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Point fields of last passage percolation and coalescing fractional Brownian motions
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We consider large-scale point fields which naturally appear in the context of the Kardar-Parisi-Zhang (KPZ)
phenomenon. Such point fields are geometrical objects formed by points of mass concentration, and by shocks
separating the sources of these points. We introduce similarly defined point fields for processes of coalescing
fractional Brownian motions (cfBMs). The case of the Hurst index 2/3 is of particular interest for us since, in
this case, the power law of the density decay is the same as that in the KPZ phenomenon. In this paper, we
present strong numerical evidence that statistical properties of points fields in these two different settings are
very similar. We also discuss theoretical arguments in support of the conjecture that they are exactly the same in
the large-time limit. This would indicate that two objects may, in fact, belong to the same universality class.
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I. INTRODUCTION

The KPZ equation,

∂t h + 1
2 (∂xh)2 = ν∂xxh + F,

F = space-time white noise, (1)

describes the motion of growing surfaces that is subject to
smoothing effects, slope-dependent growth speed, and space-
time uncorrelated noise. In the seminal paper by Kardar, Parisi
and Zhang [1], it was predicted that the fluctuations of the
height function, h(t, x), are of the order of t1/3 and the spatial
correlation occurs at the scale of t2/3. The 1 : 2 : 3 scaling,
known as the KPZ scaling, also arises in many other models
including random matrices, random growth models, interact-
ing particle systems, optimal paths or directed polymers in
random environments, and randomly forced Burgers equa-
tion or Hamilton-Jacobi equations [2–12].

Naturally, scaling exponents which describe the large-scale
properties should not be affected by the roughness of the
environment F ; it is believed that a sufficient condition for the
2/3 transversal exponent is rapid space-time decorrelation of
the random environment. In the following we will assume F
to be smooth, which describes the large-scale properties with
rapid space-time decorrelation.

Besides the height function, there is also a geometrical
approach to understand the KPZ scaling through the geomet-
rical properties of optimal paths or equivalent objects in these
models. Such geometrical objects already arise when repre-
senting the solution to (1) via the Feynman-Kac formula after
applying the Hopf-Cole transform h(t, x) = −2ν ln φ(t, x):

φ(t, x) =
∫

e− 1
2ν [h(t,γ0 )+∫ t

0 F (s,γs ) ds]W (dB), (2)

where γs = x + √
2νBt−s, and W (·) is the standard Wiener

measure.
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The Gibbs measure on paths

Pt,x
0 (dγ ) = Z−1e− 1

2ν [h(t,γ0 )+∫ t
0 F (s,γs ) ds]W (dB)

is a polymer measure in the random environment given by F .
Although Pt,x

0 is random, there exists a deterministic number
χ ∈ [0, 1], called the transversal exponent, such that the prob-
ability

Pt,x
0

(
max
0�s�t

|γs − γt | = O(tχ )
)

is close to 1 for a typical environment. The KPZ scaling
corresponds to χ = 2/3; for comparison, in the absence of
randomness, i.e., F = 0, Pt,x

0 is equivalent to the Wiener mea-
sure and thus χ = 1/2.

In the zero temperature limit ν → 0, the Gibbs measures
will concentrate on geodesics that have a fixed endpoint γt =
x and minimize the action

h(0, γ0) +
∫ t

0
[L(γ̇s) + F (s, x + γs)] ds, L(p) = p2

2
. (3)

The Lagrangian L can be other convex functions, and this
optimization problem is the one that occurs in the Lax-Oleinik
variational principle that gives the viscous solution to the
inviscid Hamilton-Jacobi equation

∂t u + H (∂xu) = F (t, x),

where H is the Legendre dual of L. Compared to polymer
measures, the geometry of geodesics is easier to describe
because of fewer layers of randomness. The transversal ex-
ponent χ of the geodesics can be defined in a similar way: let
γ = γ t,x be the geodesic; then in a typical environment

max
0�s�t

|γs − γt | = O(tχ ).

In general, the models of finding optimal paths in random
environments are called first- or last-passage percolation
(FPP/LPP).

In most of the FPP/LPP models, geodesics cannot intersect
except at the endpoints. In the context of Hamilton-Jacobi
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equations this means the following: let γ 1,2 : [0, t] → R be
two geodesics of (3) (i.e., any perturbation of γ 1,2 will have
higher action); then γ 1(s) = γ 2(s) can only happen for s = 0
or t . This is due to the convexity of the Lagrangian L.

