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Resummation for quantum propagators in bounded spaces
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We outline an approach to calculating the quantum mechanical propagator in the presence of geometrically
nontrivial Dirichlet boundary conditions. The method is based on a generalization of an integral transform
of the propagator studied in previous work (the so-called “hit function”) and a convergent sequence of Padé
approximants that exposes the limit of perfectly reflecting boundaries. In this paper the generalized hit function
is defined as a many-point propagator, and we describe its relation to the sum over trajectories in the Feynman
path integral. We then show how it can be used to calculate the Feynman propagator. We calculate analytically
all such hit functions in D = 1 and D = 3 dimensions, giving recursion relations between them in the same
or different dimensions and apply the results to the simple cases of propagation in the presence of perfectly
conducting planar and spherical plates. We use these results to conjecture a general analytical formula for the
propagator when Dirichlet boundary conditions are present in a given geometry, also explaining how it can be
extended for application for more general, nonlocalized potentials. Our work has resonance with previous results
obtained by Grosche in the study of path integrals in the presence of delta potentials. We indicate the eventual
application in a relativistic context to determining Casimir energies using this technique.
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I. INTRODUCTION

The quantum mechanical propagator K (y, x; T ) (also
called the kernel) is defined in terms of the configuration space
matrix elements of the time evolution operator,

K (y, x; T ) = 〈y|e−iĤT |x〉 θ (T ), (1)

where Ĥ = p̂2

2m + V (̂x) is the (stationary) Hamiltonian of a
system with potential V . This kernel is a Green function for
the position space Schrödinger equation with the boundary
condition K (y, x; 0+) = δD(y − x) and as such contains the
full information about the quantum system. Except in some
specific cases, or for systems with special symmetries, finding
the explicit form of the kernel can be very nontrivial and even
conventional perturbation theory has its limitations, especially
for strongly perturbing potentials, so new techniques for its
calculation or estimation are of significant interest.
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In [1] two invertible integral transforms of the kernel were
introduced. The “hit function” defined there is denoted by
H(z|y, x; T ) and represents the contribution to the kernel in-
volving propagation that passes through (“hits”) the spatial
point z; it can be used to recover the propagator by integrating
over this point:

H(z|y, x; T ) = 1

T

∫ T

0
dt K (z, x; t )K (y, z; T − t ), (2)

K (y, x; T ) =
∫

dDzH(z|y, x; T ). (3)

This function also finds application in prior studies of Brow-
nian motion and Levy random walks where it is related to the
concept of “local time” [2,3] that measures the proportion of
time for which a particle’s trajectory is found in a particular
region. For the free particle, which will be the focus of this
paper, the hit function was calculated in one dimension in the
imaginary time formalism (“Euclidean hit function”) in [1] to
be

H 0(z|y, x; T ) = m

2T
erfc

[√
m

2T
(|x − z|+|z − y|)

]
, T � 0,

(4)
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which was verified by a numerical sampling of the Feynman
path integral (note that this function is constant for z between
y and x, and erfc is the complementary error function defined
precisely below).

For potentials that are sharply localized, such as1 V (x) ∼
λδε (x − a), the perturbative expansion of the path integral
representation of the kernel (see Eq. (6) below) in powers of
the coupling constant, λ, naturally constrains the path integral
to trajectories that must pass through (or in a neighborhood
of) the point a various times. This is the case, for example, for
many scattering problems, delta function potentials as studied
by Grosche [4–6] and contact interactions [7–9], and varied
models of lattice structure in condensed matter [10,11]. In the
relativistic case, constrained path integrals arise in the context
of the Casimir effect where one is interested in trajectories
that touch the conducting plates [12–15], and for Dirichlet
boundary conditions imposed in some spatial region [16–25]
where the contributions from paths passing through this region
should be removed. A fresh approach to calculating, either
analytically, approximately or numerically, such path integrals
will therefore find wide application.

The purpose of this article is threefold. We will introduce
the generalization of the hit function to the “n-hit function”
that counts trajectories that pass through n intermediate spa-
tial points {z1, . . . , zn} in chronological order whilst traveling
between the endpoints x and y. This n-hit function can be
defined as the constrained path integral (again, in Euclidean
space, with τn+1 := T )

H(z1, . . . , zn|y, x; T )

:=
∫ x(T )=y

x(0)=x
Dx(τ )

n∏
i=1

∫ τi+1

0
dτi δ

D[x(τi ) − zi]

× e− ∫ T
0 dτ { mẋ2

2 +V [x(τ )]} θ (T ). (5)

Unless otherwise indicated we will mean the free case when
we refer to the n-hit function which is made explicit in expres-
sions via the notation H0. We will uncover relations between
the n-hit function for different order, n, and in different num-
ber of spatial dimensions, D, and will give explicit formulas
that allow it to be determined for arbitrary n and D. We will
also use this function and the theory of Padé approximants
to conjecture a closed analytical formula for the propagator
in the presence of Dirichlet boundary conditions in arbitrary
geometries and support our claim by applying it to some
simple examples. In practical calculations, this reflecting is
approached by a sequence of approximants, which essentially
represent a perturbative expansion of the kernel appropriate
for the strong coupling limit.

It is important to highlight some prior studies based on
a similar philosophy. The path decomposition expansion of
[26–29] splits up the path integral representation of the Green
function associated to the kernel in terms of contributions
from trajectories in different spatial regions; in [30,31] the
multistep propagator is introduced with the aim of eliminating

1Here δε indicates a localized, δ-function-like potential that may be
smeared over some small characteristic scale ε (it may be extended
in a codimension d > 0 subspace of RD).

a possibly dangerous overcounting of certain types of trajec-
tory in the path integral; the effective action of a (relativistic)
scalar field in a localized potential is found in [32] by re-
summing a perturbative expansion of the interaction (in fact
our n-hit function is related to an infinite set of intermediate
functions that enter this resummation); and finally, Polyakov
long ago formulated a representation of the (one-particle-
reducible) contributions to the N-point configuration-space
amplitudes in φ3 theory in terms of a relativistic point-particle
path integral constrained to pass through the prescribed exter-
nal points [33].

However, here we work with the path integral represen-
tation of the propagator as is, in configuration space, and
work out the relative contributions from the (infinite number
of) trajectories that pass through the prescribed points. The
n-hit function we define has a simple physical interpretation
according to context: in the quantum mechanical sense it
represents the (un-normalized) amplitude of propagation for
a particle to travel from point x to point y in time T , going
through the points z1, . . . , zn, (in time order) per unit (n + 1)-
volume dDz1 · · · dDzndDy (following the usage in [34] we will
refer to such an amplitude as a relative amplitude); in the con-
text of Brownian dynamics it describes the probability density
of the propagation taking place under the same constraints, per
unit n-volume of the intermediate points.

This information can be useful for analytic and numerical
estimations of the kernel for systems whose path integral
cannot be computed in closed form, since it can indicate
which trajectories, or regions of space, will be dominant in its
determination. In fact the hit function was already sampled in
works based on worldline numerics [1] and the extension con-
sidered here could shed light on the undersampling problem
encountered in [35–37]. Looking further ahead, the methods
we describe here are well adapted to the problem of estimating
the Casimir energy for arbitrary surface geometries, even for
partially conducting plates. Indeed, via the lesser well-known
worldline formalism of quantum field theory [38–40], the
generalized hit function defined here admits a clear extension
to field theory processes where it will be defined for rela-
tivistic point particles in Minkowski space (as an immediate
example, the n-hit function can be converted into Polyakov’s
representation of φ3 amplitudes cited above by transforming
to Minkowski space and introducing a (Schwinger) integral
over the trajectories’ proper time [33]). This case shall be
addressed in future work, but see [22] where the heat kernel
with Dirichlet boundary conditions on a D-dimensional man-
ifold (D-ball) was obtained using worldline techniques and
conformal transformations.

The outline of this paper is as follows: Sec. II introduces
the n-hit function in terms of path integrals and gives also
an n-fold integral representation in terms of the free particle
kernel K0. Section III presents one of the main results of
this work, a conjectured representation for the propagator
or heat kernel on a bounded region with Dirichlet boundary
conditions based on Padé approximants. Section IV A shows
a closed formula for the free n-hit function in D = 3 spa-
tial dimensions, the case of most direct physical relevance
and also special for being easily accessible analytically. Sec-
tion IV B gives the energy representation of the general n-hit
function for any space dimension D. Section VI C presents an
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analytical example where a proof of the conjectures presented
in Sec. III is given in a simple one-dimensional example.
Section V demonstrates how certain general operations con-
nect n-hit functions in different spatial dimensions D and of
different orders n to one another. An explicit realization of
these operators is given, providing a set of identities relating
the functions that in turn leads to a hierarchy which generates
all possible n-hit functions. Section VI A contains numerical
results for the propagators inside a sphere in D = 3 and an
infinite plane (also in D = 3) using the Padé representation
proposed in Sec. III. In Sec. VI B we obtain an integral
energy-representation of the general n-hit function in any D.
Section VII presents our conclusions and insight on further
applications of the method proposed and more generally of
the n-hit function and its connection to Feynman’s descrip-
tion of the path integral. Finally, for the sake of clarity most
detailed calculations and prior results have been deferred to
Appendices.

II. QUANTUM PROPAGATION AND THE n-HIT FUNCTION

The problem we will address is that of quantum propa-
gation in the presence of a potential, and while the methods
outlined here can be applied to more general situations we
will mainly focus on a special kind of singular potential with
support on a predetermined surface, V (x) = λ

∫
S δ(x − z) dσ .

Here z is a position vector on S, dσ represents a measure
that fully parametrizes the surface S and λ is a positive2 con-
stant that fixes the strength of the potential. The propagation
amplitude of a nonrelativistic particle between position x at
time t = 0 and position y at time t = T in the presence of
a potential is known to be given in natural units by the path
integral

〈y; T |x; 0〉 = 〈y|e−iĤT |x〉

=
∫ x(T )=y

x(0)=x
Dx(τ ) ei

∫ T
0 dτ { m

2 ẋ2−V [x(τ )]}. (6)

Henceforth we will Wick rotate to the imaginary time for-
mulation of quantum mechanics in which quantum free
propagation becomes Brownian motion and all amplitudes
become real. This also has the effect of ensuring that the hit
functions we are to define will be real valued. It is possible to
recover the quantum mechanical propagation amplitudes by
reversing the Wick rotation afterwards, and as our results will
show the n-hit functions can be analytically continued back to
the real time axis. However, we point out that proper care must
be taken due to the presence of branch cuts in the complex
T -plan and draw attention to the fact that in the real time
formalism the generalized hit functions are complex-valued.
Motivated by future applications we will usually henceforth
set m = 1/2 – if desired the mass m can always be recovered
by dimensional analysis in all our results, (the choice m = 1/2
corresponds to a unit diffusion coefficient) which converts (1)

2The repulsive limit λ → +∞ imposes Dirichlet boundary condi-
tions on S, while λ < 0 corresponds to an attractive potential on S.

to

K (y, x; T ) =
∫ x(T )=y

x(0)=x
Dx(τ ) e− ∫ T

0 dτ ( ẋ2

4 +V (x)) θ (T ). (7)

A standard way to deal with the localized potential considered
here is to expand the exponential to obtain a perturbative
series in the constant λ,

K (y, x; T ) =
∫ x(T )=y

x(0)=x
Dx(τ ) e− ∫ T

0 dτ ẋ2

4

∞∑
n=0

(−1)n

n!

