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We study the near-equilibrium critical dynamics of the O(3) nonlinear sigma model describing isotropic
antiferromagnets with a nonconserved order parameter reversibly coupled to the conserved total magnetization.
To calculate response and correlation functions, we set up a description in terms of Langevin stochastic equa-
tions of motion, and their corresponding Janssen—De Dominicis response functional. We find that in equilibrium,
the dynamics is well-separated from the statics, at least to one-loop order in a perturbative treatment with
respect to the static and dynamical nonlinearities. Since the static nonlinear sigma model must be analyzed
in a dimensional d = 2 + ¢ expansion about its lower critical dimension d). = 2, whereas the dynamical mode-
coupling terms are governed by the upper critical dimension d. = 4, a simultaneous perturbative dimensional
expansion is not feasible, and the reversible critical dynamics for this model cannot be accessed at the static
critical renormalization group fixed point. However, in the coexistence limit addressing the long-wavelength
properties of the low-temperature ordered phase, we can perform an € = 4 — d expansion near d... This yields
anomalous scaling features induced by the massless Goldstone modes, namely subdiffusive relaxation for the
conserved magnetization density with asymptotic scaling exponent zr = d — 2, which may be observable in
neutron scattering experiments. Intriguingly, if initialized near the critical point, the renormalization group
flow for the effective dynamical exponents recovers their universal critical values z. = d/2 in an intermediate

crossover region.
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I. INTRODUCTION

The universal scaling behavior near critical points and in
low-temperature ordered phases with spontaneously broken
continuous symmetries has been studied extensively in both
equilibrium thermal as well as quantum systems since the
1960s. Many different powerful methods have been devel-
oped, most prominently Monte Carlo computer simulations
and renormalization group (RG) analysis, carried out either
perturbatively analytically (see, for example, Refs. [1-3]) or
nonperturbatively numerically (e.g., Refs. [4-6]); we also note
the recently developed “conformal bootstrap” approach [7-9].

Yet for systems driven away from thermal equilibrium,
more complicated and intriguing issues arise. It is well
known that systems in the same static equilibrium univer-
sality class may in fact display distinct universal dynamic
scaling features. O(n)-symmetric magnetic systems consti-
tute a paradigmatic example: The associated order parameter
may either freely relax to equilibrium or be constrained by a
strict conservation law for the total magnetization, whence the
magnetization density relaxes diffusively. These two different
variants are described by the relaxational models A and B
in Hohenberg and Halperin’s classification [10]. In addition
to purely relaxational kinetics, the order parameter may be
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reversibly dynamically coupled to other conserved modes (cf.,
models E, G, and J).

To distinguish different dynamic universality classes near
equilibrium, a distinct critical exponent, the dynamic scaling
exponent z > 1, was introduced to capture the phenomenon of
critical slowing down of a critical system’s kinetics [11,12].
As this term implies, near a critical point the order parameter
is governed by slow algebraic relaxation rather than the stan-
dard exponential decay with finite characteristic relaxation
time #,. This power-law behavior can be described by a scaling
law for the relaxation time ¢, ~ &%, where & ~ |T — T.|™"
(v > 0) denotes the diverging correlation length of the system;
or equivalently by the leading wave-vector dependence of the
order-parameter damping coefficient D(g) ~ |g|* that deter-
mines the peak linewidth in the associated scattering cross
section.

One important historical approach to theoretically clas-
sify dynamic universal behavior was mode-coupling theory,
wherein reversible dynamical coupling terms were added
to the relaxation dynamics, and the resulting stochastic
equations of motion subsequently solved by means of a
Hartree-Fock-like self-consistent factorization approxima-
tion. This methodology was originally proposed by Fixman
for binary fluids [13], and was later reformulated by Kadanoff
and Swift [14] and Kawasaki, who also extended this treat-
ment to magnetic systems [15—17]. In a theory incorporating
dynamical mode-coupling terms, the order parameter is cou-
pled to other slow hydrodynamic modes, which originate from
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conservation laws, during the system’s relaxation. For ex-
ample, in the still purely relaxational models C/D, a static
coupling term between a real scalar field and the order param-
eter is introduced into the Hamiltonian to keep the total energy
conserved [10,18-20]. Furthermore, when the conserved
modes correspond to specific order-parameter symmetries,
additional reversible dynamical terms can be introduced via
the Lie algebra Poisson brackets between the order parameter
and the conserved modes [19-26].

In this work, we utilize the field-theoretic perturbative
dynamical renormalization group approach to study the near-
equilibrium relaxation dynamics of the antiferromagnetic
O(3) nonlinear sigma model with conserved total magnetiza-
tion. We specifically account for the reversible hydrodynamic
mode couplings between the conserved magnetization density
fields and the nonconserved staggered magnetization serving
as the order parameter for the continuous para- to antiferro-
magnetic phase transition. For magnetic systems, these purely
dynamical contributions originate from the microscopic spin
precession in the local effective field. In an antiferromag-
netically ordered phase, in contrast with purely relaxational
kinetics, the mode coupling of the staggered magnetiza-
tion to the conserved standard magnetization density causes
the emergence of propagating spin-wave modes (magnons)
with linear dispersion w(g) = c |g| and quadratic wave-vector
dependence of the damping D(q) ~ ¢*> [see Eq. (20) be-
low]. At T = T, strong order-parameter fluctuations induce
the critical damping D(gq) ~ A(g) ~ |g|* for both the order
parameter and the magnetization densities, with the well-
established dynamic critical exponent z. = d /2 in dimensions
2 <d < d. = 4, which represents the upper critical dimen-
sion for this model G dynamical universality class [10,19,20].
This exponent value differs markedly from the corresponding
mean-field values zp = 2 and the purely relaxational model A
result z. = 2 + ¢’ n, where 1 denotes the static Fisher critical
exponent 7, and ¢’ is a universal constant. These classical re-
sults have been amply confirmed experimentally, e.g., perhaps
most convincingly in neutron scattering experiments for the
isotropic antiferromagnet RbMnF3 [27] as well as in detailed
numerical simulations, for example in Refs. [28-30].

