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Thermodynamic properties of argon from Monte Carlo simulations using ab initio potentials
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Ten different thermodynamic properties of the noble gas argon in the liquid and supercritical regions were
obtained from semiclassical Monte Carlo simulations in the isothermal-isobaric ensemble using ab initio
potentials for the two-body and nonadditive three-body interactions. Our results for the density and speed of
sound agree with the most accurate experimental data for argon almost within the uncertainty of these data, a
level of agreement unprecedented for many-particle simulations. This demonstrates the high predictive but yet
unexploited power of ab initio potentials in the field of molecular modeling and simulation for thermodynamic
properties of fluids.
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I. INTRODUCTION

Noble gases are the most important model substances for
theory of thermophysical properties of fluids. Because of their
monatomic structure and spherical symmetry, it is possible
to apply essentially exact statistical-mechanical theories in
combination with accurate models for interatomic interactions
for the calculation of their properties. Among the noble gases,
argon is the most well studied concerning thermodynamic
properties.

Molecular simulations for argon with accurate empirical or
ab initio potentials were conducted by Huber and coworkers
[1–3], Anta et al. [4], Deiters and coworkers [5,6], Nasrabad
and Laghaei [7], Bukowski and Szalewicz [8], Sadus and
coworkers [9–14], Malijevský and Malijevský [15], Pahl et al.
[16], and Deiters and Sadus [17,18]. Mostly, the vapor-
liquid equilibrium was examined by the Gibbs ensemble
method [4–10,13,18]. Sometimes, single-phase thermody-
namic properties [7,8,12,14,15,17], transport coefficients [1],
structural properties [1,3,8], or the solid-liquid equilibrium
[2,11,16,18] were investigated. These studies revealed that
nonadditive three-body interactions yield significant con-
tributions to the vapor-liquid equilibrium and single-phase
properties. However, the results remained qualitative and de-
viate from accurate experimental data by several percent or
more. The simulations often suffered from finite-size effects
due to small particle numbers, poor statistics due to short
simulation runs, and crude models for nonadditive three-body
interactions, such as the Axilrod-Teller-Muto (ATM) potential
[19,20] if an explicit three-body model was considered at all.

Traditionally, molecular simulations have also been ham-
pered by the unavailability of a systematic and complete
statistical-mechanical theory for calculating all thermody-
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namic properties. Lustig devised such a theory for the
microcanonical and canonical ensembles [21–27]. We re-
cently extended Lustig’s work to the isothermal-isobaric
ensemble [28]. Its main advantage over isochoric ensem-
bles is that the expressions for thermodynamic properties
contain only combinations of the enthalpy and volume but
no volume derivatives of the enthalpy. To evaluate volume
derivatives, derivatives of the potential with respect to the
interparticle separations are required. Thus, avoiding volume
derivatives reduces the implementation effort and improves
the computational efficiency. As the first major application
of our extension of Lustig’s work, we demonstrate the trans-
formative performance of this approach in combination with
state-of-the-art ab initio potentials and semiclassically consid-
ered nuclear quantum effects by Monte Carlo simulations of
liquid and supercritical argon that are extremely precise and
essentially free of finite-size effects.

This article is organized as follows. Section II describes
the potential models used in the simulations. Section III pro-
vides the equations for the calculation of the thermodynamic
properties in the isothermal-isobaric ensemble, and Sec. IV
summarizes details of our Monte Carlo simulations. The re-
sults of our simulations are reported and discussed in Sec. V.
Conclusions and recommendations for future work are pre-
sented in Sec. VI.

II. POTENTIAL MODELS

In our simulations, the total interaction potential V of the
system is based on the exact many-body expansion

V =
N∑

i< j

vi j +
N∑

i< j<k

�vi jk +
N∑

i< j<k<l

�vi jkl + · · · , (1)

where N is the number of particles, vi j denotes the pair
potential between particles i and j, �vi jk is the nonadditive
three-body potential between particles i, j, and k, and so forth.
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The nonadditive three-body potential �vi jk is defined as

�vi jk = vi jk − vi j − vik − v jk, (2)

where vi jk denotes the total interaction potential of three
particles. Since Eq. (1) converges rapidly in simple atomic
or molecular fluids and because the computational effort in-
creases dramatically with each new term in the expansion, we
only considered two-body and nonadditive three-body inter-
actions.