×
(∫ T

0
V [x(τ )]dτ

)n

θ (T ). (8)

Hence the nth term of this series requires the determination of
a constrained path integral

In({zi}, {τi}) :=
∫ x(T )=y

x(0)=x
Dx(τ ) e− ∫ T

0 dτ ẋ2

4

n∏
j=1

δD[x(τi ) − zi].

(9)

Remarkably, following the steps in [1] one can determine this
in terms of the free particle propagator (see also Appendix B),
K0, as

In({zi}, {τi}) = K0(x, z	(1); τ	(1) )

K0(z	(1), z	(2); τ	(2) − τ	(1) ) · · ·
K0(z	(n), y; T − τ	(n) ). (10)

Here 	 is the time-ordering permutation of subindices defined
so that 0 � τ	(1) � τ	(2) � · · · τ	(n) � T , and in D spatial
dimensions the free propagator is

K0(x, y; τ ) = 1

(4πτ )D/2
e−(x−y)2/4τ θ (τ ). (11)

The physical meaning of In is manifest: it represents the
relative amplitude3 of propagation starting off from x at time
τ = 0 and arriving at y at time τ = T going through the
prescribed intermediary points z1, z2, . . . , zn at their assigned
times τ1, τ2, . . . , τn in time-ordered fashion.

For the potential V (x) with support on S the full series (8)
can be found from (10)

K (y, x; T ) =
∞∑

n=0

∫
S

dσn · · ·
∫

S
dσ1

(−λ)n

n!

∫ T

0
dτn · · ·

∫ T

0
dτ1

×
∑
π

In({zπ (i)}, {τi}) θ (T ), (12)

where π ∈ Sn denotes a permutation in the symmetric group
Sn and

∑
π denotes sum over all such permutations. Notice

that the same method can be used for a more general potential
by rewriting V (x) = ∫ V (z)δ(x − z) dDz and doing the appro-
priate replacements, we discuss this matter in Sec. III B. This
is all well known and constitutes one approach to arriving at

3A relative amplitude � is an amplitude density per unit Voln+1

normalized so that
∫

dDz1 · · · dDzndDy � = 1. We refer to these con-
tributions as amplitudes even though they are actually the Euclidean
version (probabilities) of a true quantum mechanical amplitude.
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standard perturbation theory in quantum mechanics [34], and
it is at this point that we will introduce a series of develop-
ments aimed at treating this problem in a distinct manner.

First, we point out that the integrations in (12) contain
all possible time orderings of the variables τi, but due to
permutation symmetry each ordering yields the same contri-
bution after integrating the zi over S. This allows us to fix
an arbitrary ordering and cancel the 1/n! prefactor [as we do
below in (15)]. For this reason it is now convenient to choose a
canonical ordering τ0 � τ1 � τ2 � · · · � τn � τn+1 := T and
define, in accordance with (5), the function

H0(z1, z2, . . . , zn|y, x; T )

:=
∫ T

0
dτn

∫ τn

0
dτn−1 · · ·

∫ τ2

0
dτ1 K0(x, z1; τ1)

× K0(z1, z2; τ2 − τ1) · · · K0(zn, y; τn+1 − τn), (13)

that we shall call the n-hit function: it relates to the origi-
nal hit function (2) through H0(z|y, x; T ) = TH0(z|y, x; T ),
which illustrates that in this article we have chosen a different
normalization convention than in [1]. For notational conve-
nience we also drop the bar used there to distinguish between
normalized and un-normalized probability distributions. The
path integral representation of this function is nothing other
than (5) with the potential V (x) = 0 [indicated in (13) by the
subscript 0].4

The n-hit function can be normalized into a relative
amplitude5 by noticing that

n!

T n

∫
dDz1 · · · dDzn H0(z1, . . . , zn|y, x; T ) = K0(y, x; T ),

(14)

which also provides the inverse integral transform that recov-
ers the original propagator from the n-hit function. In this
manner it is consistent to take the 0-hit function to be the free
space propagator, K0(y, x; T ).

Through direct substitution we can now write the propa-
gator (12) in a perturbative series that involves successive hit
functions integrated over S:

K (y, x; T ) = K0(y, x; T ) − λ

∫
S

dσ1 H0(z1|y, x; T )

+ λ2
∫

S

∫
S

dσ1dσ2 H0(z1, z2|y, x; T ) + · · · . (15)

This power series in λ constitutes the basis of our approach to
calculate the propagator and corresponds to counting contri-
butions scattered by the potential exactly once, twice, and so
forth. This representation makes clear that knowledge of just

4Of course we could define an analogous hit function for a nonzero
background potential (aside from the localized potential V on S)
by replacing K0 −→ KU , the kernel corresponding to the quantum
mechanical system with potential U (x), in (13).

5The actual relative amplitude describing the free propagation is
the sum over interfering alternatives, recalling that (13) is defined
with a canonical ordering, which corresponds to the sum over all n!
permutations or orderings: 1

T n

∑
	 H0(z	(1), z	(2), . . . , z	(n)|y, x; T ).

the free hit functions is sufficient to recover the kernel in the
presence of a localized potential

In dimension D odd, we will show that it is possible to eval-
uate H0 in closed form for an arbitrary number of intermediate
points n. For the case of even D, although it is straightforward
to calculate the hit function using the various relations we
will outline below, a closed formula of similar simplicity has
proven elusive so far, except for the special cases implied by
(67). These and other results regarding the n-hit function will
be postponed to a later section, since instead we will focus
first on the case D = 3 of special physical significance.

III. PADÉ REPRESENTATION OF THE PROPAGATOR

The problem of calculating the propagator in quantum
mechanics, or equivalently the heat kernel, in a bounded re-
gion of Euclidean space and on compact manifolds has been
investigated for a long time and consequently an arsenal of
methods and remarkable results are already known [41]. With
the exception of systems with a certain degree of symmetry
the propagator is not known in analytic form and therefore
approximations or numerical calculations must be made. A
solution of the Dirichlet problem in terms of analytic ex-
pressions will be relevant in light of the importance of heat
kernel methods used in quantum field theory [19,21,22]. In
this section we propose an analytical solution and claim that
this introduces a representation for the propagator in bounded
regions, or equivalently an analytical expression for the path
integral computed from trajectories that do not intersect a
given boundary. We lend support to this claim with numerical
evidence in later sections.

A. Dirichlet boundary conditions

We are interested in the solution of the Dirichlet prob-
lem, that is, the calculation of the propagator subject to the
amplitudes vanishing on the boundary S. This condition can
be imposed in the propagator by taking the limit λ → +∞
that makes the potential barrier S impenetrable. It is therefore
necessary to determine the limiting behavior as λ → +∞ of
the perturbative series representation of the propagator in (15),
which naturally falls well outside the radius of convergence of
the series. Grosche has demonstrated that in the presence of
a Dirac delta potential in N points the energy representation
of the quantum mechanical propagator is exactly a rational
function of the coupling strength λ in dimensions D = 1, 2, 3
[4–6]. We propose that while the exact propagator will not
(usually) be a rational function for a delta potential with
support on a surface S, the propagator can nevertheless be
approximated by a sequence of rational functions of λ to any
desired degree of precision. Following this notion we will turn
to Padé approximants and use an idea introduced by Bender
and Boettcher in [42] whereby the value of a function at
infinity can be obtained under favorable circumstances from
the coefficients of its perturbative series using diagonal Padé
approximants.

As a result, our proposed method is to determine a se-
quence of diagonal Padé approximants, PN

N (see Appendix E),
to the series representation of the propagator based on the
iterated integrals of the hit function and then to extrapolate
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to the strong coupling limit, or N → ∞. As we show in the
Appendix, these can be expressed as a quotient of de-
terminants that give a rational approximation to the
propagator. Following this approach, after calculating the

Padé approximant to (15) we are led to conjecture that
the difference between the propagator and the propaga-
tor in free space is given by the limit of a quotient of
determinants

K (y, x; T ) − K0(y, x; T ) = lim
N→∞

∣∣∣∣∣∣∣∣∣∣

0 c0 c1 · · · cN−1

c0 c1 c2 · · · cN

c1 c2 · · · · · · · · ·
...

...
...

...
...

cN−1 · · · · · · · · · c2N−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
c1 c2 · · · cN

c2 c3 · · · cN+1
...

...
...

...

cN cN+1 · · · c2N−1

∣∣∣∣∣∣∣∣
, (16)

where

cn := (−1)n+1
∫

S
dσ1 · · ·

∫
S

dσn+1 H0(z1, . . . , zn+1|y, x; T ).

(17)

While we have found strong support for this claim in our
numerical calculations, we do note that it remains a conjec-
ture at this point. However it is important to emphasize the
significance of (16) and (17) as they state how the effect of
the boundary on the propagator can be accounted for purely
in terms of multiple scatterings at the boundary and that it
is calculated explicitly by integrating hit functions over that
boundary. To the best of the authors’ knowledge this is a novel
way to calculate a path integral in a bounded space and here
we intend to demonstrate its usefulness. Beyond the utility of a
numerical approximation the more formal question of conver-
gence in the N → ∞ limit merits certain interest on its own
right, which we hope to investigate in future work. Indeed,
the strength of the contribution of each nth-order scattering
at the boundary is quantified by cn−1, the conjecture states
that the propagation amplitude is the infinite size limit of the
quotient of two amplitudes, each one expressed as a deter-
minant. The physical meaning of these individual amplitudes
is connected to the multiple scatterings at the boundary in
a combinatorial manner and a clearer understanding of the
nature of these individual amplitudes might pave the way for
a proof of the conjecture.

Let us also draw attention to the fact that, although
completely different in content, (16) resembles in spirit the
original formulation of the Gelfand-Yaglom theorem [43] for
a Schrödinger problem with Dirichlet boundary conditions in
which the effect of a potential on the path integral normaliza-
tion is expressed as a finite quotient of functional determinants
that were calculated through a limiting process from finite
dimensional matrix determinants.

Together (16) and (17) state one of the principal results
of the present work, while simultaneously motivating us to
determine the analytic form of the free n-hit functions for their
practical use in (16). It is also clear from a practical point of
view that a finite N must be chosen at some point to carry out
an actual approximate calculation of the propagator. In this

sense our result also constitutes a pragmatic approximation
that in contrast to conventional series representations should
get more accurate the stronger the coupling.