In thermal equilibrium, the O(n) nonlinear sigma model
represents a paradigmatic field theory to describe ferro-
magnetic or antiferromagnetic systems exhibiting rotational
symmetry in order-parameter space [31,32]. It exhibits spon-
taneous symmetry breaking and a continuous phase transition
at a critical temperature 7., and its static thermodynamic
critical properties are well-established to be in the same
universality class as the O(n)-symmetric Landau-Ginzburg-
Wilson ¢* theory in equilibrium. Out of equilibrium, the
O(n) nonlinear sigma model has to our knowledge only been
studied under the restrictive assumption of purely relaxational
(model A) dynamics. In 1980, Bausch, Janssen, and Yamazaki
calculated the associated dynamical critical exponent z and
compared it with the corresponding scaling exponent of the re-
laxational O(n)-symmetric Landau-Ginzburg-Wilson theory
[33]. Only comparatively recently in 2006, Fedorenko and
Trimper evaluated the critical aging scaling behavior for the
purely relaxational O(7n) nonlinear sigma model with a non-
conserved order parameter [34]; not surprisingly, it belongs to
the model A universality class. Although the O(n)-symmetric

Landau-Ginzburg-Wilson model with mode-coupling terms
has been widely studied in the literature (for overviews, see
Refs. [19,20]), the O(n) nonlinear sigma model with nondis-
sipative reversible mode-mode couplings appears not to have
drawn similar attention.

In this paper, we couple the three-component non-
conserved staggered magnetization order parameter of the
nonlinear sigma model to the conserved magnetization density
vector field. We employ coupled Langevin-type stochastic
partial differential equations to describe the dynamics of this
system, and we construct the associated Janssen—De Domini-
cis functional [35-37]. In the resulting field theory framework,
we apply the standard transverse fluctuation loop expansion to
perturbatively compute the model’s dynamical response func-
tions to the first nontrivial order in the nonlinear couplings.
Indeed, to one-loop order, the dynamics cleanly separates
from the statics, and in the low-frequency limit v — 0, we
properly recover the static susceptibilities. However, it turns
out that the ordinary dimensional d = 2 + ¢ expansion about
the lower critical dimension d). = 2 that captures the nonlin-
ear sigma model’s universal static critical properties is not
capable of accessing the critical dynamics in the presence of
reversible mode couplings.

Hence we turn our attention to the ordered-phase or coexis-
tence fixed point; to this end, we tune the effective temperature
to zero and employ an € = 4 — d expansion scheme near the
dynamical upper critical dimension d. = 4 to retrieve the uni-
versal dynamical scaling behavior in the coexistence regime.
Solving the one-loop RG flow equations, we find that the
dynamical scaling exponents for both the order parameter and
for the magnetization density flow to the same fixed point
values as in the Sasvari-Schwabl-Szépfalusy (SSS) model
[38]. Hence we obtain Gaussian dynamical scaling exponents
zp =2 and z; =2 for the order parameter and transverse
magnetization components, implying a mean-field form for
the ensuing spin-wave dispersion, but our results remarkably
yield anomalous subdiffusive relaxation for the longitudinal
magnetization density, described by zr = d — 2. This result
indicates that the O(n) nonlinear sigma model with conserved
total magnetization belongs to the same dynamical universal-
ity class as the SSS model. Intriguingly, although the critical
regime is conceptually not approachable with an € expansion
near the upper critical dimension d, = 4, the numerical solu-
tions of the near-critical RG flow equations initially approach
the known critical values, recovering the dynamic critical
exponent z. = d/2, before they ultimately cross over to their
asymptotic scaling behavior at the ordered-phase coexistence
fixed point.

The paper is organized as follows: In the following sec-
tion, we introduce the near-equilibrium dynamics of the
antiferromagnetic nonlinear sigma model with conserved total
magnetization, properly incorporating the crucial nondissipa-
tive mode coupling terms. We formulate the coupled Langevin
stochastic equations for the order parameter and the mag-
netization density, construct the corresponding Janssen—De
Dominicis functional, and utilize this formalism to derive
the explicit one-loop expressions for the dynamic response
functions. In Sec. III, we discuss the ensuing scaling behav-
ior of the model near its RG fixed points. We argue that
the critical fixed point is not reachable in this perturbative

064128-2



CRITICAL DYNAMICS OF THE ANTIFERROMAGNETIC ...

PHYSICAL REVIEW E 105, 064128 (2022)

approach. Subsequently, we present a thorough scaling analy-
sis via the dimensionally regularized perturbative RG method
near the ordered phase or coexistence fixed point. We numer-
ically solve the resulting RG flow equations and compare our
findings with the SSS model, and we discuss relevant exper-
imental consequences. We conclude with a brief summary
and outlook. The Appendixes contain additional pertinent
technical details for the one-loop perturbative analysis. They
also address the feasibility of the critical dynamics of the
nonlinear sigma model with conserved total energy as well
as a conserved order-parameter field.

II. NONLINEAR SIGMA MODEL WITH CONSERVED
TOTAL MAGNETIZATION

In this section, we introduce the near-equilibrium dynam-
ics of the O(3)-symmetric antiferromagnetic nonlinear sigma
model with conserved total magnetization. Its time evolution
subject to random thermal fluctuations is described by ap-
propriate coupled generalized Langevin equations, and the
corresponding Janssen—De Dominicis response field theory
functional that encodes this stochastic nonlinear dynamics.
We employ dynamic perturbation theory to derive explicit
results for the dynamic response functions to one-loop order in
the fluctuation expansion with respect to the transverse modes.
The ensuing dynamic scaling behavior will be discussed in the
next section.

A. Dynamics with conserved total magnetization

We consider a rotationally symmetric three-component an-
tiferromagnet described by the O(3) nonlinear sigma model
with the coarse-grained mesoscopic Hamiltonian [31]

H[7] = /ddx[g(Vﬁ(x))z —ha], (1)

where 7i(x) = (77 (x), o (x)) denotes the staggered magnetiza-
tion vector that serves as order parameter for an antiferromag-
net, and the constraint 7% = 1 is imposed at all locations x. p
represents the order-parameter stiffness, and 4 is a (fictitious)
external conjugate thermodynamic field pointed along the
direction of o. (Note that positions x, and later the correspond-
ing wave vectors and momenta p, are d-dimensional spatial

J

vectors. We drop their vector labels so as not to confuse them
with the three-component vector fields in order-parameter
space.)