For the pair interactions, we used the highly accurate ab
initio potential of Jäger et al. [29],

v2B(r) =A exp
(
a1r + a2r2 + a−1r−1 + a−2r−2

)
−

8∑
n=3

C2n

r2n

(
1 − exp(−br)

2n∑
k=0

(br)k

k!

)
, (3)

where r is the separation between two argon atoms, and A,
a1, a2, a−1, a−2, b, and C2n are parameters given in the
original publication. Jäger et al. fitted the analytical poten-
tial function to interaction energies obtained from high-level
quantum-chemical ab initio calculations. Since the analytical
pair potential function exhibits a spurious maximum at a very
small, thermally unreachable separation, hard spheres with a
radius of 1.8 Å were placed on the atoms to avoid sampling of
this unphysical region of the potential.

We accounted for nuclear quantum effects semiclassically
by adding Feynman-Hibbs (FH) corrections [30] to the pair
potential. For spherical particles, such as argon atoms, the
second-order correction is given by

vFH(r, T ) = h̄2

12mkBT

[
∂2v2B(r)

∂r2
+ 2

r

∂v2B(r)

∂r

]
, (4)

where m is the mass of a particle, kB is the Boltzmann con-
stant, h̄ is Planck’s constant divided by 2π , and T denotes
temperature. Since the correction is inversely proportional to
T , its influence increases with decreasing temperature. Test
simulations verified that the fourth-order correction can be
safely neglected. Vogel et al. [31] showed that second density,
acoustic, and dielectric virial coefficients and the viscosity and
thermal conductivity in the zero-density limit calculated with
the pair potential of Jäger et al. and corrections for quantum
effects agree excellently with the most accurate experimental
data.

To account for nonadditive three-body interactions, we
again used an ab initio potential of Jäger et al. [32]. Their po-
tential is represented as a sum of an exponential contribution,
�v

exp
3B , and of a damped third-order dispersion contribution,

�v
disp
3B . The exponential part is given by

�v
exp
3B (r12, r23, r31)

=
k1+k2+k3�6∑
0�k1�k2�k3

Ak1k2k3 exp[−αk1k2k3 (r12 + r23 + r31)]

× P[Pk1 (cos θ1)Pk2 (cos θ2)Pk3 (cos θ3)], (5)

where ri j is the separation between atoms i and j, θi is the
interior angle at atom i in the triangle formed by the three
atoms, the operator P sums over all six permutations of the
interior angles, and Pk denotes the Legendre polynomial of

order k. The dispersion contribution is represented by

�v
disp
3B (r12, r23, r31)

=
3∑

l1 ,l2 ,l3=1
l1+l2+l3�6

′ D(βl1l2l3 , r12, r23, r31)W (3)
l1l2l3

Z (3)
l1l2l3

, (6)

where the prime indicates that the summation omits the term
(l1l2l3) = (123) and its permutations. The damping functions
D are defined as

D(βl1l2l3 , r12, r23, r31)

= D(βl1l2l3 , r12)D(βl1l2l3 , r23)D(βl1l2l3 , r31), (7)

where the factors on the right-hand side are Tang-Toennies
damping functions [33]:

D(βl1l2l3 , ri j ) = 1 − exp(−βl1l2l3 ri j )

n
l1 l2 l3
i j∑
n=0

(βl1l2l3 ri j )n

n!
. (8)

Here nl1l2l3
i j is the inverse power to which ri j is raised in the

function W (3)
l1l2l3

. The first summand on the right-hand side of
Eq. (6) with l1 = l2 = l3 = 1 is the triple-dipole term given by

W (3)
111 = 3(r12r23r31)−3(1 + 3 cos θ1 cos θ2 cos θ3). (9)

Except for a numerical prefactor, W (3)
111 corresponds to the

simple ATM model [19,20]. The other functions W (3)
l1l2l3

and the
numerical values of the parameters of the potential, Ak1k2k3 ,
αk1k2k3 , βl1l2l3 , and Z (3)

l1l2l3
(56 parameters in total), are given

in Ref. [32]. Jäger et al. [32] showed that the third virial
coefficient of argon can be determined quantitatively only
if the ab initio nonadditive three-body potential is included.
Considering the pair potential and its FH correction alone is
insufficient.