B. Other static potentials

Before continuing, we pause to note that an arbitrary po-
tential V (x) may not be tractable with the present approach
as the sequence of Padé approximants may not converge, yet
we wish to illustrate that a wide family of potentials could
still be treated with this method. We start by writing the series
expansion (8) for the potential

Vλ(x) = λ

∫
dDz V (z)δ(x − z). (18)

Following the procedure outlined is tantamount to the formal
substitution

∫
S dσi → ∫

dDzi V (zi ) everywhere. In this case
the parameter λ could be an appropriate coupling extracted
from the physical potential or could be artificially introduced;
in the latter case after calculating the perturbative series ana-
log to (15) the limit λ → 1 is taken. The following diagonal
Padé representation for the propagator is obtained:

K (y, x; T ) = lim
N→∞

∣∣∣∣∣∣∣∣
ϕ0 ϕ1 · · · ϕN

C1 C2 · · · CN+1
...

...
...

...

CN CN+1 · · · C2N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 1 · · · 1

C1 C2 · · · CN+1
...

...
...

...

CN CN+1 · · · C2N

∣∣∣∣∣∣∣∣
, (19)

where ϕL =∑L
p=0 Cp and

C0 = K0(y, x; T ),

Cn = (−1)n
∫

dDz1 · · ·
∫

dDzn V (z1) · · ·V (zn)

×H0(z1, . . . , zn|y, x; T ), n � 1. (20)

Note that, as we shall show below, in contrast to standard
perturbation theory, here there will be no requirement that the
expansion parameter, λ, be small.
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In contrast to (16) we may now also consider the nondiag-
onal Padé approximants: From the numerical standpoint this
is often useful to speed up convergence as they provide more
information on the convergence behavior of the sequence, in
which case the analog to (19) can be easily obtained from
(E3) by taking M �= N . It will be interesting to investigate the
kind of potentials that this method can be applied to. Although
the results presented below lend weight to the argument that
this approach will be well suited to localized potentials, the
authors venture that it in principle may be applicable as a
series representation of the kernel for some more general
potentials as well. It is hoped that further investigation will
establish how widely this method can be used.

IV. DETERMINING THE N-HIT FUNCTION

Based on the proposal outlined above, in this section we
calculate the n-hit function in the special case of dimension
D = 3 and then give a general formula, (29), in arbitrary
dimension. From these results we derive relations between
the n-hit functions for differing D and n which allow us to
transform between different values of these parameters with
simple operations on the functions.

A. Three-dimensional hit function

It turns out that D = 3 dimensions is a special case
for which the iterated integrals in (13) can be calculated

straightforwardly. Using the relations in Appendix A, the key
observation is that the function fα (τ ) = 1

τ 3/2 e−α2/τ is a repro-
ducing kernel over τ in the sense that∫ T

0
fα (τ − τ ′) fβ (τ ′) dτ ′ = √

π
α + β

αβ
fα+β (τ ),

so that in terms of the (finite-interval) convolution
[ fα ∗ fβ](τ ) = √

π
α+β

αβ
fα+β (τ ). This result allows us to

perform all integrals recursively in (13) to determine the n-hit
function for arbitrary order.6

Repeated application of the convolution property and the
results for the integrals given in Appendix A yield a closed
formula for the n-hit function in D = 3:

H0(z1, . . . , zn|y, x; T ) = 1

(4π )
2n+3

2

e− �2

4T

T 3/2

�

�1�2 · · · �n+1
θ (T ),

(21)

where we introduced �k := |zk − zk−1| and defined z0 := x
and zn+1 := y, so that � =∑n+1

i=1 �i is the total length of the
polygonal path from x to y with prescribed vertices {zi}. We
shall make frequent use of this notation for the remainder of
this article.

To illustrate this result we give the explicit form of the first
two hit functions as

H0(z|y, x; T ) = 1

(4π )5/2T
3
2

( |y − z| + |z − x|
|y − z||z − x|

)
e− 1

4T (|y−z|+|z−x|)2
θ (T ), (22)

H0(z1, z2|y, x; T ) = 1

(4π )7/2T
3
2

( |x − z1| + |z1 − z2| + |z2 − y|
|x − z1||z1 − z2||z2 − y|

)
e− 1

4T (|y−z2|+|z2−z1|+|x−z1|)2
θ (T ). (23)

We remark here about the normalization of these func-
tions in comparison to that used in previous work. In [1]
the hit function was normalized such that integrating it
over space gave unity (a second, unnormalized distribu-
tion, denoted H, was also introduced). Here, to convert
the n-hit functions into correctly normalized probability
distributions on the particle trajectories, we would divide
H0(z1, . . . , zn|y, x; T ) by K0(y, x; T )T n/n! such that the multi-
ple integral n!

T nK0(y,x;T )

∏n
i=1

∫
dDzi H0(z1, . . . , zn|y, x; T ) = 1

[cf. (14)].

6It is pleasant to note that this property is the time analogue of the
reproducing kernel in space for the same function:∫

R3
f|y−z|(T − τ ) f|z−x|(τ ) d3z = π 3/2 f|y−x|(T ).

Here position space vectors are added; over time it is their lengths
that are to be added. Both behaviors can be traced back to the fact
that free propagation forgets about the prior points it has previously
passed through and is isotropic so that the amplitude depends not on
the relative orientations of the edges of the path between the points
zi, but rather on their lengths only.

B. Arbitrary n-hit function in dimension D

In the general case the evaluation of the hit function defined
in (13) is greatly facilitated by using the “energy represen-
tation” of the kernel, its Fourier transform with respect to
transition time T ,

K̂ (y, x; ω) =
∫ ∞

−∞
dT K (y, x; T )eiωT . (24)

Here we use this representation of the kernel to manipulate
the integral representation of the n-hit function into the form
of an inverse Mellin transform.

We begin with the observation that the n-hit function can be
written as (in fact, this result holds for the hit function defined
with respect to an arbitrary background potential by replacing
K0 → KU ; cf. footnote in Sec. II)

H0(z1, z2, . . . , zn|y, x; T )

=
n+1∏
i=1

∫ ∞

−∞
dti δ

(
n+1∑
k=1

tk − T

)
K0(y, zn; tn+1)

× K0(zn, zn−1; tn) · · · K0(z1, x; t1), (25)

where we made use of the change of variables ti := τi − τi−1

for 1 � i � n + 1, again with τ0 := 0 and τn+1 := T , so that
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the ti now represent the lengths of proper-time intervals. Us-
ing now the well-known Fourier representation of the Dirac
delta distribution δ(t ) = 1

2π

∫∞
−∞dω eiωt the convolution the-

orem yields the integral representation (again, replacing the
free propagators on the right-hand side by their counterparts
corresponding to some other background potential yields an
analogous integral representation of the n-hit function for that
potential)

H0(z1, z2, . . . , zn|y, x; T )

=
∫ ∞

−∞

dω

2π
e−iωT K̂0(y, zn; ω) · · · K̂0(z2, z1; ω)K̂0(z1, x; ω).

(26)

A physical interpretation of (26) is that as the particle is
scattered multiple times in vacuum (or in a static potential)
the amplitudes corresponding to a given fixed energy are mul-
tiplied, that is, the scatterings happen independently and do
not change the energy; we then calculate the total amplitude
by integrating over the values of energy at which this scatter-
ing took place. In our conventions, (26) contains the Fourier
transform of the free propagator according to (24) which for
the free particle is known,7 for dimension D, in terms of the
Macdonald function (modified Bessel function of the second
kind), K D−2

2
(see [45], for example). Indeed, with ν := 2−D

2
one obtains for arbitrary D,

K̂0(y, x; ω) = 2

(4π )D/2

( |x − y|
2
√−iω

)ν

K−ν (
√−iω|x − y|).

(27)

Substituting this into (26) into we arrive at the following
Fourier integral representation:

H0(z1, . . . , zn|y, x; T )

= CD,n

∫ ∞

−∞

dω

2π

e−iωT

(−iω)
(n+1)ν

2

K−ν (
√−iω|x − z1|) · · ·

K−ν (
√−iω|zn − y|), (28)

where we introduced the prefactor

CD,n = (2π )−D(n+1)/2(|x − z1| · · · |zn − y|)ν .
We now introduce the complex variable ζ = √−iω and pro-
ceed to deform the contour of integration using Cauchy’s
theorem; when T < 0 we can collapse the path onto the real
axis on the complex ζ plane, leading to the vanishing of the
integral, as required by the Heaviside θ functions in (11),
whereas in the case T > 0 the contour can no longer be
deformed in this manner but rather can be deformed to run
parallel to the imaginary axis shifted a small amount 0+ to-
wards the right in accordance with the Feynman prescription;

7The relevant identity is (see, for example, [44])∫ ∞

0
dtt ν−1e−iγ t+i β

t = 2

(
β

γ

)ν/2

e−iνπ/2K−ν (2
√

βγ ) Im(γ ) � 0,

Im(β ) � 0.

FIG. 1. The complex plane illustrating the deformation of the
integration contours that leads to the change of variables between
ζ and p.

see Fig. 1. This straight path can be parameterized in terms
of a new variable p ∈ (−∞ + i0+,∞ + i0+) and the natural
change of variables in the integrand is p = −i

√−iω so that
this variable is the Wick-rotated momentum corresponding to
energy ω; the resulting contour in the complex plane parame-
terized by p is shown in Fig. 1. With these considerations we
arrive at the integral representation8

H0(z1, . . . , zn|y, x; T )

= 2CD,n

∫ i0++∞

i0+−∞

d p

2π i

p e−p2T

(−ip)(n+1)ν
K−ν (−ip|x − z1|) · · ·

K−ν (−ip|y − zn|) θ (T ). (29)

Notice that this is in fact the Bromwich integral for the inverse
Laplace transformation, or equivalently the Mellin transform
of the integrand. A significant advantage of the formulas (28)
and (29) over (13) or (25) is that the n or n + 1 integra-
tions required to calculate the n-hit function are ultimately
reduced to only one; this is an improvement if such functions
are to be calculated numerically (where there are already
well-developed algorithms for estimating such integrals). In
the next sections we shall use this integral representation to
obtain various functional identities between hit functions and

8To make manifest that this integral representation is real
one can take advantage of the relation for x ∈ R: K−ν (−ix) =
π i
2 (−1)νH (1)

ν (x).
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then show how it can be evaluated to determine specific hit
functions in different dimensions and of different orders.