To describe the interaction of the antiferromagnet with the
conserved total magnetization, we introduce the magnetiza-
tion density M (x, t) in the Hamiltonian (1),

HIM, 7] = / d”fx[iﬂ(x)2 + L ovii )y — ho:|, )
2x 2

where x denotes the static magnetic susceptibility. The con-
servation of the total magnetization is intimately related to the
underlying O(3) invariance for the order parameter. Indeed,
M is the generator of the rotational symmetry, and hence it
satisfies the standard angular momentum Lie algebra Poisson
brackets

{My(x), Mg(»)} = —€ap, M, (x) 8V (x — y),
{My(x), ng(»)} = —€apy, n, (x) 8V (x — y),

where «, 8,y = 1,2, 3, and Einstein’s summation rule over

repeated indices is implemented (unless otherwise specified).
Generalized Langevin equations for “slow” modes ¢ with

respect to an effective Hamiltonian H[¢] take the form

3)

; o OH
¢ ={¢,H} —D@V) o0 +, “)
where a = 0, 2 corresponds to nonconserved and conserved
relaxation dynamics, respectively, D denotes the relaxation
rate or diffusion constant, and 5 represents Gaussian stochas-
tic noise. With the Hamiltonian (2) and Poisson brackets
(3), the following coupled Langevin dynamics of the anti-
ferromagnetic order parameter 7i and the rescaled conserved
magnetization density m = M /./px ensue [10,20]:

i = cii x VZi+ A Vi + 7,

. L 4)

ii=—cixm+DNV%i+h)+¢C.
Here

c=+/p/x, u=kgT/p (6)

are the spin-wave velocity and scaled effective temperature,
and h = p h.7j(x, t) and Z(x, t) represent independent additive
Gaussian white noise terms with vanishing means (7j) = 0 =
(Z‘ ) and the second moments

(e Cx1, 1) Mp(x2, 1)) = =20 845 8(t1 — 1) V28D (x) — x2),

(7)
(o (X1, 11) £p(x2, 12)) = 2DUBop 8ty — 1) 8V (i — x2).
The corresponding Janssen—De Dominicis response functional becomes [35,39,40]
Al fig, My, ny] = /dt dx [ (8, — AV g + i (3 — DV )y + ¢ €upy (fig ng my, — fitg ng V2n,,)
+ Mg Vg — Duiiy fig], 8)
and the probability distribution P[m, 1] for any specific configuration my, (x, ), ny(x, t) is
Plin, ii] o 8(i*> — 1) f Dliity, ifig] €A lewMeone, )

As a consequence of the stringent local constraint 7i(x, #)> = 1, only two components of the three-dimensional order-parameter
field 7i = (7, o) are independent, while the third one is completely determined, o> = 1 — 2. One may thus integrate out the
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“longitudinal” o mode and only consider the “transverse” 7 fluctuations. To properly implement the constraint in the ensuing

stochastic dynamics, one also needs to impose the noise field for the order parameter Z tobe perpendicular to the instantaneous

order parameter itself. In the framework of the associated Janssen—De Dominicis functional, this implies 7i,n, = 0 [33,34].
Deep in the ordered phase, the transverse Goldstone mode fluctuations 7> should be small, and one may expand

=72
a:x/l—ﬁzzl—%—i—O(n‘l),

1
= —Fmi/ 1 — 72 = —Fm — 57%,-71,-7?2 + 0

(where i = 1, 2), which allows the elimination of the o component and the associated & field. The resulting Janssen—De
Dominicis functional becomes A = Ay, 4+ Ajy with

(10)

.Ah = / [ﬁ1,-(8, — )va)m,' + 7713(8; — sz)m3 — Céijﬁ’,‘m]‘ + ceijnﬁ,-szr_,- — Cil El‘jﬁ’liﬂj
t,x

+ (8, — DV? 4 Dh)mr; — Dut;dt; + au iy Vi + Tuis Vi + O()] (11)
and

TT;TT, ~
At = / [;(al DV? + Dh)f[)2 — Du(ﬁ'ﬁl’i)z + c€;ftimims — CG,‘jﬂlﬂTivijj
t,x

€ N € i i
— ceij () mim; + % #m;i? — CT] (V)i + TJ ViR + O )} (12)

where f, - = [dtd--- andi, j k=1,2.

A cutoff in the 7% expansion naturally introduces explicit symmetry breaking and manifestly leaves us in the ordered phase
region, which is governed by a so-called coexistence RG fixed point [41]. The explicit symmetry breaking induces anisotropy
for the different order-parameter components. In anticipation of different renormalizations for the transverse and longitudinal
components of the conserved magnetization, we thus introduce a distinct diffusivity I for the m3; component of the magnetization
density. Yet this explicit symmetry breaking is expected to be resolved by the RG flow upon approaching the critical point, where
one should recover I' = A.

B. Dynamic response functions

To retrieve the dynamical response functions for our model, we introduce source terms to 7 and M in the Hamiltonian (2),
HoliT, 7] = / d4x(p Jim; + ¢ MyHy), (13)
wherei = 1,2 and o = 1, 2, 3. The thus induced source terms in the Janssen—De Dominicis functional are

CE€;
Ay = /[AmVH+I‘m3V2H3 DJ; — cinzeijmid; + c€jid; — 2”~Jn — cejitimiHs

+C(ﬁkﬂk)€ij7'[,'Hj+C€,'jﬁ',‘Hj — CTUﬁ',HT[ ce,-jn"i,-ij3 +CEl'jl’;l,'Hle3 —crh3eijmiHj+0(n4)]. (14)

With the usual definition of the dynamical response functions

8{ri(x, 1))s
Xij(x, t5x 1) = M ,
' 8J; (X", 1) 1y—o.s=0 (1)
S{mi(x, 1)) 8 s 1))s
Ry, 120, 1y = 2050 D) Ry, py = S ) ,
SH;(x', 1) |py—0,5=0 SH3(X', 1) |p—o,5=0

and the probability distribution given by the Janssen—De Dominicis functional, one may express the response functions in terms
of the correlation functions in the field theory,

Xij(x, 151, 1") = D(mi(x, )7 ;(x', 1)) + ¢ € (mi(x, DImam (3, 1)) — ¢ e (mi(x, Dmge(x', 1))
+ 5 € miCe, DI 1) + 0,
Rij(x, t;0', 1) = =& (mi(x, OV, (X, 1)) — c e j(mi(x, O)mmm] (', 1)) + %ekj (m(x, [ 721, 1))
— cerj (miCx, DAEm3] (X', 1) + ¢ e (miCx, Dlzm] (X, 1)) = ¢ e (miCx, DR 1) + O™,

Ry(x,t;x',1') = =T (m3(x, ) Vi3 (X', 1)) + c € (ma (x, lim1(x, 1)) + ¢ € (m3 (x, D771, 1)) + O(h).  (16)
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We note that the correlation functions with subscript s are calculated in the presence of external source terms, while the
correlation functions without subscripts are calculated without external sources.