The nonintersecting property gives a monotone structure to
the geodesics. In particular, the map x �→ γ x(0) is monotone
(nondecreasing), where γ x is the minimizing path of (3) with
γ (t ) = x. Although γ x may not be unique, the monotone
map is well defined since the discontinuity points are at most
countable. Such points with more than one minimizers corre-
spond to the formation of shocks.

We can obtain a consistent family of monotone maps
(φs,t )s<t that satisfies φr,s ◦ φs,t = φr,t for all r < s < t , if
we look at infinite geodesics. More specifically, fix a large
negative T and let γ t,x be the minimizing path of (3) that
starts from time T and terminates at (t, x). The family of
monotone maps is given by φs,t

T (x) = γ t,x(s), T < s < t . By
the principle of dynamic programming, these monotone maps
are consistent:

φr,s
T ◦ φs,t

T = φr,t
T , T � s < t < r.

Sending T → −∞, we get rid of the dependence on T , and
can think of obtaining these monotone maps from infinite
geodesics. These monotone maps depend on the random envi-
ronment, and since the environment is space-time stationary,
so are the monotone maps; the temporal stationarity means
that φs+r,t+r has the same statistics as φs,t for all r, and the
spatial stationarity means that x �→ φs,t (x) − x is a stationary
process. Since the transversal exponent for infinite geodesics
should be the same as the finite ones, we can also see the
KPZ scaling in terms of the monotone maps: |φ−t,0(x) − x| =
O(tχ ), χ = 2/3.

We are interested in understanding to what extent the
monotonicity property and correlation structures determine
the value of χ . More precisely, let φs,t : R → R, s < t ,
be a consistent, stationary flow of random monotone maps.
Then, is it true that for some χ � 0, |φ−t,0(x) − x| = O(tχ )?
How does χ depend on the distribution of the mono-
tone maps? Moreover, when χ exists, what is the scaling
limit of the renormalized monotone maps [RL,χφ]s,t (x) =
L−χφLs,Lt (Lχx), as L → ∞? Is this limit uniquely determined
by χ? We are particularly interested in the case χ = 2/3, since
this value of χ corresponds to the KPZ universality.

Another special case is χ = 1/2. This case can be studied
rigorously since the monotone maps φs,t are independent in
time, and the scaling limit is given by the coalescing Brownian
motion (cBM). However, from the geometrical perspective
described above, neither the 2/3 nor 1/2 exponents should be
special; it should be possible to obtain scaling limits for other
values of χ by varying the temporal decay of correlation of
the monotone maps.

Any scaling limit of the renormalization operator RL,χ pro-
duces its fixed point. The fixed point for χ = 1/2 is given by
the flow of cBM, constructed as follows. Particles start from
every position on the line at time s and perform independent
Brownian motions until collision. When two particles collide,
they merge into a new particle which continues to perform
Brownian motion independent of other particles. For s < t ,
let φs,t (x) be the time-t position of the particle coming from

FIG. 1. Upper and lower point fields of a coalescing process.

location x at time s. The coalescing construction ensures that
(φs,t )s<t is a family of monotone maps. Moreover, due to the
memoryless effect (Markov property) of Brownian motions,
if we follow the trajectory of one particle, t �→ φs,t (x), the
trajectory is a Brownian path despite collisions taking place
along the way, and it follows from the diffusive scaling of
Brownian motions that |φ0,t (x) − x| = O(t1/2) for the flow of
cBM. By the invariance of Brownian motion it is not hard
to see that it is a fixed point for RL,1/2. Note the different
time directions for these models: the flow of cBM is forward
in time, while the infinite geodesics from Hamilton-Jacobi
equations are backward in time.

The flow of cBM was first rigorously constructed by
Arratia [13]. The most technical point was to show the “co-
alescence from infinity” property; that is, at every time t > 0,
there are only countably many particles left at discrete po-
sitions. As a consequence, all the maps φs,t are piecewise
constant functions that can be characterized by two discrete
point fields

· · · < a−1 < a0 < a1 < · · · , · · · < b−1 < b0 < b1 < · · ·
such that φs,t ((an, an+1)) = bn for n ∈ Z.

The “coalescence from infinity” property means that the
random set of surviving particles at any positive time t > 0
constitutes a point field. We call this the upper point field. On
the other hand, for each point in the upper point field, the set of
starting positions that end up at that point is almost surely an
interval. The endpoints of these intervals constitute the lower
point field (Fig. 1).