Jäger et al. [32,34] also developed a seventh-order virial
equation of state (VEOS) based on the above-mentioned po-
tential models. This VEOS agrees very well with experimental
data for the density and speed of sound of argon in the gas
region and a part of the supercritical region where the VEOS is
sufficiently converged, thus providing additional confirmation
of the high quality of the pair and nonadditive three-body
potentials developed by Jäger et al. [29,32]. At a few state
points, we also tested the more recent ab initio nonadditive
three-body potential of Cencek et al. [35].

We performed the Monte Carlo simulations at three differ-
ent levels of sophistication. In the first model, 2B, solely the
ab initio pair potential of Jäger et al. [29] was used. In the
second model, 2B+3B, the ab initio nonadditive three-body
potential of Jäger et al. [32] was added to the pair potential.
In the third model, 2B+FH+3B, additional quantum effects
were taken into account semiclassically through the second-
order FH correction to the pair potential. In a fourth model,
2B+FH+3B/C, the ab initio potential of Cencek et al. [35]
was used to account for nonadditive three-body interactions.

III. EQUATIONS FOR THERMODYNAMIC PROPERTIES

Our Monte Carlo simulations were carried out in the
isothermal-isobaric ensemble, in which the number of par-
ticles N , the pressure p, and the temperature T are the
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independent variables. In the following, we provide a brief
summary of the equations employed for the calculation of
thermodynamic properties in this work. A detailed derivation
of these equations can be found in our previous work [28].

In the NpT ensemble, the Gibbs energy G is the thermo-
dynamic potential. It is related to the partition function of the
NpT ensemble

Z (N, p, T ) = N

N! h3N

∞∫
0

∫∫
e−β(E+pV )V −1 dpN drN dV

(10)
by

G = −kBT ln Z (N, p, T ) = −β−1 ln Z (N, p, β ). (11)

In these equations, h is the Planck constant, E is the internal
energy of the system, V is the volume, dpN and drN represent
3N-fold integrations over the momenta and coordinates of the
particles, and β = 1/kBT is introduced as an abbreviation.
For a systematic representation of thermodynamic properties,
phase-space functions

Zmn = 1

Z

∂m+nZ

∂βm∂ pn
, m, n = 0, 1, 2, . . . , (12)

are introduced, which are related to derivatives of the parti-
tion function Z with respect to temperature and pressure. In
this work, the density ρ, enthalpy H , isobaric heat capacity
Cp, isochoric heat capacity CV , isobaric expansion coefficient
αp, isochoric pressure coefficient γV , isothermal compress-
ibility βT , isentropic compressibility βS , speed of sound w,
and Joule-Thomson coefficient μJT were calculated. The ex-
pressions for the density, enthalpy, isobaric heat capacity,
isochoric heat capacity, isobaric expansion coefficient, and
isothermal compressibility in terms of phase-space functions
read

ρ = −βN

Z01
, (13)

H = −Z10, (14)

Cp = kBβ2(Z20 − Z2
10

)
, (15)

CV = kB

{
β2

(
Z20 − Z2

10

) − [Z01 − β(Z11 − Z10Z01)]2

Z02 − Z2
01

}
,

(16)

αp = kBβ

Z01
[Z01 − β(Z11 − Z10Z01)], (17)

βT = −Z02 − Z2
01

Z01
. (18)

When these properties are known, the thermal pressure co-
efficient γV = αp/βT , the isentropic compressibility βS =
βT CV /Cp, the speed of sound w = (V/NMβS )1/2 with the
molar mass of krypton M = 83.798 kg kmol−1, and the
Joule-Thomson coefficient μJT = V (T αp − 1)/Cp can be cal-
culated. The phase-space functions required in Eqs. (13)
to (18) are given in Table I. In simulations with models
2B+FH+3B and 2B+FH+3B/C, the phase-space functions
ZTDP

mn for temperature-dependent potentials were applied.