C. An analytical example

We will now present an example where the analytical prop-
erties of the propagator can be used to show the convergence
of the diagonal subsequence of Padé approximants. To this
end we shall use the δ-function potential V (x) = λδ(x) in one
dimension and consider propagation under its influence. It will
be convenient to calculate the Fourier transform of the free
propagator in one dimension,

K̂0(x, y; ω) =
∫ ∞

−∞
K0(x, y; T )eiωT dT = e−|x−y|√ω/i

2
√

ω/i
, (30)

because the propagator difference, Kλ(x, y; T ) −
K0(x, y; T ) := �K (λ), can be written in closed integral form
based on K̂0(x, y; ω), a known result found (in Minkowski
time), e.g., in [45]:

�K (λ) = − λ

2π

∫ ∞

−∞

K̂0(x, 0; ω)K̂0(0, y, ω)e−iωT

1 + λK̂0(0, 0; ω)
dω. (31)

The above integral can be solved using contour integration—
in particular the Heaviside step function θ (T ) results from
different contour choices for both signs of T . Doing so we
arrive at the closed form

�K (λ) = −λ

4
e

λ�
2 + λ2T

4 erfc

(
� + λT

2
√

T

)
θ (T ). (32)

Notice that �K (λ) is an entire function of λ. Furthermore,
using the results we derive below for the hit functions in
D = 1 dimension, the series (19) coincides exactly with the
series expansion of K = K0 + �K (λ) in powers of λ, which
also informs us that it correctly produces the diagonal Padé
approximants in this case. The analyticity now allows us to
invoke a theorem due to Nuttall [46] to prove that the diagonal
subsequence of Padé approximants to �K (λ) converges to
�K (λ) almost everywhere in C, so that convergence in the
limits λ → ±∞ is assured. Furthermore, in the large λ limit
we obtain the leading order contribution

�K (λ → ∞) ∼ − e− �2

4T√
4πT

+ O

(
1

λ

)
, (33)

which reproduces the result for the kernel in a half-space
when x and y have the same sign. This kernel (but in D = 3
dimensions) is approximated using the Padé approximants of
the conjecture in (16) in Sec. VI, where we show that the
sequence of approximants (built by integrating n-hit functions
over the plane) gives a good estimate of the propagator.

V. IDENTITIES AMONG N-HIT FUNCTIONS

It turns out that there are various identities relating the
generalized hit functions for different spatial dimension or
number of intermediate points, n. In this section, for clarity
we will write the space dimension D explicitly in the n-hit
function by adding a super-index in the form H(D)

0 .

A. Changing the order n and dimension D

We begin by considering hit functions defined in different
dimension. By writing out (13) explicitly,

H(D)
0 (z1, . . . , zn|y, x; T )

= 1

(4π )(n+1)D/2

∫ T

0
dτn · · ·

∫ τ2

0
dτ1

n+1∏
i=1

e−�2
i /4(τi−τi−1 )

(τi − τi−1)D/2
θ (T ),

(34)

we see that the dependence on the dimension appears ex-
plicitly in the denominator, the prefactor and, implicitly in
the definition of each �i = |zi − zi−1| as a distance in D-
dimensional Euclidean space. As a direct consequence of
differentiation under the integral the following functional re-
lation holds:

H(D+2)
0 (z1, . . . , zn|y, x; T )

=
n+1∏
i=1

(−1

2π

1

�i

∂

∂�i

)
H(D)

0 (z1, . . . , zn|y, x; T ) (35)

:= D+
n H

(D)
0 (z1, . . . , zn|y, x; T ), (36)

where we denote the operation of raising the dimension by
D+

n that acts on a hit function of order n (see below for its
lowering partner). Here it is important to stress that (35) must
be interpreted as a functional relation and not an equality; in
particular the meaning of the �i is different on both sides as
they are to be calculated in spaces of dimensions D + 2 and D,
respectively. Nevertheless this identity allows one to calculate
hit functions in higher dimensions of the same parity once a
given n-hit function is explicitly known. To illustrate this, spe-
cific examples are given in Sec. V B. It is also possible to write
the inverse functional relation that will lower the dimension
from D → D − 2 by inverting, with the appropriate boundary
conditions at �i → ∞, the operation defined in (35):

H(D−2)
0 (z1, . . . , zn|y, x; T )

=
n+1∏
i=1

(
2π

∫ ∞

�i

d�i �i

)
H(D)

0 (z1, . . . , zn|y, x; T ) (37)

:= D−
n H

(D)
0 (z1, . . . , zn|y, x; T ), (38)

which defines the dimension-lowering operator D−
n of order

n (of course, in the form we have written these operations it
is clear that D±

n depend upon the intermediate points, but the
meaning of the abstract operators acting on the hit functions
should be clear).

Turning now to relations between hit functions of different
order, from (13) one immediately sees how to incorporate an
additional intermediate point, zn, say, into the hit function
which allows us to define an order-raising operator N+

D (zn),
that will insert the additional point zn in the D-dimensional hit
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function according to9

H(D)
0 (z1, . . . , zn|y, x; T )

=
∫ T

0
dτ H(D)

0 (z1, . . . , zn−1|zn, x; τ )K0(y, zn; T − τ ) (39)

:= N+
D (zn)H(D)

0 (z1, . . . , zn−1|y, x; τ ). (40)

This can also be expressed as a convolution product
[H0(z1, . . . , zn−1|zn, x) ∗ K0(y, zn)](T ) which produces the re-
quired insertion point using the appropriate kernel. We can
invert (39) by introducing a Dirac δ-distribution under the
integral with an operator, N−

D (zn), that will lower the order
of the hit function by removing the point zn by integrating it
out (in D dimensions)

H(D)
0 (z1, . . . , zn−1|y, x; T )

= 1

2

∫
dDzn

(
∂

∂T
− ∇2

y

)
H(D)

0 (z1, . . . , zn|y, x; T ) (41)

:= N−
D (zn)H(D)

0 (z1, . . . , zn|y, x; T ), (42)

where ∇2
y is the Laplacian acting only on the y coordinates. In

fact this follows from the Schrödinger-like equation that the
hit function satisfies that is inherited from the Schrödinger
equation, a generalization of the Green function equation
satisfied by the kernel itself:

1

2

(
∂

∂T
− ∇2

y

)
H(D)

0 (z1, . . . , zn|y, x; T )

= δD(zn − y)H(D)
0 (z1, . . . , zn−1|y, x; T ). (43)

Consider now the special case D = 1: Due to its excep-
tional simplicity there is another manner to relate the n to
n + 1-hit functions. To this end observe that for D = 1 (29)
becomes

H(1)
0 (z1, . . . , zn|y, x; T )

=
( i

2

)n ∫ i0++∞

i0+−∞

d p

2π pn
e−p2T +ip� θ (T ). (44)

Notice that the only dependence on n is in the prefactor and
the power of p in the integrand whilst the dimensional depen-
dence only enters implicitly through �. By differentiation we
obtain

H(1)
0 (z1, . . . , zn−1|y, x; T ) = −2

∂

∂�
H(1)

0 (z1, . . . , zn|y, x; T ),

(45)

which must be interpreted, as above, as a functional relation
considering that the meaning of � is different on both sides
of (45) on account of the change in the number of interme-
diate points; the inverse relation follows from considerations
similar to those made for (37)

H(1)
0 (z1, . . . , zn|y, x; T )

= 1

2

∫ ∞

�

d�H(1)
0 (z1, . . . , zn−1|y, x; T ). (46)

9The same identity holds if a potential U is present by replacing
H0 → H and K0 → K ; cf. the footnote in Sec. II.

FIG. 2. An illustrative part of the infinite commutative diagram
connecting the hit functions of different order in different dimension:
H(D)

0 (n) denotes the n-hit function in dimension D.

The commutative diagram in Fig. 2 shows the mapping be-
tween the different n-hit functions.

As a consequence of the relations described we draw the
conclusion that all n-hit functions are related in dimensions
with the same parity, and in a given dimension different orders
of hit function (values of n) are also related, as shown in the
diagram in Fig. 2.

The relations shown in the commutative diagram, and
described by (35), (37), (39), and (41) are general. In the
following section we shall apply them to obtain closed for-
mulas for the odd dimensional case on account of its special
simplicity (since all n-hit functions can be related to the D = 1
or D = 3 case). In the even dimensional case we will provide
simple integral representations for n > 1. In the special case
with D = 1 spatial dimensions the additional identities (45)
and (46) hold which help us to construct all hit functions as
a basis for the odd dimensional case. We also provide some
results in even dimensions (in particular D = 2).

B. Examples

Let us illustrate the use of the integral representation (29)
and the relations derived in this section to determine the n-hit
function for some cases of interest. In particular we shall focus
on the results for D = 1 and D = 3 and find the hit function
for arbitrary n.

First, to recover the result (21), we use ν = − 1
2 and

the well-known analytic expression for the Bessel functions,
K1/2(x) = √π

2
e−x√

x
. Thus in D = 3 the integral representation,

(29), of the n-hit function turns into

H(3)
0 (z1, . . . , zn|y, x; T )

= 2

(4π )n+1

(
n+1∏
i=1

�i

)−1 ∫ ∞

−∞

d p

2π i
p e−T p2+ip

∑n+1
i=1 �iθ (T ).

(47)

Completing the square in the exponent and shifting integration
variables results in a Gaussian integral that evaluates imme-
diately to (21). We also note that this result is, of course,
compatible with the convolution identity, (39). Indeed, using
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(A3), we immediately verify

N+
3 (zn)H(3)

0 (z1, . . . , zn−1|zn, x; τ )

=
∫ T

0
dτ θ (T − τ )

e− (zn−y)2

4(T −τ )

[4π (T − τ )]
3
2

×H(3)
0 (z1, . . . , zn−1|zn, x; τ ) (48)

= 1

(4π )
2n+1

2

� − �n+1

�1�2 · · · �n

∫ T

0
dτ

e− �2
n+1

4(T −τ )

[4π (T − τ )]
3
2

× e− (�−�n+1 )2

4τ

τ 3/2
θ (T )

= 1

(4π )
2n+3

2

�

�1�2 · · · �n+1

e− �2

4T

T
3
2

θ (T ) (49)

= H(3)
0 (z1, · · · , zn|y, x; T ). (50)

Likewise, for the case D = 1 it is also possible, with a little
more work, to arrive at a closed form result for the hit function
of arbitrary order. We can use this to verify the formulas (35)
and (37) for changing dimension. A key relation is (46) which
defines a useful recursion relation between hit functions of
different order. In this case, the special form of the one hit
(n = 1) function makes it possible to solve this relation in
closed form.

