be equal to the equilibrium one
[≈ (D−/D+)1−α]. Thus, the amount that has escaped in the
same approximation is ≈ (D−/D+)1−αL+. This is time inde-
pendent; to study the time dependence, we need the next-order
approximation. For this, consider the − side, where there will
be a depletion region near the interface of size ∼(D−t )1/2.
Because of particle number conservation, the characteristic
change in the concentration in that region, �C, is such that

�C(D−t )1/2 ∼ (D−/D+)1−αL+. (D1)

In this approximation, the concentration on the + side can be
determined from the jump condition at the interface and the
resulting amount on the + side is

(1 − k�C)(D−/D+)1−αL+, (D2)

where k ∼ 1, and then

ρ−(t ) ∼ �C ∼ L+(D−/D+)1−α (D−t )−1/2. (D3)

This is invalid at very long times t � L2
−/D− (when the de-

pletion region would be larger than L−, which is impossible);
at such times ρ− is exponentially small and can be replaced
with zero. It is also invalid at very short times, but as the
integral of Eq. (D3) converges at t → 0, this has a negligible
effect. Then

τ ∗
− ∼

∫ L2
−/D−

0
L+(D−/D+)1−α (D−t )−1/2dt

∼ L+L−
Dα−D1−α

+
. (D4)

2. The L+/L− � 1 limit

Except for a very short initial time period, the concen-
tration is x independent on the − side and equal to ρ−(t ).
At not too small times, ρ−(t ) � 1 (nearly all stuff has es-
caped). On the + side, near the interface the concentration
is ρ−(t )(D−/D+)1−α; the size of the region where the concen-
tration is significant is ∼(D+t )1/2. Then from particle number
conservation,

ρ−(t )(D−/D+)1−α (D+t )1/2 ∼ L−, (D5)
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and thus

ρ−(t ) ∼ L−(D+/D−)1−α (D+t )−1/2. (D6)

This is invalid at times t � L2
+/D+, where the whole + side is

filled with particles (at this point particle escape stops and ρ−
can be replaced with 0); it is also invalid at short times, which
is again negligible. We then obtain

τ ∗
− ∼

∫ L2
+/D+

0
L−(D+/D−)1−α (D+t )−1/2dt

∼ L+L−
Dα+D1−α

−
. (D7)

APPENDIX E: THE LONG-TIME DISTRIBUTION C̃(x) FOR
THE CASE WITH ONE ABSORBING BOUNDARY

At long times, only the slowest relaxation mode survives.
Let the timescale associated with this mode be τ0 [so the cor-
responding decay is exp(−t/τ0)]. Then, given the boundary
conditions, the spatial dependence is

C̃(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C̃− cos

[
x+L−

(D−τ0 )1/2

]
, if x < 0.

C̃+ sin

[
L+−x

(D+τ0 )1/2

]
, if x > 0.

(E1)

The three unknowns here are C̃−, C̃+, and τ0, while the three
relevant conditions are as follows:

(1) the jump at the interface

D1−α
− C̃− cos

[ L−
(D−τ0 )1/2

] = D1−α
+ C̃+ sin

[ L+
(D+τ0 )1/2

]
, (E2)

(2) the flux continuity at the interface

C̃−D
1/2
−

τ
1/2
0

sin
[ L−

(D−τ0 )1/2

] = C̃+D
1/2
+

τ
1/2
0

cos
[ L+

(D+τ0 )1/2

]
, (E3)

(3) the normalization condition

∫ L+

−L−
C̃(x)dx = L = C̃+(D+τ0)1/2

(
1 − cos

[ L+
(D+τ0 )1/2

])
+ C̃−(D−τ0)1/2 sin

[ L−
(D−τ0 )1/2

]
. (E4)

We can eliminate the ratio C̃−/C̃+ using the first two condi-
tions to obtain an equation for τ0 as a function of the four
system-dependent parameters D± and L±:

tan

[
L−

(D−τ0)1/2

]
tan

[
L+

(D+τ0)1/2

]
=

(
D+
D−

)α−1/2

. (E5)

Equation (E5) needs to be solved numerically (however, note
that the special case α = 1/2 leads to analytical solutions).
Once τ0 is obtained, Eqs. (E3) and (E4) can be used to obtain
properly normalized concentrations C̃±(x).
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