IV. SIMULATION PROTOCOL

The simulations were performed in the isothermal-isobaric
ensemble using the Metropolis algorithm [36] as described in
our previous work [28]. Depending on the number of particles,
they were either initiated from a face-centered, body-centered,
or simple cubic lattice and carried out in a cubic box under
periodic boundary conditions and the minimum image con-
vention. The Markov chain was divided into cycles consisting
of N trials each. On average, one volume change and N − 1
particle displacements were attempted per cycle. The type
of move was selected randomly to fulfill detailed balance.
The maximum particle displacement and volume change were
adjusted during the simulation such that the acceptance ratio
for both types of moves was approximately 50%. In all simu-
lations, the cutoff radius was set to half the box length. After
an equilibration phase of 105 cycles, the production phase of
each simulation extended over 107 cycles.

The three-body contribution was set to zero if the separa-
tion between one pair of particles in a triplet was smaller than
2.25 Å because its relative contribution in this range becomes
negligible. To reduce the computational cost for the evaluation
of the nonadditive three-body potentials, three-dimensional
interpolation tables with the separations between two pairs
of argon atoms and the enclosed angle as independent vari-
ables were applied. The grid consisted of 600 points in each
dimension and extended from 2.25 Å to the cutoff radius of
the potentials. Interpolation was performed using a multivari-
ate cubic Lagrange interpolation scheme. Relative differences
between values calculated with the analytical potentials and

TABLE I. Explicit expressions for phase-space functions Zmn and ZTDP
mn up to second order for ordinary and temperature-dependent

potentials, respectively, in the N pT ensemble. Angular brackets denote ensemble averages, and U is the potential energy.

Z10 = − 3N
2 β−1 − 〈U + pV 〉

Z20 = 3N
2

(
3N
2 + 1

)
β−2 + 3Nβ−1〈U + pV 〉 + 〈(U + pV )2〉

Z01 = −β〈V 〉
Z02 = β2〈V 2〉
Z11 = (

3N
2 − 1

)〈V 〉 + β〈(U + pV )V 〉
ZTDP

10 = − 3N
2 β−1 − 〈

U (β ) + β
∂U (β )

∂β
+ pV

〉
ZTDP

20 = 3N
2

(
3N
2 + 1

)
β−2 + 3Nβ−1

〈
U (β ) + β

∂U (β )
∂β

+ pV
〉 + 〈(

U (β ) + β
∂U (β )

∂β
+ pV

)2〉 − 〈
2 ∂U (β )

∂β
+ β

∂2U (β )
∂β2

〉
ZTDP

11 = (
3N
2 − 1

)〈V 〉 + β
〈(

U (β ) + β
∂U (β )

∂β
+ pV

)
V

〉
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the interpolation tables were typically less than 0.5 parts per
million. Even with these performance improvements, one sim-
ulation run with 500 particles and model 2B+FH+3B still
required about 40 days on a 28-core compute node.

The contributions of interactions between particles beyond
the cutoff radius to the total pair interaction potential were
calculated as described by Allen and Tildesley [37] using
an interpolation table to avoid having to recompute the cut-
off correction after each volume change. Depending on the
model, the correction was applied to the pair potential either
with or without the FH correction. Since the contribution of
nonadditive three-body interactions is much smaller than that
of two-body interactions and because the three-body potential
decays rapidly with increasing separations between the atoms,
the long-range correction to the nonadditive three-body po-
tential was neglected. Moreover, the latter correction vanishes
when we extrapolate the results for thermodynamic properties
obtained by simulations with different particle numbers into
the thermodynamic limit.