Although we have already quoted the result for

H(1)
0 (z|y, x; T ) in (2) of the introduction, here we take

advantage of the opportunity to recalculate it using the
“master formula” derived in (29). Indeed, for D = 1 this
reduces to (44) so with n = 1 we must calculate

H(1)(z|y, x; T ) = i

2

∫ i0++∞

i0+−∞

d p

2π p
e−p2T +ip(�1+�2 ). (51)

It is clear that we must take care with the pole at p = 0 [this
is already apparent in (44)]. To deal with this we separate the
integral as follows [this treatment is equivalent to using the
prescription for the pole 1

p+i0 = P (1/p) − iπδ(p)]:

H0(z|y, x; T ) = 1

2

(
−
∫

γ (ε)

d p

2π i

e−p2T +ip�

p

−
∫
− d p

2π

sin(p�)

p
e− 1

2 p2T

)
(52)

where γ (ε) is the semicircle of radius ε above the pole at the
origin; the second is a principal value integral that excludes
the interval (−ε, ε) and the limit ε → 0+ is understood. The
first integral is evaluated as half the contribution given by
the residue theorem at the pole, while the second is a known
integral that evaluates to an error function so we reproduce the
prior result quoted in (2),

H0(z|y, x; T ) = 1

4

[
1 − erf

(
�

2
√

T

)]
= 1

4
erfc

(
�

2
√

T

)
,

(53)

once we put m = 1
2 and recall the change in the normalization

of the hit function adopted in this paper. It is now easy to
verify (35) and (37) using (23) which involve two integrations
and two differentiations respectively.

Using this result in the recursion relation (46) shows that
the one-dimensional n-hit function can be expressed in terms
of the well-known iterated integrals of the complementary
error function (see, for example, [47,48]) defined by

Inerfc(z) :=
∫ ∞

z
dz′ In−1erfc(z′), (54)

I−1erfc(z) = 2√
π

e−z2
, (55)

I0erfc(z) = erfc(z). (56)

With this notation we solve the recursion relation via

H(1)
0 (z1, . . . , zn|y, x; T ) = 1

4

(
1

2

∫ ∞

�

d�

)n−1

erfc

(
�

2
√

T

)
= 1

4
T

n−1
2 In−1erfc

(
�

2
√

T

)
, (57)

in which, of course, � is interpreted according to the order
n. Using the integral definition of Inerfc given above, and
the general result for (21) in three dimensions it is a simple
exercise in induction to prove that the identities (35) and (37)
hold between dimension D = 1 and D = 3 for arbitrary order
n. For completeness we supply the functional form of these
results for n = 2 and 3:

H (1)
0 (z1, z2|y, x; T ) =

√
T

4

[
e− �2

4T√
π

− �

2
√

T
erfc

(
�

2
√

T

)]
,

(58)

H (1)
0 (z1, z2, z3|y, x; T ) = T

16

[
−2

�

2
√

T

e− �2

4T√
π

+
(

2
�2

4T
+ 1

)

× erfc

(
�

2
√

T

)]
, (59)

where � is to be formed using two and three intermedi-
ate points respectively. Returning to the example given in
Sec. IV C, in which V (x) = λδ(x), the integrals over the
surface S in (16) select zi = 0 so that for all n we would
have � = |x| + |y|. It is then easy to check that, thanks to
the singular support of the potential, the series (16) recovers
the expansion of the full kernel in powers of λ and as such the
correct Padé approximants (as discussed above the analytic
nature of the kernel implies that the diagonal approximants
converge to the desired function).

Since the dimensional shift formula (35) allows us to use
the one-dimensional hit functions to produce all hit func-
tions in odd dimension, it is of interest to give more explicit
formulas for the former. As illustrated in (58) and (59), we
observe that integrating elements of the set {erfc(z), e−z2}
produces polynomials in z multiplied by these same ele-
ments. Thus this form of closure under integration implies
that the hit function in one dimension is built from polyno-
mials in �

2
√

T
multiplied by the error function or Gaussian

exponential of the same variable. Combining the recursion
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relation with the integral representation (44) and employing the generalization 1
(p+i0)n = P ( 1

pn ) + i (−1)n

(n−1)!πδ(n−1)(p) it is possible
to determine the hit function in terms of special functions

H(1)
0 (z1, . . . , zn|y, x; T ) = e− �2

4T

4
√

π (n − 1)!
T

n−1
2

[
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2

)
1F1

(
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2
,

1

2
;
�2

4T

)
− (n − 1)
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2
√
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(
n − 1

2

)
1F1

(
n + 1

2
,

3

2
;
�2

4T

)]
, (60)

where 1F1(a, b; z) is a confluent hypergeometric function of the first kind [44,47]. Of more practical use we can relate the
hypergeometric functions and parabolic cylindrical functions and write the latter in terms of derivatives of the error function to
arrive at the following helpful identities:

1F1

(
n

2
,

1

2
; z2

)
= (−1)n−1 �

[
n+1

2

]
2(n − 1)!

dn−1

dzn−1

{
ez2

[erfc(z) + (−1)n−1erfc(−z)]
}
, (61)

1F1
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{− ez2
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}
. (62)

If we use these in (60), then it simplifies substantially to a
derivative representation

H(1)
0 (z1, . . . , zn|y, x; T )

= 1
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(63)

While it is simple to verify this reproduces (58), to convince
oneself that it coincides with (57) for arbitrary order the result
of applying the derivatives can be written more explicitly in
terms of the Hermite polynomials, denoted by Hn, as

H(1)
0 (z1, . . . , zn|y, x; T )

= in−1
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2
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(64)

which define the polynomial coefficients of the complemen-
tary error function and Gaussian function mentioned above. If
we now take the second derivative of the above representation
the recurrence relation for Hermite polynomials ensures that
it satisfies the differential equation (for brevity we indicate the
order as an argument)

∂2
�H

(1)
0 (n) + 8T �∂�H(1)

0 (n) − 8T nH(1)
0 (n) = 0. (65)

The generating formula (63) is a Rodrigues formula for the
solutions of (65). Finally, to show that this coincides with
the recursion relation in (57) we note that it is easy to prove
by induction the following recursion relation for the iterated
integrals of the complementary error function:

2nInerfc(z) + 2zIn−1erfc(z) − In−2erfc(z) = 0, (66)

which readily implies the differential equation (65).
With these explicit results it is now also a trivial exercise to

confirm that the more general form of the operations that raise

and lower the order, (39), (41), (45), and (46) are satisfied
by the n-hit function in one dimension (which is important
because we constructed these functions using alternative rela-
tions). For n ∈ {1, 2, 3} this can be verified on a case by case
basis; the result for arbitrary order is again most easily proved
by induction. It is also worth pointing out that the propagator
for the δ-function potential in Eq. (32) provides an alternative
means of generating the hit functions for arguments zi = 0:
The n-hit function corresponds to the coefficient of λn in its
expansion about λ = 0. This concludes our determination of
the one-dimensional generalized hit functions and, by exten-
sion, the n-hit function for arbitrary n in any odd dimension.
For the applications we have in mind to the Casimir effect,
this is all we require.

For the case of even dimensions, the recurrence relations
and dimensional shift formulas imply that it suffices to ob-
tain the n = 1-hit function in D = 2, say. To achieve this we
invoke the integral representation (34) which for n = 1 and
D = 2 becomes

H(2)
0 (z|y, x; T ) = 1

(4π )2

∫ T

0
dτ

e− �2
1

4τ
− �2

2
4(T −τ )

τ (T − τ )
θ (T )

= 1

8π2T
K0

(
�1�2

2T

)
e

�2

4T θ (T ), (67)

where we used (A4). Thus we may, in principle, produce
the infinite towers of hit functions of arbitrary order in even
dimension by pure calculus.

VI. NUMERICAL BENCHMARKING

To investigate the feasibility of the calculation of the propa-
gator put forward by (16) we have chosen to test the proposal
with specific examples in two different geometries, namely,
the D = 3 spatial region G with boundary ∂G, given either
by a plane R2 or by a sphere S2, where Dirichlet bound-
ary conditions are imposed on the boundaries. For simplicity
we fix the center of the sphere at the origin and the plane to
be the x-y plane passing through the origin. In the case of the
sphere the region G considered is the interior of the unit sphere
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while in the case of the plane the region G consists of the half
space in R3 bounded by the plane.

In order to carry out a meaningful test we must compare
the predictions given by (16) against the exact analytical ex-
pressions for the propagators (found in Appendix C). This
requires us to evaluate the cn up to a given order to determine
a truncated approximation for the quotient of determinants. In
practice we have calculated up to n = 3, which corresponds to
truncating the perturbative expansion at order λ4. Evaluating
cn as given by (17) requires calculating multiple integrals
over the boundary geometries that are in general difficult to
determine analytically [except for some special cases; cf. (D6)
and (D7)], especially for n > 1. As such we resorted to numer-
ical (Riemann) integration over the boundaries in such cases,
although we should point out that despite this the calculation
of (16) remains semi-analytic in that numerical techniques
only enter the calculation to evaluate the coefficients cn de-
fined in (17). In our calculations this evaluation was done for
n = 0, 1, 2, 3, using the Gauss-Kronrod quadrature method
already built into Mathematica 10.3.1 for the numerical in-
tegration over the surfaces S. We found that the relative error
of this quadrature method is variable in our calculations but
stays around εQ = 0.1%; we discuss the error estimation in
Sec. D 3. The numerical evaluation of the integrals involved
was greatly simplified by particular choices of coordinate
systems to avoid spurious singularities which are detailed in
Appendix D.

To obtain a graphical representation of the comparison we
have plotted the dependence on the transition time, T , of the
difference K (x, y; T ) − K0(x, y; T ) while keeping the points
x, y fixed in different cases. The difference K (x, y; T ) −
K0(x, y; T ), the so-called scattering or vacuum-subtracted
propagator, is calculated in different manners for the pur-
pose of comparison. First and foremost, we compare all our
results against the prediction given by the analytical (exact)
expressions, that we have plotted in black. Second, we plot
the successive predictions, labeled P1

1 , P2
2 , P3

3 , for the vacuum-
subtracted propagator given by formula (16) for N = 1, 2, 3
for the truncated perturbative series. To be explicit, the quo-
tients in these cases evaluate to

P1
1 (T ) = −c2

0

c1
,

P2
2 (T ) = c3

1 + c2
0c3 − 2c0c1c2

c2
2 − c1c3

, (68)

P3
3 (T ) = −c4

2 − 3c1c2
2c3 + c2

1c2
3 + 2c0c2c2

3

c3
3

and will be plotted below as dashed green, orange, and brown
lines, respectively. As will be seen the agreement we obtain
is quite good already with just these three approximants, but
one might object that improving the accuracy further would
require many more coefficients cn to be calculated. While this
is indeed a viable way to proceed we can in fact improve the
estimates without determining more coefficients by exploiting
a simple observation: It turns out that in both geometries the
sequence of PN

N alternates about the exact value (black solid
line), behavior that can be recognized even when the analytic

FIG. 3. Center-to-center propagation amplitudes inside a sphere,
comparing approximations of various orders against the known ana-
lytic results (black solid line).

result is unknown. We can use this to obtain a much better
numerical estimate using convergence-acceleration methods.

As such we introduce the Shanks transformation as a tool
to accelerate convergence in the {PN

N } sequence. The Shanks
transformation is particularly well suited to hasten conver-
gence in alternating sequences [49], and it is this behavior
exhibited by {P1

1 , P2
2 , P3

3 } that has prompted its application
here. We call S1 and S2 the first and second iterated Shanks
transformation of the sequence {PN

N } (see Appendix E), ex-
plicitly given by

S1(T ) = P1
1 P3

3 − (P2
2

)2
P1

1 + P3
3 − 2P2

2

, S2(T ) = S1 + P1
1 − (P2

2

)2
S1 + P1

1 − 2P2
2

.