It is known that for many FPP/LPP models the coalescence
of infinite geodesics also takes place [14,15]; that is, denoting
by γ x the geodesic from x at time 0, for x �= y, there is a
(negative) time T = Tx,y for which |γ x(T ) − γ y(T )| 	 1, and
|γ x(t ) − γ y(t )| will converge exponentially fast for t < T .
In fact, for the lattice model, γ x(t ) = γ y(t ) for t < T . The
time Tx,y is called the coalescence time, and according to the
KPZ scaling, for fixed x and S, the starting point y such that
the coalescence time |Tx,y| < S should be distance O(S2/3)
away from x. As a result, the fixed point of RL,2/3 obtained
from solvable KPZ models is also given by piecewise constant
maps. In this paper we argue that the statistical properties of
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this maps are determined by the monotonicity properties and
the planar geometry.

In what follows, we numerically construct various can-
didates for the fixed point of RL,2/3 from a new class of
coalescing processes called the coalescing fractional Brow-
nian motion (cfBM). We then compare the statistics of the
upper/lower point fields to that obtained from solvable KPZ
models, and observe that these models share strikingly similar
statistics.

II. NUMERICAL EXPERIMENT

A. Coalescing fractional Brownian motion and exponential
corner growth model

Intuitively, the construction of cfBM is similar to that of
cBM: at the initial time t = 0, independent fractional Brow-
nian particles of Hurst index H ∈ (0, 1) start at every point
on R, and two particles “coalesce” into one upon collision.
However, now the dynamics of particles after coalescence
admit different interpretations. We propose three types of
coalescence rules, namely

(1) Coin flip: When two particles collide, one is chosen
with equal probability to “absorb” the other particle and con-
tinue its motion.

(2) Regenerate: When two particles collide, they both van-
ish and a new independent fBM particle is spawned at the
point of collision.

(3) Pólya urn: Let α � 0 be a fixed Pólya index (reminis-
cent of Pólya urn). Every particle starts with weight 1. When
two particles of weights w1 and w2 collide, they respectively
have probability wα

1
wα

1 +wα
2

and wα
2

wα
1 +wα

2
of winning. The winning

particle absorbs the losing particle and continues its motion,
with a new weight w1 + w2. Note that when α = ∞ the par-
ticle with higher weight always wins, and when α = 0 this is
the coin-flip model.

For cBM, all the above coalescing rules are equivalent
due to the strong Markov property. In contrast, fBM with
Hurst index H �= 1/2 is non-Markovian [16, Theorem 2.3], so
one may expect that different coalescing rules would lead to
different kinds of dependence on the past, and hence different
versions of cfBM. This intuition is supported numerically; see
Sec. II D

Although a rigorous construction of cfBM is currently
not available, we study numerical simulations of cfBM with
finitely many initial starting points that are sufficiently dense
and equally spaced. The details of the simulation can be found
in Sec. II C. We are particularly interested in cfBM with
H = 2/3, where the point fields will have the same density
scaling as KPZ models.

We will compare the point fields generated by the cfBM
and by the exponential corner growth model. This is a last-
passage percolation model known to belong in the KPZ
universality class [7]. In this model, weights of independent
and identically distributed exponential random variables are
placed on each (Z+)2-lattice point, and a boundary condition
is specified on the non-negative x and y axes. The geodesics
are the upright paths maximizing the sum of weights they
visit. For details of this exactly solvable model, see [15]. The
geodesics of this model can be generated efficiently. For the

FIG. 2. dk are identically distributed. rk = dk/d0 is the jump-k
ratio.

rest of this paper, by “LPP” we refer specifically to this exactly
solvable model.

B. Test statistics

We are interested in the following questions:
(1) KPZ-like properties: Which model of cfBM has upper

and/or lower point fields with similar statistics as that of LPP
(KPZ)?

(2) Symmetry: The duality of cBM says that there is a joint
realization of two cBMs: one forward in time and the other
backward, with noncrossing paths. It follows that the upper
and lower point fields of cBM are identically distributed. The
symmetry of upper and lower point fields is also known to
hold for LPP [17]. What about cfBM?

(3) Different coalescing rules: Does numerical evidence
corroborate the expectation that different coalescing rules of
the cfBM would lead to a difference in point field statistics?

This involves comparing the upper and lower point fields of
different coalescing processes. With the translational invari-
ance, these point fields are characterized by the distributions
of distances between consecutive points and all finite joint
distributions of such distances. In this paper we will use the
p value from the Kolmogorov-Smirnov (K-S) test to compare
the distributions of the following one-dimensional statistics:

Normalized consecutive point distance: We study the distri-
bution of the distance between consecutive points in the
point field, normalized by the sample mean. We denote
this by δ0.