We have evaluated the dynamical response functions to one-loop order with respect to the transverse fields, which correspond

to a first-order perturbation in the effective temperature u for the statics and the parameter u ¢> for dynamical quantities. By

means of a Dyson equation resummation of the one-loop order results, the dynamical susceptibilities can be written in the

following compact form [38]:

Xij(p, @) = 8ij x (p, 0)[1 +

110]

iw
Rij(p, ®) = 8;jR(p,0)| 1 + — . , (17)
1y ) = 0Rip )[ —io + A(p, ®) + C(p, w)*/[—iw + A(p, w)]}
Ay(p, @)
R(p,w) = .L§
—iw + Ay(p, w)
some additional computation details can be found in Appendix A. Here we have used the static susceptibilities
1 1
0O)=——=|1-u| ——= |, R(pPp,0)=1, 18
x(p,0) p2+h[ /kk2+h} (. 0) (18)
with [, -+ = [---d%/(27?), and we introduced the abbreviations

C(p, ) =c<p2+ﬁ>1/2[1 - E/L} A(p, ) = AP,
k

2 k2 +h

u 1

A(p, ) = D (p* +h) [1——

iw —T(p —k)* — Ak? ]
] 9

D Ji k2 + h[—iw+iwy (k) + T(p — k)] [—iw + iow_(k) + T'(p — k)?

[k* — (p — k)*liw — Ak* — D(p — k)* — Dh]

Ay(p,w) =Tp* — 2C2u/

v K2+ ) [(p— k) — hllo — 04 (k) — o (p — k)]

liw — AM(p — k)* — Dhl[iw — A% — A(p — k)*] + 22 (K2 + h)

) 19
“ o —o_ (k) - wi(p—O)lw —o_(k) —o_(p — bl[w — vy (k) —o_(p— k)] 19
with the Gaussian (mean-field) spin-wave dispersion relation
) N 5 1 8
wi(p) = —%[(D +A) p* + Dh] + \/cz (P*+h) - Z[(D — A) p?> + Dh]>. (20)

In the limit @ — 0, the static response functions are recov-
ered. Thus, the dynamics is cleanly separable from the statics.
From the results (19), we also see that in comparison with the
SSS model in the ordered phase [38], all contributions from
transverse magnetization fluctuations are absent, as a result of
the truncated 72 expansion.

III. DIMENSIONAL ¢ EXPANSION
AND SCALING PROPERTIES

In this section, we will implement the dimensional € expan-
sion to approach the scaling behavior near RG fixed points.
We start by explaining why a straightforward d = 2 4 ¢ ex-
pansion as appropriate for the static behavior of the nonlinear
sigma model fails to capture its dynamics in the vicinity of
the critical fixed point. We then explore the dynamical scaling
behavior at the ordered “coexistence” phase fixed point with
an € =4 — d expansion near the model’s dynamical upper
critical dimension, and subsequently we discuss the intriguing
crossover features of the ensuing RG flows.

(

A. Failure of the (static) 2 + ¢ expansion
at the critical fixed point

In the static nonlinear sigma model, it is well known that
perturbatively the transverse fluctuation loops scale according
to 72 ocu ~ T and consequently the & = d — 2 expansion
corresponds to a low-temperature expansion about the critical
temperature 7, = 0 in two dimensions. The effective temper-
ature u has scaling dimension ¢, which suggests it is marginal
near the model’s lower critical dimension dj. = 2. Therefore,
the standard procedure to perturbatively access the critical be-
havior of the nonlinear sigma model relies on an & expansion
near d;. = 2. However, the effective dynamical coupling for
the reversible mode-coupling terms is c?u, as can be inferred
from Eq. (19). Its naive scaling dimension is [c?u] = 4 — d,
resulting in a dynamical upper critical dimension d, = 4.

At dimension d = 2 + ¢, we have [c?u] = 2 — &, which is
relevant in the infrared scaling regime, and hence will tend
to infinity under RG scale transformations near dj. = 2. If
instead we start near the upper critical dimension d, = 4,
setting d = 4 — €, the scaling dimension of the static expan-
sion parameter u becomes € — 2, which is irrelevant in the
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infrared. Yet in the static nonlinear sigma model, information
about the asymptotic infrared scaling behavior is extracted
from an ultraviolet-stable RG fixed point that controls the
short-distance divergences for d > dj. = 2. For the static ul-
traviolet fixed point, near dimension d. = 4, however, the
parameter u becomes relevant. Thus, a standard, straightfor-
ward truncation over 72 o u is improper as the corresponding
perturbative expansion diverges near d. = 4, and it cannot be
controlled at that static fixed point. To properly retrieve the
scaling information near the ultraviolet RG fixed point near
dimension d. = 4, we would need to apply a resummation of
all diagrams related to the 7> expansion, which appears to be
unfeasible with currently available tools.

In conclusion, in stark contrast with its counterpart with
purely relaxational kinetics, the dynamical critical behavior
of the nonlinear sigma model with reversible mode-coupling
terms cannot be simultaneously analyzed along with the static
critical properties by means of a perturbative dimensional
expansion either near dj. = 2 ord,. = 4.

B. Scaling behavior near the ordered phase
coexistence fixed point

In the low-temperature phase with spontaneously broken
rotational symmetry O(n), the vectorial order parameter sep-
arates into an “Anderson-Higgs” mode o and n — 1 massless
Goldstone modes 7. We note, though, that the Higgs mode
appears massive only in the mean-field (Gaussian) approx-
imation, and below d. = 4 it is rendered massless too as a
consequence of its coupling to the strong transverse fluctua-
tions [41-45]. In an infinite system, the massless Goldstone
modes induce universal static and dynamic scaling behav-
ior that is distinct from the critical scaling properties. This
coexistence limit is captured in the RG treatment by an
infrared-stable zero-temperature coexistence fixed point. We
thus anticipate novel universal scaling behavior for the mass-
less Goldstone modes as well as the conserved magnetization
density component that is dynamically coupled to the trans-
verse order-parameter fluctuations. In the following, we study
the scaling behavior of the antiferromagnetic nonlinear sigma
model with reversible mode couplings near this ordered phase
fixed point.

To reach the coexistence fixed point, we need to tune
the effective temperature # — 0 and work in a dimensional
€ =4 — d expansion near the upper critical dimension d, =
4. However, since ¢? also scales as we approach the fixed
point, and the effective dynamical mode coupling parameter
& = c>u becomes marginal near four dimensions, we need to
keep g fixed when we set u = 0. In this low-temperature co-
existence regime, we define the multiplicative renormalization
Z factors that are to absorb the ensuing ultraviolet divergences
as follows:

Dr = ZpD, g =Zur, Tgr=2T,

B i 2D

S =ZeFAI N, cp=2Z.Pu
where @ labels an arbitrary momentum scale at
which this renormalization is carried out, and A,; =

'3 —d/2)/2¢7'n?/? is a geometric factor. Our choice
of the normalization point, which only must reside outside

the infrared-singular region, lies at h=0, p=0, and

C(p, w)/R(p,0)x(p, 0) = cu [38].
To one-loop order, the Z factors can then be inferred from
the explicit expressions (19), which yields

L =Z,=Z.=1,

_ —€/2

f A c?