(69)

In our plots we have displayed both S1 and S2 as solid blue
and red lines, respectively, from which we can appreciate a
noticeable improvement. As expected, S2 (in red) gives the
closest fit to the analytical value (in black). Another favorable
consequence of the alternating behavior is that we can roughly
estimate the systematic error using the Leibniz criterion dis-
cussed in Appendix D 3. We have included this estimation
as error bars (in grey) centered around the S2 curve. From
a practical point of view we can consider S2 to be the best
estimate we obtained in both cases, using only the first four
coefficients cn for its evaluation.

The plots we obtained are given in Figs. 3–5. They reveal
that the accuracy achieved by this method is in most regions
notably greater than our naive estimate would suggest, even
if this estimate remains a tighter bound where the deviation is
largest.

A. Sphere

Our first case of study is the interior region of a
unit sphere (a unit ball) bounded by the surface S =
∂G  S2. Two cases were investigated where the vacuum-
subtracted propagator was calculated with the same ini-
tial point x but distinct final points y. We called these
two cases center-to-center propagation and center-off-center
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FIG. 4. Center-off-center propagation amplitudes inside a
sphere, showing agreement of the Padé approximants to the analytic
result (solid black line).

propagation, corresponding to Cartesian coordinates x = y =
(0, 0, 0) and x = (0, 0, 0), y = (0, 0, r), respectively.

We show the results obtained with numerical help for the
multiple integration over the surface of the sphere in Fig. 3
and Fig. 4. In both plots we have avoided the point T = 0
(where the propagators are known to vanish), hence restricting
to the interval 0.02 � T � 2.5. For larger values of T than
those presented here we verified that the agreement improves
asymptotically. In Fig. 4 we have taken the parameter r = 0.7,
that is, y = (0, 0, 0.7) so that an appreciable deviation from
the center-center propagation is observed.

For comparison to the exact result, the analytical value
of the vacuum-subtracted propagator (in black) was calcu-
lated in both plots from the series representation developed
in Appendix C [see (C7)] by truncating it at lmax = 3 and
kmax = 8. These values for truncation are optimal because,
in fact, adding more terms slows down computation while
producing no noticeable effect in our plots. This can be seen
by examining u4,1 ≈ 8.18, so that the largest ignored term is
numerically O(e−66.9T ) and the fast convergence rate of the
series means the remaining terms do not contribute

FIG. 5. Comparing p to p propagation amplitudes in the half-
space against the semianalytic result (C7).

substantially. Other calculations are of course possible where
x and y are completely arbitrary points (not necessarily colin-
ear with the center of the sphere) and based on our numerical
calculations we expect that a similar agreement would be
found.

B. Plane

The same comparison was done for the region (half-space)
bounded by an infinite plane, in this case S = ∂G  R2; we
investigated propagation from a point p = (0, 0, d ) to itself,
called p to p propagation. An important difference with the
previous section is that the plane is infinite, and hence in
the numerical integration demanded by the calculation of the
coefficients cn a finite region G of the plane must be chosen
that is large enough to introduce only small errors [this is
possible due to the exponential fall off of the hit functions,
(21), with distance from the endpoints]; this procedure is
detailed in Appendix D.

Since the plane is infinite, in considering p to p propa-
gation the only length scale is d , the distance from p to the
plane, therefore no generality is lost if we assume the numer-
ical value d = 1 that we have chosen for simplicity in our
numerical calculations. In Fig. 5 we chose for clarity the in-
terval 0.1 � T � 6 since, as in previous plots, the agreement
improves for larger values of T . One can see that Fig. 5 shows
how the results obtained for the plane have a comparable
degree of accuracy to those found in the sphere. We interpret
this good agreement as indicative that if further levels of
accuracy are calculated in (16) one can obtain a sequence
of approximants that will converge to the desired difference
of propagators. Naturally, since we have considered only three
different cases presented in Figs. 3–5 based on truncation of
(16) we can only consider this as evidence to support our
claimed conjecture.

VII. CONCLUSIONS

In this article we have generalized the so-called “hit
function,” introduced in previous work, to a more general
integral transform of the quantum mechanical propagator:
This n-hit function gives the relative contribution to the kernel
involving propagation between its arguments through n (the
order) intermediate points and contains the full information of
the of the quantum system in question, being indeed a kind
of generalized Green function for the Schrödinger operator
as illustrated by (43). The n-hit function is notionally defined
as a constrained path integral but we have developed vari-
ous formulas, including (Riemann) integral representations,
of this hit function that prescribe how to determine it from
knowledge of the kernel.

We have also presented two ways in which quantum me-
chanical propagators can be constructed from the general hit
function. The first, Eq. (14), is the direct inverse transforma-
tion recovering the unconstrained kernel (that extends to the
case that the hit function is computed for a nontrivial kernel,
i.e., in the presence of a background potential). The second,
outlined in (15) and developed in Secs. II and III, shows
how the hit functions of different orders can be formed into a
series representation of the propagator in localized potentials
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or Dirichlet boundary conditions on different geometries. For
the case of Dirichlet boundary conditions, our method com-
bines nicely with Padé extrapolation allowing us to access
the strong coupling regime of the series representation with
remarkable success. While this has been illustrated for the
case of propagation in the presence of a conducting plate and
in the interior of a conducting spherical shell where we were
able to show close agreement with analytical results obtained
by conventional methods, the approach presented here can be
used to calculate numerically the propagator or heat kernel in
a bounded region with an irregular shape where an analytical
expression is not viable. The proposal we make here could be
considered as outlining a form of perturbative expansion for
application in the strong coupling regime—as illustrated in
(16) this suggestion estimates the kernel as a quotient of ma-
trix determinants involving matrices of increasing size, using
the Padé method to extrapolate to large values of the coupling
parameter so that in this sense this can be considered a nonper-
turbative method based on perturbation theory. We have also
shown that the convergence to this region of parameter space
can be sped up by taking advantage of the (iterated) Shanks
transformation. In Sec. III B we point out that this proposal
can easily be adapted to nonlocalized static potentials of more
general shape. Although we have not provided a general proof
of the scope and validity of the conjecture outlined by (16) and
(19), as such an endeavor lies out of the purpose of the present
work, we have provided an analytical example where this can
be done in one dimension.

As part of the development of this approach to calculating
the kernel we have also presented some general properties
of these hit functions and derived relationships between the
functions in different dimensions and of different order. It is
important to emphasize that these functional relations imply
that knowledge of one hit function (for some order) in one
even- and one odd-dimensional space is, in principle, suf-
ficient to determine all hit functions. To this end we have
supplied the explicit form of all n-hit functions in D = 1 (and
in fact also for D = 3) and calculated the 1-hit function in
D = 2 from which all other hit functions can be determined.
Of course, the difficult parts of the process may be in success-
fully applying the identities of Sec. V to obtain explicitly the
hit functions of different orders in the required dimension and
then compute the appropriate integrals for the geometry of the
system in question.

Before finishing we consider future work and possible
extensions of the results presented here. As discussed above,
especially in the context of our applications to the planar and
spherical geometries in Sec. VI, the generalized hit function
finds a natural application to studies of the Casimir energies
in different geometries based on the first quantized repre-
sentation of the effective action, which make for difficult
calculations using standard techniques except in simple or
special cases. The results of this application will be pub-
lished in a later communication for some Casimir geometries
of phenomenological interest to estimate the vacuum energy
density and Casimir force. We estimate that the numerical
precision we have attained is enough for such applications
at a relatively lower computational cost compared to Monte
Carlo–style simulations [35].

Longer term, other extensions include the incorporation
of internal angular momentum—where the hit function will
distinguish the contribution to the kernel from propagating
modes for different spin degrees of freedom—and the gen-
eralization to relativistic particles and the Minkowski space
path integral which connects to quantum field theory via the
worldline formalism (which would, of course, involve a Wick
rotation of the 0 component of the trajectory embedding).
The hit function approach can also be used in scattering
problems where the effect of a localized potential on an in-
coming particle is to be accounted for, so we believe there
is a possibility of using a relativistic generalization of the hit
function to treat high-energy scattering problems in QFT in an
alternative manner. We would also like to point out that scat-
tering of electromagnetic waves can be investigated using the
presented method. The main difficulty here will be to imple-
ment the correct boundary conditions on the vector potential
A(x, t ) and the transversality of the electromagnetic fields.
The Klein-Gordon propagator can already be obtained from
the nonrelativistic Schrödinger propagator by means of the
worldline formalism through an integral transform [38,39].
Since the approach presented here provides a pathway to
nonperturbative calculations it would be of interest to find out
the scope of validity of this technique.

Yet another application can be found if the hit function
is interpreted within the framework of the heat or diffusion
equation. Here the results of the present paper allow one to
solve the heat equation or the diffusion equation in bounded
regions numerically, a problem of present day relevance in the
study of Brownian motion. We also hope that the method we
have introduced might stimulate interest within the framework
of heat-kernel techniques where it might be of some relevance
in the calculation of Seeley-DeWitt coefficients [41].

In light of the success we have obtained in calculat-
ing point-to-point propagation amplitudes we might use
this method to calculate the density of states ρ(E ) =
1
π

Im
∫

dDx K̂ (x, x; −iE ) for a quantum particle trapped in-
side a cavity and investigate the effects of changes in the
shape of the cavity. For a many particle quantum system, for
instance a quantum gas at finite temperature 1/β, a multipar-
ticle generalization would require the use of the coordinate
multivector {x} = {x1, x2, . . . , xN }; the method outlined here
then would estimate the multiparticle point-to-point prop-
agator K ({x}, {x}; T ) so that the partition function of the
system could be calculated as Z (β ) = ∫ dD{x} K ({x}, {x}; β ).
Its practical use will depend on whether the required integra-
tions can be carried out.