Jump-k ratio: For fixed k � 1, we consider two intervals, k
intervals apart, and call the ratio between their length the
jump-k ratio, denoted by rk (Fig. 2).

The random variables δ0 and rk , k � 1, can be defined for
both the upper and the lower point fields.

C. Simulation

We simulated cfBM with the coalescing rule of coin-flip,
regenerate and Pólya urn with a few values of α. We generate
discretized steps of cfBm using the Python library fbm [18],
with specifically the Davis-Harte algorithm [19]. The lengths
of the discrete simulations are measured in the number of
discrete steps, denoted by n. For our experiments, cfBMs are
generated up to n = 1024 steps and LPP is generated up to
n = 4096.

The starting positions occupy integer points {−k,−k +
1, . . . , k − 1, k}, where we choose k = 20 × round(n2/3). The
typical deviation of a sample path grows like n2/3, hence
the number of surviving points decay like n−2/3. Thus, by
the nth step, the empirical upper and lower fields contain
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TABLE I. p values comparing upper fields of LPP and cfBM
models.

CF α = 0.5 α = 1 α = 2 α = 10 α = ∞ RG

δ0 0.50 0.57 0.23 0.27 0.15 0.15 0.77
r1 0.86 0.82 0.45 0.99 0.72 0.59 0.45
r2 0.17 0.24 0.15 0.70 0.21 0.60 0.99
r3 0.41 0.45 0.33 0.49 0.74 0.79 0.97
r4 0.43 0.25 0.44 0.30 0.87 0.16 0.90
r5 0.64 0.71 0.46 0.77 0.38 0.50 0.61
r6 0.41 0.46 0.32 0.42 0.34 0.71 0.78

approximately 40 points. Because both cfBM and LPP paths
are homogeneous, it suffices to re-scale the point fields in the
end.

Our statistical tests are based on a sample size of 500
independent cfBM/LPP, which gives rise to approximately
500 × 40 = 20 000 samples for the consecutive point distance
and jump-k ratios.

Before we perform the K-S test, two points from each
end of the point fields are removed to account for finite-size
effects. For instance, one end point—either the maximum or
minimum (depending on the definition)—of the lower point
fields is constant across samples, and is always equal to the
maximum (resp. minimum) of the set of starting positions.
Removing two points from each end of the point fields takes
care of this problem.

Our documented code generating discrete cfBm and LPP
and performing statistical tests, and the corresponding data
banks, can be accessed on our GitHub repository [20].

D. Results

In this section, CF stands for the coin-flip model, RG
stands for the regenerate model, and “α = x” stands for the
Pólya-urn model with index x.

In Table I we compare the upper point fields from cfBM
models to that from LPP. Across the table we obtained high p
values: the minimum is 0.15, while most p values are above
0.40. To compare, the last row of Table III contains p values
computed from two identical distributions. Since the K-S test
is based on the L∞ distance between empirical CDFs and is
sensitive to discretization and small differences, this provides
numerical evidence of a strong similarity between the statis-
tical properties of the upper point fields in the KPZ problem

TABLE II. p values comparing lower fields of LPP and cfBM
models.

CF α = 0.5 α = 1 α = 2 α = 10 α = ∞ RG

δ0 0.10 0.05 0.01 <0.01 <0.01 <0.01 <0.01
r1 0.91 0.18 0.09 <0.01 <0.01 <0.01 <0.01
r2 0.24 0.21 0.04 <0.01 <0.01 <0.01 0.01
r3 0.19 0.04 0.01 <0.01 <0.01 <0.01 0.28
r4 0.45 0.32 0.26 <0.01 <0.01 <0.01 0.02
r5 0.50 0.09 0.08 <0.01 <0.01 <0.01 0.03
r6 0.42 0.34 0.25 <0.01 <0.01 <0.01 0.04

TABLE III. p values between upper and lower fields.

CF α = 0.5 α = 1 α = 2 α = 10 α = ∞ RG LPP

δ0 0.75 0.15 0.16 <0.01 <0.01 <0.01 0.02 0.92
r1 0.51 0.17 0.67 <0.01 <0.01 <0.01 0.22 0.66
r2 0.25 0.58 0.87 <0.01 0.01 <0.01 0.12 0.73
r3 0.55 0.17 0.51 0.01 <0.01 <0.01 0.52 0.99
r4 0.96 0.35 0.44 <0.01 <0.01 <0.01 0.03 0.95
r5 0.99 0.20 0.65 0.02 0.02 0.03 0.21 0.98
r6 0.63 0.80 0.42 0.02 <0.01 0.01 0.11 0.42

and in processes of coalescing fractional Brownian motions
with the Hurst index 2/3.