V. RESULTS AND DISCUSSION

Simulations were carried out along the liquid isotherm
100 K between 1 and 68 MPa and at the supercritical isotherm
300 K from 10 to 100 MPa at six state points for each
isotherm. Since the system remained in a solid state at 100 K
when the simulation was initiated from a lattice configu-
ration, the system was melted with a short simulation at
400 K before proceeding with the equilibration phase. As it
was the aim to simulate properties of macroscopic systems,
simulations with 64, 80, 108, 128, 160, 216, 256, and 500
particles for the models 2B and 2B+FH+3B were performed
at each state point, and the results were extrapolated into the
thermodynamic limit, i.e., to an infinite number of particles.
The extrapolated values for the properties were obtained by
a weighted linear least-squares fit to the results of the sim-
ulations as a function of the inverse number of particles.
With models 2B+3B and 2B+FH+3B/C, simulations were
only performed at the lowest and highest pressures on both
isotherms. In each simulation, we calculated the density ρ,
specific enthalpy h, specific isochoric heat capacity cV , spe-
cific isobaric heat capacity cp, thermal pressure coefficient γV ,
thermal expansion coefficient αp, isothermal compressibility
βT , isentropic compressibility βS , Joule-Thomson coefficient
μJT, and speed of sound w by applying the equations given
in Sec. III. We note that for argon most of these properties
have never been simulated before with explicit consideration
of three-body interactions.

The uncertainty in the results of a simulation was de-
termined by the block average method. Subsequently, the
extrapolated values and their uncertainties were determined
by the Monte Carlo method proposed in Supplement 1 to the
“Guide to the Expression of Uncertainty in Measurement”
(GUM) [38]. In this work, all uncertainties are reported as
expanded uncertainties (coverage factor k = 2). To illustrate
the extrapolation of the simulation results into the thermody-
namic limit, Fig. 1 exemplarily shows results for the density
at (300 K, 10 MPa) and (100 K, 68 MPa) for models 2B,
2B+3B, and 2B+FH+3B as a function of the inverse particle

FIG. 1. Results of the Monte Carlo simulations and extrapolated
values in the thermodynamic limit for the density at (a) (300 K,
10 MPa) and (b) (100 K, 68 MPa) for models 2B, 2B+3B, and
2B+FH+3B vs the inverse particle number. Solid lines represent
linear fits to the data.

number. Figures showing the extrapolation of all properties at
both simulated isotherms are provided in the Supplemental
Material [39]. At (300 K, 10 MPa), the density decreases
linearly into the thermodynamic limit; i.e., linear fits provide
a good representation of the data. The extrapolated value for
model 2B+FH+3B agrees with the reference equation of
state by Tegeler et al. [40] for argon (TEOS) within 0.0063%
and with the VEOS within 0.0031%, which is well within
the simulation uncertainty. Since the VEOS is also based on
model 2B+FH+3B, this level of agreement verifies that our
Monte Carlo algorithm was implemented correctly.

At (100 K, 68 MPa) near the freezing line, the situation
is more complicated. Densities obtained from the simulations
with small particle numbers, e.g., with 64, 80, and 108 par-
ticles for model 2B+FH+3B, are up to 7.9% higher than
those obtained with large particle numbers. The higher results
for small particle numbers show that the system was at least
partially solid. Therefore, the extrapolation was performed
only with the results for larger particle numbers.

The extrapolated simulation results for all properties for
model 2B+FH+3B at all simulated state points are reported
in Tables II and III. The results for models 2B, 2B+3B and
2B+FH+3B/C are provided in the Supplemental Material
[39]. Figure 2 depicts relative deviations of the results for
the density, isochoric heat capacity, and speed of sound for
models 2B, 2B+3B, and 2B+FH+3B from the TEOS. Simi-
lar deviation plots for the other properties are also provided
in the Supplemental Material. At 100 K, the nonadditive
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TABLE II. Results for thermodynamic properties of argon at the isotherm 100 K obtained with model 2B+FH+3B. Numbers in
parentheses represent expanded statistical uncertainties (coverage factor k = 2) in the rightmost digits of the value.