Zr=14+ —— 1 ,
Ty e (YT U e

A€ 2 —€/2

Zo =1+ foAap - c 7

1+v e (T + D) + )2
(22)

where for convenience we have defined the dimensionless
ratios of relaxation times w, v and the effective mode coupling
strength f as

f=4g/Dr. (23)

The scale-dependent anomalous dimensions (Wilson’s RG
flow functions) thus follow as

w=D/A, v=DJT,

d AR a0
=pu—| In—=pu—1| InZ, =0,
& Mauonk uauonx
a gfg ad
ng M@OIHEZ—G—FMﬁOang:—E,
d | Y 0
ir=u—| In— = u—| InZp
oulg T o |
2 —(1+€/2)
:——fR wR+(l+ CR ) y
2(1 4+ wg) Drig
Z O | 1o Dr InZ
D= po—| IN— = U-—| InZp
oulg D oo

CR

2
_ Ik [1 +
1+ v (Tr + Dg)(Tg + Ag)

These anomalous dimensions enter the fundamental RG
equations for the correlation and vertex functions as well as
dynamical susceptibilities, which capture the behavior of the
model under the change of renormalization scales [20,46,47].
One may then invoke the method of characteristics to solve
the RG partial differential equations. By introducing the flow
parameter (/) = pul, the RG equations can be separated into
a set of coupled first-order differential flow equations. Though
we seem to require many parameters, they are not completely
independent from each other, and in the end we merely need
the following four independent flow equations to describe the
entire RG flow of the system:

—(14€/2)
] .(24)

df(l

! _j;(z = Br() = f() [&,(1) — &p(l) — ¢r (D],
() _
l o, = -2,

dD(l) dr(l)
l——=DWop), [——= =T, 25

where the dependence of the RG zeta functions on the flow
parameter / stems from the /-dependence of all the parameters
on the right-hand side of Egs. (24). In terms of the anoma-
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lous dimensions, the scale-dependent effective dynamical
exponents can be defined via

a)=2, zwr)=24+¢ ), z2p(l)=2+p(). (26)

Since the transverse magnetization diffusivity A acquires no
fluctuation correction at one-loop order, the dynamic exponent
for the perpendicular direction of the magnetization density
retains its Gaussian value z; = 2, indicating standard diffusive
relaxation.

The flow equation for the renormalized spin-wave speed is
immediately solved by c(I) = ¢(1)/] with ¢(1) = cg. Conse-
quently, three distinct fixed points affect the RG flows:

(i) The Gaussian fixed point f% =0 with mean-field
dynamic scaling exponents zp =z, = zr = 2 is infrared-
unstable (in the f direction) below the upper critical
dimension d. = 4, but it governs the ultraviolet region for
large / > 100.

(i1) Setting cg = 0, we obtain the (quasi)critical fixed point,
albeit with the Anderson-Higgs mode “frozen”: In contrast
with the Landau-Ginzburg-Wilson Hamiltonian, the nonlin-
ear sigma model does not permit independent longitudinal
fluctuations in the o field. Equations (24) reduce to ¢r =
—fr/2, ¢{p = —fr/(1 + vg), and the existence of a nontriv-
ial, finite mode coupling fixed point 0 < f* < oo requires
the square bracket in the RG beta function By to vanish,
which implies —¢f — ¢ = —¢; = €. The dimensionless re-
laxation timescale ratio v is governed by the beta function
By = v(¢p — ¢r), implying for v* > 0 strong dynamic scaling
with ¢y = ¢} = —e/2. This leads to the one-loop fixed point
values v} = land f = €,andz. =2 — €/2 = d /2. Note that
these correspond to the critical fixed point of the n-component
SSS model (with strong dynamic scaling) v} =2n — 3 and
f¥ = €[19,20,26] for n = 2, i.e., effectively the planar model
E [48], not the three-component model G applicable to the
critical dynamics of isotropic Heisenberg antiferromagnets
[21,48,49]. This reflects the suppressed longitudinal o fluc-
tuations, but since the dynamical critical exponent is in fact
independent of n, the system appears to recover the correct
critical scaling properties.

(iii) Finally for c(1) = cg > 0, the RG flows asymptot-
ically reach the coexistence fixed point as / — 0, which
governs the universal scaling behavior in the ordered phase at
long wavelengths and low frequencies. With c(/) = ¢(1)/] —
oo, we have {r = —frwgr/[2(1 + wg)] and ¢p = 0. Conse-
quently v} = 0, whereas wg assumes a nonuniversal value that
is determined by the initial conditions of the RG flow. A non-
trivial RG fixed point value 0 < f,* < oo now requires —¢f =
€, whence the modified effective mode coupling strength f =
frwg/(1 + wg) must assume the universal fixed point value
f* = 2¢. The original mode coupling strength fz, however,
approaches nonuniversal limiting values as / — 0. For the
associated effective dynamic scaling exponents, we obtain in
the coexistence regime
ir=2—€e=d—-2. 27)

p =2, =2,

We remark that at the upper critical dimension d. = 4, the
longitudinal magnetization density would acquire mere loga-
rithmic corrections to its mean-field diffusive relaxation. Near
four dimensions, therefore, the crossover to the asymptotic

scaling exponent becomes quite slow, as demonstrated in
Fig. 11 in Appendix C.

For the relaxation coefficients D(/), I'(l) and the associ-
ated effective dynamical exponents, we numerically solve the
coupled set of flow equations (25) in three dimensions (d = 3,
i.e., ¢ = 1). (In Appendix C, for illustration we depict the RG
flow at d = 3.9 or € = 0.1, where the perturbation expansion
is more assuredly applicable.) The ensuing RG flow for the
mode-coupling strength f with different initial values for ¢(1)
is shown in Fig. 1. Note that while the initial value was set
to f(1) = 1, the RG flow was run both towards the ultraviolet
regime (large /) as well as the infrared region [ — O that is
relevant herein. We plot the resulting flows of the effective
dynamic exponents zp (/) and zp (/) with different initial con-
ditions in Figs. 2—4. The RG flows with small initial values
c(1) depicted in Figs. 1-3 indeed approach this (quasi)critical
fixed point at intermediate scales, but ultimately depart from
it, since c¢(/) = ¢(1)/l becomes large in the infrared regime
I < 1.