We also compare the p values for the lower point fields
in Table II. It can be seen that the p values are high for the
coin-flip model. For the regenerate model the p values are
low (<0.05) except for r3. For the Pólya-urn models, the p
values decrease as α increases, and almost vanish for α � 2.
This agrees with what we will see immediately below, that the
coin-flip cfBM and LPP are the only two models that have
symmetry between the upper and lower point fields. We note
that the Pólya-urn model with α = 0 is exactly the coin-flip
model.

In Table III, we compare the statistics between the upper
and lower point fields of each version of cfBM and the LPP
model. The upper and lower point fields of the LPP model are
known to be identically distributed, and the p values are in
the range from 0.42 to 0.92. Using this range as a reference,
Table III suggests that the coin-flip model is the only other
model that can also possibly exhibit such symmetry.

There are intuitive reasons why the Pólya-urn model (α >

0) and the regenerate model do not have such symmetry in the
reverse time direction. In the Pólya-urn model, the weights of
particles are monotonically increasing, and, in the regenerate
model, the history of particles is erased upon collision. Lastly,
we compare the point fields from cfBM with different coa-
lescing rules in Table IV. We obtain extremely low p values
from the lower point fields. This is expected and confirms that
different coalescing rules yield different versions of cfBM.
For the upper point fields, the p values are higher (>0.12),
which agrees with the data in Table I. If one compares other
statistics like the jump-k ratios, similar conclusions can also
be drawn.

TABLE IV. p values of δ0, and upper (lower) triangle part corre-
sponding to upper (lower) field.

CF α = 0.5 α = 1 α = 2 α = 10 α = ∞ RG

CF 0.60 0.45 0.74 0.72 0.33 0.33
0.5 0.39 0.89 0.83 0.75 0.65 0.40
1 0.17 0.35 0.72 0.79 0.84 0.13
2 <0.01 0.03 0.15 0.99 0.99 0.22
10 <0.01 0.02 0.03 0.49 0.98 0.20
∞ <0.01 0.03 0.04 0.66 0.28 0.12
RG <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
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III. CONCLUSION

While most of the research in the field of KPZ was con-
centrated on the statistics of interface, or so-called height
function, in this paper we suggest a more geometrical point
of view. For many problems in the KPZ universality class
one can naturally define the large scale point fields which
can be viewed as places of concentration of polymers, or
particles, and points of separation which can be viewed as
shocks. The asymptotic statistical properties of these point
fields are supposed to be universal, and in some sense encode
the statistical properties of the interface.

In this paper we present an alternative model: coalescing
fractional Brownian motions. This model normally would
not be considered for belonging to the KPZ universality
class. First of all, there is no height function which can be
naturally associated with the process of coalescing Brown-
ian motions (either fractional or standard). In other words,
the interface interpretation is not available for our model.
Second, the model is not related to any external disorder
setting. Nevertheless, in this paper we present theoretical ar-
guments and numerical evidence suggesting that the point
fields arising from the model of cfBM have the same sta-
tistical properties as the points fields in the models of the
KPZ class. Besides providing an approach to the prob-
lem of KPZ universality, our results suggest that the KPZ
universality class is, in fact, much larger than was previously
thought.

It was suggested in [12] that the statistical properties of the
point fields are completely determined by the monotonicity
properties, decorrelation conditions, and the requirement of
a fixed asymptotic power law decay of the density of points
fields. The arguments in favor of the above conjecture were
based on the renormalization approach. The main idea was
that, in the large-time limit, the probability law of a point
field converges to a renormalization fixed point which is stable
apart from one neutral direction corresponding to different
values of the exponent of the power decay of the density. In the
present paper we provide strong numerical support for such a
universality of the point fields.

We stress again that cfBM can be considered for different
Hurst indices. The case of the Hurst index 1/2 corresponds
to standard (nonfractional) Brownian motions. Universality in
this case was studied in [21–23]. It was shown in [23] that
the renormalization procedure can be viewed as the dynamical
process of iteration by random monotone piecewise constant
maps. The Hurst index 1/2 corresponds to the situation when
maps are identically distributed and independent. It was rig-
orously proved that in this case the fixed point is stable.
Other Hurst indices correspond to the situation when different
random monotone maps are correlated in time. The rigorous
mathematical analysis in this case is a challenging problem.
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