p/MPa 1 10 20 30 50 68

ρ/kg m−3 1316.52(20) 1349.35(19) 1379.40(17) 1405.29(16) 1448.22(15) 1480.45(14)
h/kJ kg−1 −103.576(23) −100.073(23) −95.784(22) −91.285(22) −81.808(23) −72.992(25)
cV /kJ (kg K)−1 0.4993(5) 0.5101(5) 0.5205(6) 0.5301(7) 0.5465(8) 0.5597(10)
cp/kJ (kg K)−1 1.149(7) 1.101(7) 1.065(6) 1.037(6) 0.997(6) 0.975(6)
γV /MPa K−1 1.6682(32) 1.8054(38) 1.9290(45) 2.035(5) 2.207(7) 2.340(8)
αp/K−1 0.005130(48) 0.004419(39) 0.003895(34) 0.003504(30) 0.002957(26) 0.002624(25)
βT /MPa−1 0.003075(25) 0.002447(18) 0.002020(14) 0.001722(11) 0.001339(8) 0.001121(7)
βS/MPa−1 0.0013366(38) 0.0011336(28) 0.0009870(23) 0.0008797(20) 0.0007342(16) 0.0006435(14)
w/m s−1 753.7(10) 808.3(10) 856.8(10) 899.1(10) 969.5(10) 1024.2(11)
μJT/K MPa−1 −0.322(5) −0.375(5) −0.4152(49) −0.4453(47) −0.4876(48) −0.5118(48)

three-body interactions yield the largest contribution to the
three properties near the vapor-liquid phase boundary. They
reduce ρ by up to 7.1%, cV by up to 6.4%, and w by up to
13%. The FH correction contributes up to −0.72%, −2.2%,
and −1.2%, respectively. At 300 K, the contribution of the
nonadditive three-body interactions increases with pressure,
but it is smaller than at 100 K. It amounts to up to −3.3%
for ρ, up to −1.2% for cV , and up to −0.77% for w. The FH
correction contributes up to 0.15% to ρ, up to 0.21% to cV , and
up to 0.12% to w. These results demonstrate that nonadditive
three-body interactions and corrections for quantum effects
are essential for extracting thermodynamic properties with
low uncertainties from simulations with ab initio potentials.
In order to compare our results for model 2B+FH+3B with
the most accurate experimental data and the TEOS, Fig. 3
depicts relative deviations from the TEOS with higher reso-
lution. Also shown are relative deviations of the experimental
data of Gilgen et al. (uncertainty: 0.015–0.02%) [41], Klimeck
et al. (uncertainty: 0.02%) [42], and Michels et al. (uncer-
tainty: 0.10–0.15%) [43] for ρ and of Estrada-Alexanders and
Trusler (uncertainty: 0.001–0.007%) [44], Streett and Con-
stantino (uncertainty: 0.2%) [45], Thoen et al. (uncertainty:
0.07%) [46], and Meier and Kabelac (uncertainty: 0.014%)
[47] for w.

Our results for ρ have uncertainties between 0.009% and
0.016%. At 100 K below 12 MPa, they agree with the TEOS
within 0.005% and within 0.023% at higher pressures. At
300 K, the two data points at 10 and 20 MPa agree with the

TEOS within 0.009%, but at higher pressures the deviations
increase and reach 0.06% at 100 MPa. The data at low pres-
sures also agree with the experimental data of Gilgen et al.
and Klimeck et al. within their uncertainty. The experimental
data of Michels et al. at 300 K are up to 0.1% higher than our
values.

Since there are no low-uncertainty experimental data for
the isochoric heat capacity, we compare our results only with
the TEOS. The results for cV at 100 K have uncertainties
of 0.10–0.17% and agree with the TEOS within 0.62%. At
300 K, the uncertainty is less than 0.02%, and the data agree
with the TEOS within 0.06%. This agreement is well within
the rather high uncertainty of the TEOS.

Our results for the speed of sound have an uncertainty of at
most 0.14% and agree with the TEOS within 0.3% at 100 K
and within 0.08% at 300 K. At 300 K, our results almost
coincide with the data of Estrada-Alexanders and Trusler and
the data of Meier and Kabelac at 10, 20, 40, and 80 MPa.
The values at 60 and 100 MPa deviate by −0.06% from the
data of Meier and Kabelac, but the agreement is within our
uncertainties. At 100 K, our results agree well with the data
of Thoen et al., but are up to 0.3% higher than those of Streett
and Constantino.

Our results for ρ obtained with model 2B+FH+3B/C
deviate by up to −0.13% from those for model 2B+FH+3B,
whereas for cV and w the two models are consistent within
their uncertainties.