The explicit numerical solutions of the coupled RG flow
equations shown in the figures for d = 3 (¢ = 1) confirm the
above stability and scaling analysis near the three distinct
RG fixed points. For I — 0, both scale-dependent effective
dynamical exponents zp(/) (Fig. 2) and zr (/) (Fig. 3) flow
to their ordered phase fixed point values zp = 2 and zr = 1.
Thus, both dynamical exponents of the transverse compo-
nents of the order parameter and magnetization density are
Zp = 7z = 2 in the coexistence limit, indicating purely diffu-
sive behavior. In contrast, the dynamical scaling exponent of
the longitudinal magnetization density zr acquires nontrivial
fluctuation corrections and anomalous, subdiffusive relax-
ation: m3 decouples from the perpendicular components of the
magnetization density, but its coupling to the transverse order-
parameter fluctuations, i.e., the massless Goldstone modes,
yields zr = d — 2, implying linear scaling in three dimen-
sions. These findings are consistent with the corresponding
analysis of the SSS model in the ordered phase [38]. In ad-
dition, for small initial c(1) values, the RG flows remarkably
recover the correct critical dynamical exponent. Although we
know that we cannot truly capture the critical regime of the
nonlinear sigma model within the ¢ = 4 — d expansion about
the dynamical upper critical dimension, in both Figs. 2 and
3 we observe a brief crossover region towards the critical
value zp = zr = d/2 for ¢(1) < 1. For RG flows initialized
with larger c(1) > 1, Fig. 4 shows that the crossover to the
(quasi)critical regime diminishes gradually and finally dis-
appears. For sufficiently large c(1), the RG flow directly
connects the ultraviolet-stable Gaussian fixed point to the
infrared-stable ordered phase coexistence fixed point.

Even though the nonlinear sigma model and the SSS model
are in the same universality class and acquire the same anoma-
lous dynamical scaling behavior in the coexistence limit, we
emphasize again that the underlying mechanisms differ. In the
SSS model, the mass of the Anderson-Higgs mode o flows
to infinity under the RG transformations, and the longitu-
dinal order-parameter fluctuations hence ultimately become
suppressed. In the nonlinear sigma model, in contrast, the
magnitude of the order parameter is rigidly fixed. Thus, we
can only consider the Goldstone mode 7 fluctuations, whereas
longitudinal fluctuations are determined by the constraint.
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-------- ¢(1)=1000
1.5} c(1)=100
c(1)=10

107 0.01 100

¢(1)=0.01

c(1)=1
c(1)=0.1
-------- ¢(1)=0.01

107 10% 0.1 100 10°

(©)

FIG. 1. RG flow of the effective mode-coupling strength f(/)
with initial values f(1) =1, D(1) =3, ') =1, M(1) =rg =1,
and different initial values for ¢(1) as indicated, in d = 3 dimensions,
i.e., fore = 1. Forlarge c(1) > 1 (a), one observes a direct crossover
from the unstable Gaussian to the stable coexistence fixed point as
| — 0 (all three curves essentially coincide). For small ¢(1) < 1 (b),
the RG flow first runs into the critical fixed point f = ¢, but even-
tually also approaches the asymptotic coexistence regime describing
the scaling properties in the ordered phase. Whereas f approaches
a nonuniversal value in the coexistence limit, the effective modified
mode coupling f = wf/(1 + w) — 2¢ universally for arbitrary ini-
tial flow conditions (c).

Near the ordered phase fixed point, the system is almost
frozen and the nonlinear sigma model shows asymptotic scal-
ing properties identical to those of the SSS model. Yet away
from the coexistence fixed point, the RG flows for the various
dynamical parameters of these two different models can be
quite different.

We conclude this discussion with a schematic diagram of
one possible scan across |¢g| in the temperature—wave-number

N = = S

107 10% 0.1 100 10°

N

F R H R R NN
g o N o © © &

107 104 0.1 100 10°
(b)

FIG. 2. RG flow of the effective dynamical exponent zp (/) for
the relaxation of the transverse order-parameter components 7, with
initial conditions f(1) = 1,D(1) =3,T'(1) = 1,A(1) = A¢ = 1,and
various (small) values of ¢(1) = 1,0.1,0.01, for e =1 (d = 3). In
(a), the flow parameter [ has been rescaled by the initial value c(1)? to
collapse the curves near their approach, as [ — 0, to the coexistence
RG fixed point that governs the low-temperature ordered phase. In
(b), in contrast, the graphs for the same data collapse near the initial
Gaussian RG fixed point. Both at the Gaussian and coexistence fixed
points, zp = 2; whereas at the critical RG fixed point, zp = d/2.

space in Fig. 5, say in an appropriate (neutron) scattering ex-
periment, which actually corresponds to the RG flow explored
above. If we follow the vertical line in the figure, starting in
the ordered region for 7' < T, with large momentum |g| and
subsequently decreasing the wave number, we first observe
a crossover behavior from the short-distance Gaussian fixed
point to critical scaling behavior in the region where |g|§ ~ 1.
Upon further decreasing |g|, one reaches the ordered phase co-
existence scaling region and ultimately detects the crossover
from the critical regime to the asymptotic coexistence fixed
point. Deep in the antiferromagnetically ordered phase, and at
long wavelengths ¢ — 0, after traversing the crossover region
with nontrivial scaling behavior, the spin waves originating
from the coupled transverse order-parameter fields (Goldstone
modes) and transverse magnetization components will be de-
scribed asymptotically by the mean-field dispersion relation
(20) with ballistic propagation ~c|gq| and quadratic damp-
ing D(q) ~ A(g) ~ ¢*, albeit with renormalized amplitudes
c, D, A — CR, DR, )"R-

However, its nonlinear dynamical coupling to the Gold-
stone modes induces anomalous scaling properties for the lon-
gitudinal component mj of the conserved magnetization den-
sity field, namely the subdiffusive wave-vector dependence
of the associated damping coefficient I'(¢) ~ |g|*" = |g|¢~>
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FIG. 3. RG flow of the effective dynamical exponent zr-(/) of the
longitudinal component of the magnetization density m3 ind = 3 di-
mensions, with initial values f(1)=1,D(1) =3, '(1) =1, A(1) =
Az =1, and c(1) as indicated, plotted vs the flow parameter [/c(1)?
in (a), and vs / in (b) to demonstrate data collapse in the vicinity
of the coexistence and Gaussian fixed points, respectively. At the
critical RG fixed point, zr = d/2; in the ordered phase (I — 0), the
longitudinal magnetization relaxation acquires anomalous subdiffu-
sive scaling, described by zr =2 —€ =d — 2.

in d spatial dimensions, i.e., I'(q) ~ |gq| for d =3, that
replaces the corresponding diffusive mean-field behavior
~T'¢’>. In a Lorentzian approximation for the associated
dynamical susceptibility R (g, ) in (16), A(g, @) = I'(g),
this nontrivial wave-vector scaling directly determines the
linewidth of the longitudinal magnetization correlation func-
tion Cy(q, w) = (2kgT /iw) Im R (g, ). This quantity can be
measured experimentally through polarized neutron scatter-
ing, although extracting the ultimate long-wavelength behav-
ior may be challenging. Alternatively, spin-echo measurement

o(1)=100
¢(1)=1000

10°® 0.01 100 10°® 0.01 100

(a) (b)