Finally, we allow ourselves to make a more speculative
observation regarding Feynman’s original construction of the
path integral. The classic construction, as expounded in [34],
for example, uses the intuition supplied by the Young’s slits
experiment to motivate dividing propagation into infinitesimal
steps, integrating the intermediate points along the trajectory
over all space. One could interpret the large n limit of the gen-
eralized hit function we define here as a concrete realization
of this splitting procedure, following which the continuum
path integral could be defined as the n → ∞ limit of (14).
Of course, the precise nature in which this limit is determined
requires further analysis to make this interpretation more
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precise but as a first attempt one could consider reproducing
the interference pattern for double slits of finite size using
the n = 1 hit function integrated over a finite volume. It also
follows from this analysis that the n-hit function will be useful
in investigating the quasiclassical evolution of a quantum sys-
tem when the classical trajectory goes through the prescribed
space-time points (z1, τ1), . . . , (zn, τn).
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APPENDIX A: THREE-DIMENSIONAL N-HIT FUNCTION

We outline the calculation of the closed form for the n-
hit function in D = 3. In what follows α, β ∈ C and Re(α) �
0, Re(β ) � 0. Consider first the following integral:∫ ∞

0
exp

(
−αx2 − β

x2

)
dx = 1

2

√
π

α
e−2

√
α
√

β. (A1)

This identity can be proved by changing to the variable
y = √

αx −
√

β

x which renders (A1) in Gaussian form af-
ter using contour integration. Alternatively one may use a
complex Cauchy-Schlömilch transformation in the integrand
by changing variable to ξ = 1

x

√
β√
α

and then use Cauchy’s
theorem to deform the contour so that the ξ integration is
shifted to run on the real axis; finally replacing ξ → x and
averaging both integrals casts the original integral into a
Gaussian integral leading to the r.h.s. of (A1). This result
extends the integral (3.325) in [44] to complex values of α

and β. We have also found it useful to compute the following
integrals:

∫ T

0
exp

(
− α

T − τ
− β

τ

)
dτ√

τ (T − τ )
3
2

=
√

π

αT
e− (

√
α+√

β )2

T , (A2)

∫ T

0
exp

(
− α

T − τ
− β

τ

)
dτ[

τ (T − τ )
] 3

2

=
√

π

T 3

√
α + √

β√
α
√

β
e− (

√
α+√

β )2

T , (A3)

∫ T

0
exp

(
− α

T − τ
− β

τ

)
dτ

τ (T − τ )
= 2

T
K0(2

√
αβ/T )e−(α+β )/T . (A4)

To prove (A2) we change variable to x =
√

τ
T −τ

which re-
duces the problem to (A2) to that of calculating (A1). Finally,
by acting with − ∂

∂β
we can relate (A2) to (A3). Particular

cases of (A1), (A2), and (A3) are found in the Appendix of
[34] when α and β are purely imaginary. One may now solve
the integrals in representation (13) by substituting (11) with
D = 3 and repeated use of (A3). The key point is that D = 3
is special, since it is the only dimension where the τ integral
of the product of two free propagators is again proportional to
a free propagator, this allows one to obtain directly

H0(z1, z2, . . . , zn|y, x; T )

= 1

(4π )
2n+3

2

e− �2

4T

T 3/2

n∏
j=1

⎡⎣�−1
j+1 +

(
j∑

k=1

�k

)−1
⎤⎦, (A5)

which can be simplified down to (21).

APPENDIX B: CONSTRAINED PATH INTEGRAL

In this Appendix we provide two approaches to prove iden-
tity (10). One is based on a path decomposition induced by a
natural proper time interval partition and the other based on
the Fourier representation of Dirac δ-distributions and gener-
ating function techniques.

1. First approach

Given boundary conditions x(0) = x, x(T ) = y a path in-
tegration with an action functional S(0, T ) = ∫ T

0 L dt over all
trajectories that satisfy these boundary conditions can always
be split for any value s such that 0 < s < T as∫ x(T )=y

x(0)=x
Dx e−S[0,T ]

=
∫

dDw

∫ x(s)=w

x(0)=x
Dx e−S(0,s)

∫ x(T )=y

x(s)=w

Dx e−S(s,T ). (B1)

Consider now the identity found in [1,34] for 0 < τ < T∫ x(T )=y

x(0)=x
Dx e−S0(0,T ) δD(x(τ ) − z) = K0(y, z; T − τ )

× K0(z, x; τ ), (B2)

where S0(0, T ) := ∫ T
0 dt ẋ2

4 . Given now a set of ordered proper
times 0 � τ1 � τ2 � · · · � τn � T we can always find a set
S = {sk : 0 � k � n} so that 0 := s0 � τ1 � s1 � τ2 � s2 �
· · · � sn−1 � τn � sn := T and evaluate In by splitting the
[0, T ] interval precisely at each sk , that is,

In =
n∏

k=1

∫
dDwk

∫ x(sk )=wk

x(sk−1 )=wk−1

Dx e−S0[sk−1,sk ] δD[x(τk ) − zk],

(B3)
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where we defined w0 := x,wn := y. Now use (B2) repeatedly
to solve for each term to arrive at

In =
n∏

k=1

∫
dDwk K0(wk, zk ; sk − τk )K0(zk,wk−1; τk − sk−1).

(B4)

The integrations can now be performed directly using the
reproducing kernel property; the result is independent of S
and is in fact (10).

2. Second approach

Here we give a brief proof of the result (9) by explicit eval-
uation of the path integral. Using the Fourier decomposition
of the δ-functions under the integral we can write

In =
n∏

i=1

∫
dDki

(2π )D
ei
∑n

i=1 ki·zi

∫ x(T )=y

x(0)=x
Dx(τ ) e− ∫ T

0 dτ [ ẋ2

4 +i j(τ )·x(τ )],

(B5)

where j(τ ) =∑n
i=1 kiδ(τ − τi ). Completing the square in the

path integral exponent and evaluation of the Gaussian integral

lead to

In = (4πT )−
D
2 e− (x−y)2

4T

n∏
i=1

∫
dDki

(2π )D
e
∑n

i, j=1 ki·k j�i j+i
∑n

i=1 ki·(zi−x̂i ),

(B6)

where �i j := �(τi, τ j ) = 1
2 |τi − τ j | − 1

2 (τi + τ j ) + τiτ j

T is a
“worldline Green function” for the free particle subject to
Dirichlet boundary conditions on [0, T ] and x̂i := x̂(τi ) = x +
(y − x) τi

T is a parametrization of the straight line path between
x and y in time T .

The (Riemann) integrals over the ki are also Gaussian and
evaluate to give

In = (4πT )−
D
2 e− (x−y)2

4T (4π )−
nD
2 det−

D
2 (−�)

× e− 1
4

∑n
i, j=1(zi−x̂i )�−1

i j (z j−x̂ j ). (B7)

To confirm that this coincides with the product of propagators
in (9) we fix the ascending order used throughout the main
text. Then

det(−�) = 1

T

n+1∏
i=1

(τi − τi−1), (B8)

n∑
i, j=1

(zi − x̂i )�
−1
i j (z j − x̂ j ) = (zn − x̂n)2

T − τn
+

n−1∑
i=1

(zi − zi+1 − x̂i+1 + x̂i )2

τi − τi+1
+ (z1 − x̂1)2

τn

= (zn − y)2

T − τn
+

n−1∑
i, j=1

(zi − zi+1)2

τi − τi+1
+ (z1 − x)2

τ1
− (x − y)2

T
. (B9)

Substituting these results into (B7) we recover the product in
(10) for the chosen ordering. For evaluation of a similar path
integral (essentially the Fourier transform of the one presented
here) see [33,50,51].

APPENDIX C: EXACT PROPAGATORS

Here we show how the exact propagators were derived
analytically for the interior region bounded by a spherical
two-dimensional shell in a three-dimensional Euclidean space
and for the half three-dimensional Euclidean space bounded
by a two-plane; these propagators were obtained following the
standard methods of mode summation or spectral decomposi-
tion and the image method, respectively.

1. Propagator inside the sphere

The propagator in question inside the unit sphere satisfies
the Green equation(

∂

∂t
− ∇2

)
K (x, x′; t ) = δ(t )δ3(x − x′), (C1)

along with the Dirichlet boundary conditions

K (x, x′; 0) = δ(x − x′), K (x, x′; t ) = 0, for t < 0,

K (x, x′; t ) = 0 for |x| = 1. (C2)

We solve (C1) using separation of variables, which naturally
leads to the following structure for the solution:

K (x, x′; t ) =
∑
μ,�,m

A�,m,μ(x′)e−μt j�(
√

μr)Y�m(�)θ (t ), (C3)

where � = (θ, φ) are the spherical angle coordinates of x, r =
|x|, j� are the spherical Bessel functions, Y�m are the spherical
harmonics, and the coefficients A�,m,μ(x′) are fixed by the
boundary conditions (C2). First, we notice that necessarily
μ = u2

�,k being u�,k the zeros of j�(r) for k = 1, 2, . . . , there-
fore the values of μ are labeled by the index pair (�, k) A way
to proceed now is to observe that the orthogonality relation∫ 1

0
x2 j�(xu�,k ) j�(xu�,k′ ) dx = δkk′

2
[ j�+1(u�,k )]2 (C4)

implies in turn the completeness relation

δ(r − r′)
r2

= 2
∞∑

k=1

j�(ru�,k ) j�(r′u�,k )

j2
�+1(u�,k )

, (C5)
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which taken together with the completeness relation for the
spherical harmonics (where cos γ = x̂ · x̂′),

∞∑
�=0

�∑
m=−�

Y ∗
�m(�′)Y�m(�) =

∞∑
�=0

2� + 1

4π
P�(cos γ )

= δ(� − �′), (C6)

and setting t = 0 in (C3) yield A�,m,μ(x′) =
Y ∗

�m(�′) j�(r′u�,k )/ j2
�+1(u�,k ), finally

K (x, x′; t ) =
∞∑

�=0

∞∑
k=1

2� + 1

2π

j�(ru�,k ) j�(r′u�,k )

j2
�+1(u�,k )

× P�(cos γ )e−u2
�,kt θ (t ), (C7)

which can be cut off at appropriate values of l and k.

2. Propagator in half space

For the simple geometry of Dirichlet boundary conditions
along an infinite plane the analytic calculation of the kernel
is trivialized by the method of images. Indeed, denoting by
p� the point corresponding to the reflection of p in the plane,
we may write the kernel on the half-space [y and x are on
the same side of the plane, as the image method requires, for
y and x on different sides the Dirichlet boundary conditions
imply K (y, x; T ) = 0]

K (y, x; T ) = K0(y, x; T ) − K0(y�, x; T ), (C8)

which, by construction, vanishes for points y = y� (or, by
symmetry of the kernel x = x�) on the surface of the plane and
satisfies the appropriate Green equation on the half-space. In
a path integral calculation, this result follows from noting that
the contribution from trajectories defined in RD that enter the
forbidden region as they propagate to y are canceled by those
that travel to the image point y�, leaving only those that remain
in the correct half-space (including various reflections off the
plane); see [52] for more information. Our calculation with
the hit function will implement this cancellation by explicitly
excluding paths that penetrate the boundary.

APPENDIX D: SPHERE AND PLANE NUMERICS

The main difficulty in the numerical evaluation of the
coefficients cn in (17) for the three-dimensional case is the
presence of the denominator 1/

∏
i �i in the integrand (17),

since as this is integrated numerically it produces spurious
divergences when adjacent points zi and zi+1 become co-
incident. These divergences are only artificial and they are
easily removed by using an appropriate coordinate system.
This is in general the case; on a sufficiently regular surface
S a coordinate system can always be defined so that all such
spurious divergences disappear. We show how this is attained
in our cases of study and give more details on the numerics
that led to the results reported in Sec. VI.