TABLE III. Results for thermodynamic properties of argon at the isotherm 300 K obtained with model 2B+FH+3B. Numbers in
parentheses represent expanded statistical uncertainties (coverage factor k = 2) in the rightmost digits of the value.

p/MPa 10 20 40 60 80 100

ρ/kg m−3 167.592(25) 335.81(5) 599.97(10) 766.90(10) 880.28(10) 964.26(9)
h/kJ kg−1 137.977(11) 123.166(14) 108.067(19) 105.915(18) 109.447(18) 115.745(17)
cV /kJ (kg K)−1 0.329051(46) 0.341642(33) 0.35716(5) 0.36869(6) 0.37920(7) 0.38880(8)
cp/kJ (kg K)−1 0.6478(7) 0.7581(12) 0.8251(15) 0.8111(14) 0.7896(14) 0.7760(13)
γV /MPa K−1 0.041665(15) 0.098808(31) 0.23244(9) 0.35876(15) 0.46995(21) 0.56842(28)
αp/K−1 0.004272(9) 0.004717(13) 0.004026(13) 0.003152(10) 0.002562(8) 0.002189(7)
βT /MPa−1 0.10254(23) 0.04774(12) 0.01732(5) 0.008785(26) 0.005452(16) 0.003851(11)
βS/MPa−1 0.05208(6) 0.021516(25) 0.007497(10) 0.003993(5) 0.0026182(34) 0.0019297(25)
w/m s−1 338.42(20) 372.02(22) 471.53(32) 571.46(37) 658.73(43) 733.13(47)
μJT/K MPa−1 2.596(23) 1.631(12) 0.420(7) −0.0875(49) −0.3328(40) −0.4588(35)
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FIG. 2. Relative deviations of our results for the density, isochoric heat capacity, and speed of sound for models 2B, 2B+3B, and
2B+FH+3B at 100 and 300 K from the TEOS as a function of pressure p (a)–(f).

VI. CONCLUSIONS

In summary, our results for model 2B+FH+3B agree with
the TEOS and the most accurate experimental data for the
density and speed of sound within our low uncertainty, thus
demonstrating that it is possible to determine thermodynamic
properties of noble gases by Monte Carlo simulations using

state-of-the-art ab initio potentials with an uncertainty com-
parable to that achieved by the most accurate experimental
techniques.

There are several points worth recommending for the accu-
rate determination of thermodynamic properties of fluids by
Monte Carlo simulations in future work. First, the rigorous
expressions for thermodynamic properties in the simulated

FIG. 3. Relative deviations of our results for model 2B+FH+3B and experimental data from the literature for the density, isochoric heat
capacity, and speed of sound at 100 and 300 K from the TEOS as a function of pressure p (a)–(f).

064129-6



THERMODYNAMIC PROPERTIES OF ARGON FROM MONTE … PHYSICAL REVIEW E 105, 064129 (2022)

ensemble derived using the Lustig methodology should be
applied. When computationally expensive ab initio two-body
and nonadditive three-body potentials are employed to model
the interactions between the particles, the isothermal-isobaric
ensemble is particularly advantageous because the expres-
sions for the properties contain no volume derivatives of the
enthalpy.

Second, if ab initio two-body and nonadditive three-body
potentials describe the second and third virial coefficients of a
noble gas accurately, they are also capable of predicting very
accurate values of all thermodynamic properties in a large
part of the fluid region. Nonadditive three-body interactions
and quantum effects yield significant contributions to ther-
modynamic properties in the liquid and supercritical regions.
Nonadditive three-body interactions contribute the most near
the vapor-liquid phase boundary, while quantum effects must
especially be accounted for at low temperatures.

Third, to obtain properties of macroscopic systems, a series
of simulations with several particle numbers must be carried
out at each state point. The results of the simulations must be
extrapolated into the thermodynamic limit.

Fourth, the uncertainty of the potentials must in principle
also be taken into account in the uncertainty estimate for a
property. Because it was the aim of this work to demonstrate
the capability of the Lustig methodolgy in combination with
ab initio potentials and not yet to generate reference data with
well-defined uncertainties for argon, this contribution to the
uncertainty was outside the scope of this work.

Finally, it is straightforward to extend the procedure de-
veloped here to fluids consisting of rigid linear and nonlinear
molecules using ab initio potentials. Nonrigid molecules
would usually require a full quantum formulation of statistical
mechanics instead of a classical or semiclassical formulation
as applied in this work.
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