FIG. 4. RG flow of the dynamic exponents zp(/) and zr-(/) with
initial conditions f(1) = 1,D(1) =3,I'(1) = 1, A(1) = A = 1, and
large initial values ¢(1) = 10, 100, 1000. The RG flow is then set far
away from the critical point, and bypasses the critical scaling regime
entirely.

lql

T<T, A,

FIG. 5. Schematic diagram of one RG flow in phase space,
corresponding to a wave vector |g| scan in a (neutron) scattering
experiment at fixed temperature T < T,.

techniques could provide access to the anomalous tempo-
ral decay of the longitudinal magnetization autocorrelations
Cix=0,1) ~ t~4/ar = ¢=d/(d=2) ;=3 ij three dimensions,
rather than the mean-field decay Cy(0, 1) ~ t=4/2 = +=3/2 for
d=3.

IV. SUMMARY AND CONCLUSION

In this paper, we have investigated the critical dynamics of
the antiferromagnetic nonlinear sigma model with conserved
total magnetization. The Langevin dynamics then involves
reversible, hydrodynamic mode-coupling terms. We have in-
vestigated the ensuing scaling properties by means of the
perturbative field-theoretic RG approach, and we computed
dynamical response functions of both the order parameter and
the magnetization densities to one-loop order. As expected
near thermal equilibrium, the response functions show a sep-
aration of the dynamics from the statics. There emerges an
explicit symmetry breaking between the response functions of
the transverse and longitudinal components of the magnetiza-
tion density, which suggests that the critical fixed point is no
longer approachable in this dynamical nonlinear sigma model
variant, since the rotational symmetry cannot be recovered.
We have provided a detailed argument from the RG point
of view as to why approaching the critical fixed point is not
feasible, at least in this perturbative regime.

We have analyzed the dynamical scaling behavior near
the ordered phase RG fixed point that describes the asymp-
totic coexistence limit via an € =4 —d expansion about
the dynamical upper critical dimension d. =4. We find
Goldstone-mode induced anomalous subdiffusive scaling for
the longitudinal component of the magnetization. The dy-
namic exponents at the coexistence ordered phase fixed point
coincide with those for the SSS model, which is based on a
Landau-Ginzburg-Wilson Hamiltonian. We have numerically
solved the RG flow equations, and we observe that if initiated
near the critical point, they display a brief crossover regime
towards the critical region, even somewhat fortuitously recov-
ering the correct dynamical critical exponent z. = d /2, before
ultimately reaching the coexistence limit with zp =z, =2
and zr = d — 2. These relaxation predictions should be exper-
imentally accessible through the dynamic scaling of neutron
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FIG. 6. One-loop order contributions to (7;7;).

scattering linewidths or the temporal decay of the autocorrela-
tion function for the longitudinal magnetization fluctuations.
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APPENDIX A: ONE-LOOP RESULTS FOR USEFUL
CORRELATION FUNCTIONS

In this Appendix, we briefly provide more details and
intermediate results for the explicit computation of various
correlation functions, from which one may obtain the response
functions, to one-loop order in the dynamical perturbation
expansion. On the tree (mean-field) level, the nonvanishing

J

22 7
(mii YD (p, w) = 8 c“(p”+h)

FIG. 7. One-loop order contributions to (m37i3).

propagators of the field theory read

. 2 7
i~,(0) :(Si‘ lw_D(p +h)
(1:7,) O (p, w) Mo —or(Plle — o]’
PO _ —c@ 4 1)
midt )Py @) = €3 wi(P)llo — o_(p)]’
. 2
i"‘,(o) :8," lw_)\'p
(man ;)@ (p, w) Mo — oy Pllo — o1’
—c

5 0\ 0) = €;;
<7szj> (p, w) Ezj[w_er(p)][a)—aL(P)]’

1

_, Al
—iw+ I'p? Aab

(m3i3)® (p. ) =
where we have used the spin-wave dispersions (20). In our
convention, time and hence momentum always flow from
right to left in Feynman diagrams. All one-loop fluctuation
corrections to the propagators of the order parameter 7 and
the propagator of the parallel component of the magnetiza-
tion density mj3 are plotted in Figs. 6 and 7. Here, the 7,
m, and mj fields are represented by solid, dashed, and wavy
lines, respectively. The one-loop graphs for the propagator of
the perpendicular components of the magnetization density
my, my and the mixed m;m; propagators have the same loop
structures, but just carry different external legs. The explicit
results for the one-loop fluctuation corrections to the propaga-
tors read

[&*(p* + WB(p, w) + (iw — Dp* — Dh)uA],

Yo — oy (p)Plo — o_(p)P?
—c(p2 + ﬁ)(iw — Apz)

(midt;) D (p, w) = €ij

(i — Ap*)?

[w — wr (PP — w_(p)]?

[&*(p* + h)B(p, ®) + (iw — Dp* — Dh)uAl,

(7)) (p, w) = &

—c(iv — Ap?)

o — or(p)Plo — o_(p))?

[Z(p* + B)B(p, ®) + (iw — Dp* — Dh)uAl,

[&*(p* + h)B(p, ®) + (iw — Dp* — DiyuAl,

(i) D (p, w) = €

2¢°

[w — w1 (P)P[w — w_(p)]?

73) P (p, w) = ——=—— E(p, w), A2
(m3m3)" (p, ) ot TP) (p, ®) (A2)
where
/ 1
A= | ——,
K2+ h
B(p. o) / iw—T(p —k)* — Ak?
' v (k2 4+ )[—iw + iw (k) + T(p — k) [—iw + io_(k) + T(p — k)21’
[k* — (p — k)?][iw — Ak? — D(p — k)* — Dh]
E(p,w) = — ST Sz
k [K* + hll(p — k)* — hllo — w4 (k) — o (p — k)]
(liw — M(p — k)* — Dhlliw — Ak*> — A(p — k)*] + 22 (k* + h)) A3)

"o — 0 (k) — 0r(p— Do — oK) — o_(p— )llo — o (k) — o_(p— ]
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FIG. 8. One-loop order contributions to (7;[ri37;]).