FIG. 6. Illustration of the coordinate system on the sphere, where
each new vertex zi is described so that the azimuthal direction k̂i goes
through zi+1. The polygonal path starts at the center of the sphere and
ends at a point located at the distance r from the origin.

1. Sphere

To eliminate the spurious divergences in cn−1 we introduce
a coordinate system to evaluate (17), namely,

(−1)n
∫

∂G
d�1 · · ·

∫
∂G

d�n H0(z1, . . . , zn|y, x; T ), (D1)

where d�i is the solid angle measure for the sphere ∂G
parametrized by coordinates for zi. These coordinates are
specified as follows. First let the last point zn have the standard
(θn, φn) spherical coordinates with origin at the center of the
sphere, choosing the orientation for the z (azimuthal) axis so
that the point y = (0, 0, r) lies along it. Next, consider the
point zi for 1 � i � n − 1 and assign it the spherical coor-
dinates (θi, φi ). Again the origin of this ith coordinate system
coincides with the center of the sphere but the azimuthal axis
now goes through zi+1 so that the polar angle θi is actually
measured with respect to the radius that passes through zi.

This has been illustrated in Fig. 6 for n = 3, where the first
choice is made for z3 whose azimuthal axis is k̂3 (in red). Next,
the axis is rotated to the direction k̂2 (in blue) and finally
to k̂1 (in green). The polar coordinates of the point zi are
described with respect to the polar system whose azimuthal
axis is k̂i. This peculiar choice of coordinates allows one to
perform all the φi integrations straightforwardly so that only
the polar integrations over θi remain to be done. These are
greatly simplified through the change of variables

ξi = sin(θi/2), 1 � i � n − 1, ξn = cos θn. (D2)

In particular the lengths of segments and the total length of
the polygonal path become

�1 = 1, �n+1 =
√

1 + r2 − 2rξn, �i = 2ξi,

2 � i � n, � = 1 +
√

1 + r2 − 2rξn + 2
n−1∑
i=1

ξi. (D3)
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In effect we can apply the following substitution rules
when calculating (D1):∫

d�i

�i+1
→ 4π

∫ 1

0
dξi, 1 � i � n − 1,∫

d�n → 2π

∫ 1

−1
dξn. (D4)

These rules simplify greatly the calculation, for example
in the center-center propagation (r = 0) the nth coefficient
becomes

(−λ)n 2

(4πT )3/2

∫ 1

0
dξ1 · · ·

∫ 1

0
dξn−1

(
1 +

n−1∑
i=1

ξi

)
e−(1+∑n−1

i=1 ξi )2/T , (D5)

and the whole series can be calculated analytically as

K (0, 0; T ) = 1

(4πT )3/2
− λ

2

(4πT )3/2
e−1/T

+ λ2 1

(4πT )3/2
T (e−1/T − e−4/T ) + · · · . (D6)

Note that in the general case of center-off-center propagation
the original 2n integrations are reduced to n.

2. Plane

In calculating the terms of the perturbative series (15) for
the half space bounded by a plane the first two terms can
be determined analytically in the case of propagation from a
point p to itself after proper time T has elapsed

K (p, p; T ) = K0(p, p; T ) − λ
1

16πT
erfc(d/

√
T ) + λ2 · · · ,

(D7)

where d is the distance from p to the plane. There is no loss of
generality in taking p = (0, 0, d ) and the plane to be the x-y
plane passing through the origin, numerically we take d = 1.

Higher order terms require numerical integration to be
evaluated, so to that end let us introduce polar coordinates
when integrating over the plane with an origin coincident with

the origin of the original coordinate system. As a first example
consider the λ2 term in (D7), take z1 = (ρ1, φ1) so that the
angle φ1 is measured with respect to the x axis on the plane,
then take z2 = (ρ2, φ2) where now ρ2 is the distance measured
with respect to z1, and the angle φ2 is measured with respect
to radius ρ1 so that

�1 =
√

d2 + ρ2
1 , �2 = ρ2,

(D8)

�3 =
√

ρ2
1 + ρ2

2 − 2ρ1ρ2 cos φ2 + d2,

and the measures on the plane become dσ1 =
ρ1dρ1dφ1, dσ2 = ρ2dρ2dφ2 this choice of coordinates
removes the spurious singularity in the integrand 1/�2 as
ρ2 → 0 simplifying the convergence of numerical integration.
The coordinate φ1 can be integrated over directly resulting
in a 2π factor and a well-behaved integrand. We found
it convenient to introduce a cutoff in the radial distance
being integrated so that in practice ρ1, ρ2 ∈ [0, ρmax], with
ρmax = 20 in calculating c1 and ρmax = 10 in calculating
c2 and c3. Increasing the integration cutoff ρmax produces
numerically identical values within the quadrature accuracy:

c1 = (2π )

(4π )7/2T 3/2

∫ ρmax

0
dρ1

∫ 2π

0
dφ2

∫ ρmax

0
dρ2

× e−�2/4T ρ1�√(
d2 + ρ2

1

)(
d2 + ρ2

1 + ρ2
2 − 2ρ1ρ2 cos φ2

) . (D9)

For n > 2 we must introduce additional points zk . Now,
the procedure is changed by affixing the origin of the polar
coordinate system for point zk at the point zk−1 and measuring
the polar angle φk always with respect to the x axis. For
example, for n = 3 the relevant cancellation occurs because
�2 = ρ2 and �3 = ρ3, and again φ1 can be integrated directly,
resulting in (with � = �1 + �2 + �3 + �4)

c2 = − (2π )

(4π )9/2T 3/2

∫ ρmax

0
dρ1

∫ ρmax

0
dρ2

∫ ρmax

0
dρ3

∫ 2π

0
dφ2

∫ 2π

0
dφ3

× e−�2/4T �ρ1√(
ρ2

1 + d2
)
�4

, (D10)

where now

�4 =
√

ρ2
1 + ρ2

2 + ρ2
3 − 2ρ1(ρ2 cos φ2 + ρ3 cos φ3) + 2ρ2ρ3 cos(φ2 − φ3). (D11)

3. Error estimation

To assess the total error we made a simple estimate using
the fact that the sequence of Padé-Shanks approximations for
all our cases of study in seen to be alternating around the
analytical answer (this behavior of course can be observed
even if the analytical answer is unknown), a rough estimate
is given by the Leibniz criterion as the difference of the last
two approximations

ε(T ) = |S2(T ) − S1(T )|/|S2(T )|. (D12)

The relative error given by ε goes from 0.7%, in the regions
where it overestimates the actual deviation, to about 5% in the
regions where it is a good measure of the deviation; it stays
about 3% − 4% in a consistent manner throughout the inter-
mediate regions. We can conclude that ε overestimates the
main source of systematic error in our numerical calculations
since the quadrature error εQ is usually much smaller. It is also
worth noting that the precision in the results obtained by this
method is mostly greater than the estimate ε, as evidenced by
Figs. 3–5 and is expected to improve if more coefficients cn

are calculated and taken into account.
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APPENDIX E: PADÉ APPROXIMANTS
AND SHANKS TRANSFORMATION

Padé approximants are a sequence {PM
N } of rational func-

tions that approximate in a certain sense a given function
f (x). In the main text this function is the quantum mechanical
kernel. These rational functions are written as the quotient
of polynomials PM

N (x) := PM (x)/QN (x) of orders M and N ,
respectively. If the function f (x) is analytic and has a Taylor
series f (x) =∑∞

n=0 cnxn, then the functions PM
N are con-

structed so that their Taylor series matches up to order M + N
with that of f :

PM
N (x) = c0 + c1x + c2x2 + · · · + cM+N xM+N + O(xM+N+1).

(E1)

This requirement, along with the normalization

PM
N (x) :=

∑M
i=0 aixi

1 +∑N
j=1 b jx j

, (E2)

uniquely determines the coefficients ai and b j through a linear
system of equations that can be solved using Cramer’s rule;
the result is well known in the literature [49]:

PM
N (x) =

∣∣∣∣∣∣∣∣
xNϕM−N xN−1ϕM−N+1 · · · ϕM

cM−N+1 cM−N+2 · · · cM+1
...

...
...

...

cM cM+1 · · · cM+N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xN xN−1 · · · 1

cM−N+1 cM−N+2 · · · cM+1
...

...
...

...

cM cM+1 · · · cM+N

∣∣∣∣∣∣∣∣
, (E3)

where ϕL :=∑L
p=0 cpxp. In the main text this method is ap-

plied to the Taylor expansion of the kernel given in (15).
In general if we are looking for the value f (∞) the limit

limx→∞ PM
N (x) will be zero if N > M and divergent if N < M,

but the idea was put forward in [42] that M = N produces
a finite limit that can be used to approximate f (∞) for a
certain class of functions f . The ensuing subsequence of ap-
proximants PN

N (x) are called the diagonal Padé approximants.
This is the underpinning idea in proposing (16), whose strong

coupling limit we estimate by a sequence of Padé approxi-
mants determined in terms of integrals of the hit function.

Shanks transformation

Given an infinite sequence {αn} that converges to α =
limn→∞ αn the convergence oftentimes behaves asymptoti-
cally in the large n limit as

αn ∼ α + Zqn, |q| < 1, as n → ∞, (E4)

for some constants Z, q. Given this hypothesis the first-order
Shanks transformation [49] consists of the solution for a
numerical estimator S for the limiting value of the sequence
α, the idea is to replace ∼ by = above and demand that the
estimator S satisfies the linear system

αn+1 = S + Zqn+1,

αn = S + Zqn, (E5)
αn−1 = S + Zqn−1.

The estimator found by solving this system is itself a sequence
{S (αn)} that relates nonlinearly to the original sequence {αn}
and is called the (first-order) Shanks transformation of {αn}:

S (αn) := αn+1αn−1 − α2
n

αn+1 + αn−1 − 2αn
. (E6)

The Shanks transformation is useful because it often con-
verges faster than the original sequence. When only a limited
number of terms in the sequence are available it is often
necessary to iterate the Shanks transformation to hasten con-
vergence, for example, S (S (αn)) is the second iteration. In
the numerical calculations presented in Sec. VI we have used
the first and second iteration, S1 and S2, to show how the
numerical results obtained are already significantly improved.
We point out that to use the Shanks transformation in this
manner we need to calculate the coefficients at least up to the
term λ4 in (15). We should also point out that the validity of
this method rests upon the hypothesis (E4) which can fail in
some situations, it is nevertheless possible to lend support to
the validity of this hypothesis if enough numerical data are
available or if a theoretical arguments allow for its justifi-
cation. Both the Padé extrapolation method and the Shanks
transformation-based acceleration of convergence are usually
validated post hoc based on their rates of convergence and
their numerical self-consistency; many more details can be
found, e.g., in chapter 8 of [49].
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