The following relations are obtained by means of explicit
calculation, and they lead to immediate cancellations in the
evaluation of response functions:

(mi[m;m3])(p, ) = (m[imzm;])(p, w),

Lo

(milFema 1) (p, @) = S 77 (p, ). (A4)
The remaining one-loop results for other composite operator
correlation functions that appear in the expressions for the
dynamical response functions (16) are

(i 1) (p, @) = € i = hp” B(p. w)
ilm3m , W) = €;jUc » W),
AP Mo —or(pllo—ao_(p1 T
(720 (p ) = 8 2uc A
T O = o o (P — ()]

uc
(m3[7i7;]) (p, @) = Gijm E(p, w), (A5)

and the associated Feynman diagrams are shown in Figs. 8—
10. Finally, we may assemble these building blocks to
construct the dynamical susceptibilities to one-loop order.
The response function for the order-parameter components
becomes

Do —ip)—=¢
Yo — or(p) o — o_(p)]
[ (iw — Ap?) (iw — Dp* — Dh) }
x |1 A
[0 — wy(p)] [0 — w_(p)]

MC2

Xxij(p,w) =14

Y
T o e o — o]
. . 2.\2
XP iwlio = Ap) Mnm}
[0 — wi(p)][w — w_(p)]
(A6)

while the response function for the perpendicular components
of the magnetization density reads

—Drp? (P* + h) — 2 (p* + h) + iwlp?
[ — wi(p)] [ — w_(p)]
—iwc? (p* + h)
[0 — o (p)Plw — o_(p)]?
x [(iw — Dp* — Dh) uA + (p* + h)uc* B(p, )],
(A7)

Rij(p» a)) = aij

+46ij

O

FIG. 9. One-loop order contributions to (7; [m_,ﬁz]).

WANNWAL

FIG. 10. One-loop order contributions to (m;3[7;m;]).

and the response function for the parallel magnetization den-
sity component is

Ry(p.w) = Trpz[rp2 — 28 E(p, w)]
28T
- (—icfir—lli)pz)2 Ep o) (A9

Straightforward algebra then yields the expressions (17) and
(19) to first order in u.

APPENDIX B: NONLINEAR SIGMA MODEL: OTHER
DYNAMICAL UNIVERSALITY CLASSES

In this Appendix, we briefly analyze other standard dynam-
ical critical universality classes in the context of the nonlinear
sigma model [10,19,20]. We shall argue that in fact all other
types of universal dynamics imposed on this system turn out
either trivial or incompatible with the rigid nonlinear sigma
model constraint.

1. Model C dynamics

In model C dynamics, one allows for the static coupling
of the conserved energy density £(x, t) to the order param-
eter. With the thermodynamics of a critical system captured
by the Landau-Ginzburg-Wilson effective Hamiltonian, the
energy density becomes directly coupled to the square of
order parameter, whence the two-point correlation function
for the energy density fluctuations (£€) is proportional to
the specific heat Cy, as it should [10]. Yet in the nonlinear
sigma model, one imposes the rigid constraint 7> = 1. Cou-
pling the energy density to 7> in the Hamiltonian through
a term %5 (x,1)* + g€(x, t) A% thus becomes trivial; the field
E(x, t) may be readily integrated out without any effects on
the order-parameter fluctuations.

In the hope of incorporating nontrivial fluctuations of the
energy density, we could instead consider the static coupling

He = %fddx[g — g(vii)’T. (B1)

Note that this term is quadratic in £ and can be integrated
out to show that £ is proportional to %(Vﬁ)z, i.e., the Hamil-
tonian density. However, a naive dimensional analysis then
immediately yields that the resulting effective coupling g’u
has the negative scaling dimension —d and is thus irrele-
vant in the RG sense. As a consequence, near the critical
point, the system decouples from the energy density. This
suggests that the dynamic exponent of the order parameter
assumes its model A value z, = 2 + ¢ n, while the dynamic
scaling exponent for the conserved energy density retains its
Gaussian value zg = 2. This result is consistent with well-
established findings from model C critical dynamics based on
the O(n)-symmetric Landau-Ginzburg-Wilson theory, namely
that for negative specific heat exponent o < O or vector
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order parameter component number n > 2, the energy density
asymptotically decouples from the order parameter in any
dimension d > 2, leading to model A critical scaling for the
order parameter [10,19,20,50].

2. Critical dynamics with conserved order parameter

In the standard dynamical critical universality classes with
conserved total order parameter, i.e., models B, D, and J,
one requires the total order parameter in the system to be
conserved [10]. In the absence of any nonlinear couplings
(i.e., the Gaussian approximation), the order-parameter field
consequently relaxes diffusively. However, to implement the
constraint of the nonlinear sigma model, one strictly fixes the
o component and considers only fluctuations of the transverse
Goldstone modes 7. Yet to be consistent with the conser-
vation law for the total order parameter, one would need to
properly eliminate the zero-wave-vector fluctuations for all
modes, and at finite wave vectors allow diffusive couplings
between the longitudinal o and the transverse 7 sectors. Thus,
the dynamical universality classes with conserved total order
parameter appear inaccessible in the context of the nonlinear
sigma model.

APPENDIX C: SCALING BEHAVIOR AT d = 3.9

We numerically solved the coupled RG flow equations (25)
for ¢ = 0.1 and plot the ensuing flow of the effective dy-
namical exponents zp(l) and zr(/) in Fig. 11. While of
course d = 3.9 is not a physically realizable spatial dimen-
sion, the € expansion is on safer grounds in this case. However,
we observe the same qualitative flow behavior as in three

Zp Zr
2.00g 2.00
1.98 / 1.98
1.96 1.96
1.94 1.94
1.92 1.92
1.90 1.90

1030 1010 1010 1030 1 10-3° 1010 1010 1030 1

(a) (b)

FIG. 11. RG flow of the effective dynamic exponents z,(/) and
zr({) with the initial conditions f(1) = 0.1, D(1) = 1.5, I'(1) =1,
A(l)=xrg=1,andc(1) = 1, fore = 0.1 (d = 3.9). Asymptotically
as! — 0,zp = 2 and zr = 2 — €; the crossover for the latter to reach
the coexistence scaling regime, however, requires extremely small
flow parameter values [ < 10720,

dimensions: Starting from the Gaussian fixed point values on
the right, the effective exponents display a brief crossover to
their critical values, and subsequently approach their asymp-
totic ordered-phase fixed point values. The order parameter
7 behaves purely diffusively, zp = 2, but the longitudinal
magnetization component m3 acquires nontrivial corrections
due to its coupling to the transverse Goldstone modes, and
ultimately displays subdiffusive scaling in the coexistence
limit governed by zr = 2 — €. Note that the crossover to this
asymptotic coexistence scaling behavior happens exceedingly
slowly for small values of €, as becomes apparent by the
huge range of flow parameters / required to capture the full
crossover in Fig. 11(b). At d. = 4, this slow power-law ap-
proach would be replaced by logarithmic corrections to the
mean-field diffusive relaxation for the longitudinal magneti-
zation density.
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